
A Heuristic Approach for K-Coverage Extension with
Energy-Efficient Sleep Scheduling in Sensor Networks

Kenji Leibnitz, Indika Suranjith Abeyweera, Naoki Wakamiya, Masayuki Murata

Osaka University, Graduate School of Information Science and Technology
1-5 Yamadaoka, Suita, Osaka, 565-0871 Japan

{leibnitz,a-indika,wakamiya,murata}@ist.osaka-u.ac.jp

ABSTRACT
In this paper we consider the problem of coverage in a wire-
less sensor network where nodes already have been previ-
ously deployed. Our goal is to design an efficient strategy to
add further nodes for achieving a certain target K-coverage
throughout the entire monitoring region. A heuristic ap-
proach based on a dynamic model resembling gas bubbles is
applied to solve this problem. Once the additional coverage
has been reached, each node uses a self-organizing mecha-
nism to determine its sleep schedule, depending on the ac-
tivity of its surrounding nodes.

Keywords
Sensor network deployment, K-coverage, sleep scheduling

1. INTRODUCTION
Future ambient information network infrastructures aim

at providing ubiquitous services, which are custom tailored
and highly adaptable to the users’ requirements. A neces-
sary prerequisite is the efficient deployment of an underlying
network infrastructure of integrated sensing devices which
can monitor the environment and thus adapt to changes in
the demand pattern of the users. By deploying networks
of sensors, information about behavior, conditions, and po-
sitions of entities in an environment are gathered and for-
warded to a sink for further processing [2]. The nodes are
equipped with a sensing device, radio transmitter, and are
usually battery operated. Since they are designed to oper-
ate autonomously, they must be able to set up a communi-
cation network in an ad-hoc manner and be able to adapt
to changes in the network topology, when individual nodes
may fail due to exhausted energy resources. Conservation
of energy is, thus, a key issue in the deployment of sensor
networks. The energy consumption differs depending on the
state of a node and mechanisms which control the duty cy-
cle of sensor nodes in an energy-efficient manner have been
a key issue in research [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’08, November 25-28, 2008, Hyogo, Japan
Copyright 2008 ICST 978-963-9799-35-6.

The coverage problem in sensor networks has been studied
in several papers [4,9–11]. This problem deals with placing
nodes in the monitoring region while maintaining a desired
degree of coverage. Each sensor node will cover a certain
sensing area and the more redundant nodes are placed, the
greater the reliability of the network is, once the battery of
individual nodes gets depleted. Additionally, obtaining K-
coverage, i.e., each location is covered by K sensor nodes,
can be utilized to schedule the duty cycles of the nodes and
prolong the lifetime of the network. Such sleep scheduling
should be performed in an entirely distributed manner.

However, the performance of the network depends on the
placement and coverage of the nodes. Due to the limited
computational capabilities of sensor nodes, more sophisti-
cated algorithms can be applied if the sink or an omniscient
operator performs the location optimization. In our case,
we apply a stochastic optimization heuristic which resembles
gas bubbles being attracted to certain regions of a surface
and either attach themselves to this surface or break with a
pop once they reach a certain age.

Once the location of additional sensor nodes has been de-
termined, the sleep scheduling mechanism can operate in
an entirely distributed manner. For this task we consider
that each node makes a local decision of sleeping or wak-
ing based on the local exchange of messages. Note that
the scheduling problem can be considered completely inde-
pendent of the coverage planning problem, but we will here
discuss both problems here in conjunction, since the deploy-
ment of the sensor nodes will greatly affect the performance
of the scheduling mechanism.

In this paper we discuss the application of a dynamic
and self-organizing “gas bubble” approach to the sensor net-
work coverage problem. We can assume any size and shape
of node coverage region as well as any desired location-
dependent target coverage value. The remainder of this pa-
per is organized as follows. In Section 2, we give the problem
statement and introduce the proposed gas bubble algorithm.
Following this, in Section 3, we investigate the performance
of our proposal. Then, in Section 4, we describe the inte-
gration with a sleep scheduling method. Finally, this paper
is concluded with an outlook on future work in Section 5.

2. THE GAS BUBBLE ALGORITHM
In this section we will present the gas bubble algorithm.

Our goal is to add a certain amount of nodes to an existing
sensor network to maintain that each location in the moni-
toring region is covered by at least K different sensor nodes.

