
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

アトラクター選択による自己適応型DHT経路表設定

林 鋭† ライプニッツ 賢治† 村田 正幸†

† 大阪大学大学院情報科学研究科 先進ネットワークアーキテクチャ講座
〒 565-0871 大阪府吹田市山田丘 1-5

E-mail: †{r-lin,leibnitz,murata}@ist.osaka-u.ac.jp

あらまし 本稿では、分散型ハッシュテーブル (DHT) における経路表サイズの自己適応的な制御について議論する。

多くの DHT機構では静的に経路表の設定を行うため、環境変化によってパラメータ設定が適切でなくなった場合は、

通信オーバーヘッドが大きくなり、ネットワーク全体の性能が劣化する。そこで、本稿では、制御不可能かつ予測困

難なアンダーレイネットワークの変動によって生じるトラヒック変動に対する適応性を実現するために、生物の未知

の変化に対する適応性をモデル化したアトラクター選択に基づく経路表サイズの自己適応的制御手法を提案する。ア

ンダーレイネットワークの状態が変化したときの通信オーバーヘッドの最小化を目的とし、Pastryの経路表の制御に

アトラクター選択を適用することで適応的な経路表制御を実現する。

キーワード DHT, Pastry, アトラクター選択, 自己組織, 経路表

Self-Adaptation of DHT Routing Table Size with Attractor Selection

Rui LIN†, Kenji LEIBNITZ†, and Masayuki MURATA†

† Osaka University, Graduate School of Information Science and Technology
Advanced Network Architecture Laboratory

1-5 Yamadaoka, Suita, Osaka, 565-0871 Japan
E-mail: †{r-lin,leibnitz,murata}@ist.osaka-u.ac.jp

Abstract In this paper we discuss the self-adaptation of the routing table size of a distributed hash table (DHT)

by applying the biologically inspired attractor selection method to adapt to variations in the traffic caused by un-

controllable and unpredictable fluctuations in the underlay network. Since the common DHT mechanisms provide

only static settings of the routing table, our goal is to perform an adaptive control, as unsuitable parameter settings

would cause too much overhead traffic and deteriorate the overall network performance. We adopt attractor selec-

tion as adaptation scheme, since it provides better self-adaptablity and robustness features than other methods and

we demonstrate its applicability to control the DHT node state for the case of the routing table size of Pastry, a

well-known DHT algorithm. Our goal is to minimize the overhead traffic when the the conditions in the underlay

network change.

Key words DHT, Pastry, attractor selection, self-organization, routing table

1 Introduction
In structured peer-to-peer (P2P) overlay networks, each

node (or peer) and file key is assigned a unique ID, based

on a consistent hash function. The file keys are mapped

to nodes according to their IDs and a distributed hash table

(DHT) definition. The DHT maintains topological relation-

ships between the nodes and supports a routing protocol to

locate a node responsible for a required key. Representa-

tives of DHT systems include variable-degree DHTs, such

as CAN [11], Chord [16], Pastry [13], Tapestry [17], Kadem-

lia [10], or constant-degree DHTs like Cycloid [15], Koorde [3]

and Vicery [9]. Most of the variable-degree DHTs require

O(log n) hops per query request with O(log n) neighbors per

node, where n is the network size. In contrast, constant-

degree DHTs achieve a query path length of O(d) with O(1)

neighbors, where d is the network dimension and n = d 2d.

Most of the existing DHT algorithms are defined with

static parameter settings, but the underlay network and user

behaviors are uncontrollable and unpredictable and greatly

influence the performance of the DHT network. Subopti-

— 1 —

mal conditions cause