2.1 Problem Statement
Let us consider a sensor network with a set of S nodes

that are already deployed in a monitoring region W ∈ R
2

and the cardinality of |S| = M . The goal is to add additional
N sensor nodes that all points within W have at least K-
coverage, which is defined as follows.

Definition 1 (K-coverage). We say that a region W
has obtained K-coverage, iff

∀x∈W C(x) ≥ K

where C : R
2 → N is the number of sensor nodes covering a

point x ∈ W .

This problem is obviously NP-complete. Therefore, we
suggest applying a stochastic optimization heuristic tech-
nique with a dynamic growing structure. The model is
loosely based on the self-organizing approach of Growing
Neural Gas (GNG) [3]. Growing Neural Gas is a special kind
of self-organizing feature maps [6], which are dynamic neural
networks that map the topologies from an input space to an
output space, while preserving the topological relationship.
However, in contrast to GNG, we do not require to maintain
any topology, therefore, any neighborhood relations are not
really taken into account, but only the best matching neu-
ron is stimulated by an input signal. Self-organizing maps
for coverage optimization have also been considered in [7,8].
While [8] considers only the application of GNG to sensor
network coverage planning, [7] also deals with the problem
of K-coverage. However, these papers do not discuss the
problem in combination with sleep scheduling.

The key feature during the adaptation of self-organizing
feature maps is that an intrinsic energy which influences
the reaction of neurons to input stimuli is reduced over the
lifetime of the network. This concept is for example also
applied in simulated annealing [1] and attractor selection
[5]. We will use this feature as well and let the neurons
be stimulated by input signals generated randomly in the
monitoring area. When the neuron’s energy has reduced
to fall below a threshold, the neuron will be considered as
candidate for the location of a sensor node. At this point the
coverage gain of the potential sensor is evaluated and if it
results in an increase in coverage a new sensor will be placed
at this location. On the other hand, if putting a sensor at
this location would not yield any benefits in coverage, it will
be simply removed.

The overall behavior of our proposed method resembles
gas bubbles which are attracted towards a material with
lower density. Once the bubble reaches this area, it becomes
inert and merges with this material. Similarly, if it does not
reach the area and exceeds its lifetime, the bubble simply
breaks and is removed from the system.

We assume that with knowledge of the monitoring region
and the location of the existing sensor nodes, it is possible
to calculate the coverage degree with a function C(x) at any
location x ∈ W . In the simplest case, we can consider that
the sensing coverage area is circular with a radius of r.

C(x) = |{s ∈ S : ‖s − x‖ < r}| (1)

The operator ‖·‖ denotes the Euclidean distance.
Depending on whether a point ξ ∈ W has already reached

its target coverage, the point ξ randomly generates an input
signal as a stimulus. The neuron located closest to the stim-
ulus reacts to this input by moving towards it and storing

Figure 1: Attraction of neuron to input signal

Figure 2: Inhomogeneous target coverage

its cumulative traveled distance, see Fig. 1. If this distance
gets very large, this is an indicator that this neuron is re-
sponsible for too many stimuli and therefore requires that a
new neuron is generated. In order to be accepted as sensor
location, the new location must contribute to coverage, since
it is of no use adding a sensor node to an already sufficiently
covered area. On the other hand, when a neuron has not
been moved for a certain time, it becomes unnecessary and
is removed from the network.

A great advantage of this algorithm is that it is easily
extended to take into account also inhomogeneous target
coverage values. For example, consider a scenario where the
degree of coverage depends on the location, see Fig. 2. Some
areas may be more critical and must be observed with a
higher target coverage. In this case, the algorithm is easily
extended by generating the input signals ξ dependent on
a location value K(ξ) instead of a constant K. However,
throughout this paper we will assume only a constant K.

2.2 Algorithm Formulation
We can now formulate the algorithm in this way. Ini-

tially starting with two randomly located neurons, we gen-
erate at each time step an input signal among all points
in W which have not yet reached their target coverage K.
Following the principle of Hebbian Learning, this input sig-
nal stimulates the neuron nearest to it which is moved by
a certain fraction towards this stimulus. Unlike GNG or
other topology-preserving mechanisms, neighboring nodes
are not influenced. The amount of movement of each neu-
ron is stored in the variable error and is an indication of
how well the input space is represented. If it moves a lot,
then more neurons are needed. and so after a fixed number
of tadd time steps, a new neuron is added at the location
of the neuron with the highest error value, which is then

split among the old neuron and the new neuron. In order
to limit the growth of neurons, we use an age counter which
is reset whenever a neuron is selected as best matching neu-
ron. Once a certain age threshold tage is reached, the bubble
breaks and it is removed from the system. If a node has a
low error value after each sadd steps, it has found a good lo-
cation in the input space and is then pinned to this position
to become the location of a new sensor node.

In order to make the system become stabilized, the error
value of each neuron is decreased at each time step and its
age is incremented. This procedure is repeated until the
whole monitoring area reaches its target coverage.

1. Initialize step = 0.

2. While there are still locations left with coverage less
than K:

2.1 step = step + 1

2.2 Start with two neurons n1 and n2 at random po-
sitions in the window W .

2.3 Generate an input stimulus ξ randomly among all
uncovered points in W proportional to K −C(ξ).

2.4 Find the nearest neuron b to ξ and update its
error value and reset its age.

error(b) = error(b) + ‖b − ξ‖
age(b) = 0

2.5 Move b by ǫ towards ξ: b = b + ǫ (ξ − b)

2.6 If tadd mod step == 0, add a neuron at the loca-
tion of the neuron with the highest error and split
this total error among the old and new neuron.

2.7 if sadd mod step == 0, the neuron with lowest
error becomes a sensor node if there is a coverage
gain.

2.8 Remove all neurons ni with age(ni) > tage.

2.9 Decrease the error of each neuron nj by a decay
factor δ and increment its age.

error(nj) = δ error(nj)

age(nj) = age(nj) + 1

3. NUMERICAL RESULTS
We conduct simulation runs to investigate the behavior of

our algorithm. The parameters are tadd = 200, sadd = 500,
ǫ = 0.2, tage = 200, and δ = 0.95. Obviously, in order to
guarantee a minimal K coverage value, we will have a lot of
overlap when the radius is large since circular coverage areas
are assumed. Fig. 3 shows a histogram of the 3-coverage for
a square window W of size w = 100 and r = 15. It can be
seen that the average coverage is much higher at about 5.5
and overlaps of up to 11 nodes can be found.

3.1 Approximation of Optimal Coverage
We can theoretically estimate the best coverage value,

when we assume a regular hexagonal grid layout of the sen-
sor nodes as this resembles the most optimal possible layout
with circular coverage areas, see Fig. 4. In order to achieve
a higher K, we can consider different overlaid layers of such
grids, so we essentially just need to calculate the number of
circles as well give an estimate for the overlap area between

Figure 3: Histogram of K-coverage

Figure 4: Hexagonal coverage layout

two circles. Since we are looking at the totally optimal situ-
ation, we will ignore any influence from the existing sensor
network in this approximation.

In order to fully cover the area square area W with side
w, we assume the layout as shown in Fig. 4. First, we need
to calculate the distance of the center (’x’) to the series of
points marked as pi, i ≥ 1, which give us a the radius yi of
the i-th tier of circles.

yi =

(

r (2 + 3 (i − 1)) if i is odd

r

2

q

(7 + 6 (i − 2))2 + 3 if i is even
(2)

We need to find the i-th tier of circles which completely
includes the square W by comparing yi−1 < w

2

√
2 ≤ yi. For

the i-th tier we have in total Li nodes.

Li = 1 + 6
i

X

k=1

k = 1 + 3 i (i + 1) (3)

Note that this overestimates the number of nodes needed
especially when i is large, since the segments enclosed by
the circle and the square will become very large and contain
circles which are not used for the coverage. However, since
we anyway ignore the previously configured original network
nodes, we can assume that the errors are compensated to get

Table 1: Radii of tiers for w = 100 and r = 15
i 1 2 3 4 5 6 7

yi 30.0 54.1 120.0 143.1 210.0 232.9 300.0

(a) Initial number of nodes M

(b) Coverage radius

Figure 5: Comparison of total nodes M + N

a very rough estimate for the number of nodes. Multiplica-
tion of Li with K yields the total number of nodes.

For example, let us consider the sample configuration that
we used before. Then, the values of yi are as shown in
Table 1. We can see that y2 < w < y3, so with i = 3 we
have L3 = 37 × K nodes in total, depending on K.

In Fig. 5(a) the values are compared between the theoret-
ical approximation and the proposed bubble algorithm. The
number of initially existing nodes is M and the number of
added nodes is denoted as N . We can see that the when
K = 1, only for M = 10 both methods achieve comparable
results. However, unlike the optimal method where M + N
remains constant, the total nodes increase with the previ-
ously available sensor nodes M . However, for larger K our
approach proves to be competitive requiring similar or fewer
nodes than the approximation. The same observation can
be made in Fig. 5(b), where we varied the coverage radius
and kept M = 10 constant. The bubble algorithm always
lies lower than the approximation methods.

3.2 Influence of Initial Configuration
The first series of experiments considers the original sensor

network configuration and the number of nodes that were
already previously deployed and which we wish to extend
to K-coverage. Fig. 6(a) depicts the initial node fraction.
These values shows us the proportional growth rate from the

(a) Node growth ratio

(b) Average coverage

Figure 6: Different number of initial nodes

initial number of nodes and is defined as ϕ = M/(M + N).
Hence, a value of ϕ = 1 means that there M = M +N and

thus no additional nodes were added. On the other hand a
value of ϕ ≈ 0 means that N ≫ M , so a huge amount of
additional nodes were required. Fig. 6(a) shows this growth
fraction for K = 1, 2, 3 and the two coverage radii r = 10, 15.
When K = 3, we have the smallest ϕ and the most nodes
are added. This is expected, since we require that each
point in the monitoring region W must be covered K = 3
times. Additionally, the larger the radius r, the less nodes
are needed and best results are with K = 1 and r = 15.

In Fig. 6(b) the average coverage value C of each point
in W is shown as defined in Eqn. (1). The first thing we
notice is that in order to obtain a guaranteed K-coverage,
nearly the double amount of coverage is performed. The
smaller the radius is, the less the results get influenced by the
initial node configuration. When K is small the difference
in r becomes clearer for larger M than for large K. This
means that the influence of the radius is reduced when K
gets larger. An interesting observation that can be made is
that if r = 10, an optimal value of initial nodes M exists
somewhere between 20 < M < 40 which shows the least
excess coverage. This effect is not visible when r = 15.

3.3 Influence of Node Coverage Radius
We will now take a more detailed look at the influence of

the coverage radius r on the node growth ratio, cf. Fig. 7(a).
When the initial number of sensor nodes is large, e.g. M =
50, only few nodes are added. A large coverage radius drasti-
cally reduces the number of nodes and this is enforced when

(a) Node growth ratio

(b) Average coverage

Figure 7: Influence of coverage radius

the required K gets smaller.
In Fig. 7(b), the average coverage is shown as a function

over the coverage radius r. This figure shows us that a lot
of the excess coverage is introduced by the already existing
sensor nodes. When the algorithm has a chance to operate
with only few initial nodes, e.g. M = 10, the average cover-
age remains rather constant, but it rapidly increases when
M and r are large. In this case, the different target level
plays no role, since so much overhead coverage is produced
anyway. Again, we can clearly see that for M = 10 a radius
r exists, so that the average coverage is minimized. This
optimal radius lies between 10 < r < 15, depending on K.

4. DYNAMIC SLEEP MANAGEMENT
The advantage of having K-coverage in a sensor network

is that each location in the monitoring region is now re-
dundantly covered by at least K sensor nodes. This im-
proves robustness to individual node failures, higher diver-
sity in sensing data, and the possibility of combination with
a sleep scheduling scheme to prolong network lifetime. We
now briefly outline how efficient coverage planning can be
applied to a sleep scheduling scheme, based on the Cover-
age Configuration Protocol (CCP) [12] that we extend by
energy-efficient timers and message filtering.

4.1 Overview of CCP
In CCP a sensor node follows the state transitions as il-

lustrated in Fig. 8, depending on timers and its eligibility.
Being eligible (Eligibility=TRUE) means that a sensor node
must stay active and sensing to satisfy a required k-coverage,

WITHDRAW LISTEN

JOIN ACTIVE

SLEEP

Eligibility=TRUE /

Set Tj

Tj expires /

Broadcast JOIN
Eligibility=FALSE /

Set Tw

Eligibility=TRUE /

Cancel Tw

Tw expires /

Set Ts &

Broadcast WITHDRAW
Ts expires / Set Tl

Tl expires / Set Ts

Eligibility=FALSE /

Cancel Tj & Set Ts

Figure 8: CCP states and transitions

with k < K of that used for designing the network. In all
states except for SLEEP, a sensor node maintains a neighbor
list, which is updated on reception of messages before check-
ing its eligibility. A sender of a HELLO or JOIN message
is added to the list and that of a WITHDRAW message
is removed from the list. An entry of the list includes an
identifier, the coordinates, and the sensing range of a mes-
sage sender. A detailed description of the states and their
transitions can be found in [12].

In all states except for SLEEP, a sensor node evaluates
its eligibility on receiving a message from neighboring nodes
within the RF reception range. The algorithm proposed in
[12] for evaluating the eligibility considers geometrically only
intersection points of sensing ranges of neighboring sensor
nodes. If all intersection points are in the sensing range of a
sufficient number of sensor nodes in ACTIVE state, a node
is considered ineligible.

4.2 Energy-Dependent Timer Setting
Our first extension deals with the energy-efficient setting

of the timers in each state, since energy is not taken into
account in the original CCP. To prolong the lifetime of the
network and to keep monitoring for as long as possible, it
is necessary to set the timers in accordance to the amount
of residual energy. For example, by keeping a sensor node
with higher residual energy longer in ACTIVE state, low-
power nodes with overlapping sensing area can save battery
consumption by being ineligible and entering SLEEP state.

For this purpose, we assume that a sensor node knows
the amount of residual energy of its battery and HELLO,
WITHDRAW, and JOIN messages include the information
about the sender’s residual energy at the time of message
emission. When node i changes its state at time t, it sets
its respective timer depending on the energy information
in all messages received while it has been awake, i.e., in
LISTEN, JOIN, ACTIVE, and WITHDRAW states. The
ratio of own residual energy to maximum of the received
energy levels is denoted as ρi(t) = ei(t)/ei,max(t), with
ei,max(t) = maxj∈Ni

ej(tj) and Ni is the set of neighbor-
ing nodes from which node i has received messages, tj < t
corresponds to the time that the latest message from node
j was received, and ej(t) is the amount of residual energy
reported by sensor node j at time t. Each timer is set as
follows, where Tx(0) represents the initial setting in state x.

SLEEP Timer: The sleep timer Ts(i, t) is set inversely
proportional to the relative amount of residual energy, so
that a sensor node with the large amount of residual energy
wakes up earlier than the others, i.e., Ts(i, t) = Ts(0)/ρi(t).

WITHDRAW Timer: The withdraw timer Tw(i, t) is
set proportional to the relative amount of residual energy.
By keeping a sensor node with the large amount of residual
energy stay in the WITHDRAW state longer, the sensor

node has more chances to receive WITHDRAW messages
from others and thus it is more likely to become eligible
again, i.e., Tw(i, t) = Tw(0) ρi(t).

JOIN Timer: The join timer Tj(i, t) is set inversely
proportional to the relative amount of residual energy. By
making the join timer expire faster for a sensor node with
the large amount of residual energy, it suppresses activa-
tion of sensor nodes with less residual energy, i.e., Tj(i, t) =
Tj(0)/ρi(t).

LISTEN Timer: The listen timer Tl(i, t) is set indepen-
dently of the residual energy. The duration of the LISTEN
state should be long enough to receive messages of neighbor-
ing nodes. Among messages, HELLO messages are the most
important for sensor node i to evaluate its eligibility, since
HELLO messages imply that there are actively sensing nodes
in the vicinity and it would make the sensor node ineligible.
Consequently, Tl(i, t) is given as, Tl(i, t) = Tl(0) = c Thello,
where c ≥ 1 is a constant.

4.3 State Transitions with Message Filtering
The state transition of CCP causes that sensor nodes are

divided into two groups, nodes which remain in ACTIVE
state and nodes which continuously switch between SLEEP
state and ACTIVE state. Therefore, we additionally intro-
duce message filtering and modify the CCP state transition
rules. Here, we explain how a node acts in each awake state
when it receives any message.

ACTIVE State: Sensor node i neglects HELLO mes-
sages from neighbors which have lower energy than ei(t).
Then nodes which have higher residual energy can easier
enter ACTIVE state. Furthermore, nodes with low energy
compare their level to neighbors entering SLEEP state. Any
JOIN messages, sent by nodes switching from JOIN to AC-
TIVE state, are neglected. However, WITHDRAW mes-
sages should be accepted regardless of the energy level.

WITHDRAW State: As this is a transient state before
going to SLEEP state, sensor node i which has lower residual
energy goes to SLEEP state as soon as possible, neglecting
HELLO and JOIN messages from neighbors with lower than
ei(t) in the same way as in ACTIVE state.

JOIN State: Messages in this transient state are handled
the same way as in ACTIVE state.

LISTEN State: This state is for deciding whether the
node should go to ACTIVE state after coming from SLEEP
state according to its neighbors’ messages. Thus, node i
neglects messages which are lower than ei(t). Then sensor
nodes, which have higher than ei(t) are moved to ACTIVE
state and others to SLEEP. In this state WITHDRAW mes-
sages are neglected without considering the residual energy.

5. CONCLUSION AND OUTLOOK
In this paper we addressed two important problems found

in sensor network deployment and operation. At first, we
applied a dynamic heuristic approach for optimizing an al-
ready existing sensor network to reach K-coverage. The al-
gorithm resembles the behavior of gas bubbles and stochas-
tically finds a solution to the K-coverage problem. Then,
after the “gas bubble” algorithm finds suitable locations of
additional sensors, a dynamic sleep scheduling method can
be applied to prolong the lifetime of the network. The sleep
scheduling mechanism works self-adaptively with only local
information. In the future we wish to further investigate
the effects of energy-efficient timer settings by experimen-

tal studies and mathematical analysis. When the timer pa-
rameters are selected in an appropriate and energy-efficient
way, it will be possible to ensure that the sensor network
operation becomes robust and reliable in order to provide
ubiquitous service in an ambient network infrastructure.

Acknowledgments
The authors would like to thank Yoshiaki Taniguchi for his
help and the anonymous reviewer for his comments. This
research was supported in part by “Global COE (Centers of
Excellence) Program”of the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

6. REFERENCES
[1] E. Aarts and J. Korst. Simulated Annealing and

Boltzmann Machines. Wiley, 1989.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks. IEEE
Commun. Mag., 40(4):102–114, 2002.

[3] B. Fritzke. A growing neural gas network learns
topologies. In Advances in Neural Information
Processing Systems, volume 7, pages 625–632, 1995.

[4] C.-F. Huang and Y.-C. Tseng. The coverage problem
in a wireless sensor network. In 2nd international
conference on Wireless sensor networks and
applications (WSNA’03), San Diego, CA, 2003.

[5] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo.
Adaptive response of a gene network to environmental
changes by fitness-induced attractor selection. PLoS
ONE, 1(1):e49, 2006.

[6] T. Kohonen. Self-Organizing Maps, volume 30.
Springer Series in Information Sciences, 2001.

[7] C. Koutsougeras, Y. Liu, and R. Zheng. Event-driven
sensor deployment using self-organizing maps.
International Journal of Sensor Networks,
3(3):142–151, 2008.

[8] A. Kulakov and D. Davcev. Distributed algorithm for
a mobile wireless sensor network for optimal coverage
of non-stationary signals. In 1st Workshop on Spatial
Stochastic Modeling of Wireless Networks
(SpaSWiN’05), Riva del Garda, Italy, 2005.

[9] J. Lu, L. Bao, and T. Suda. Coverage-aware sensor
engagement in dense sensor networks. In Embedded
and Ubiquitous Computing: International Conference
(EUC’05), pages 639–650, Nagasaki, Japan, 2005.

[10] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and
M. B. Srivastava. Coverage problems in wireless
ad-hoc sensor networks. In IEEE Infocom, Anchorage,
AK, 2001.

[11] M. T. Thai, F. Wang, and D.-Z. Du. Coverage
problems in wireless sensor networks: designs and
analysis. International Journal of Sensor Networks,
3(3):191–200, 2005.

[12] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and
C. Gill. Integrated coverage and connectivity
configuration for energy conservation in sensor
networks. ACM Trans. on Sensor Networks,
1(1):36–72, 2005.

[13] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient MAC protocol for wireless sensor
networks. In IEEE Infocom, New York, NY, 2002.

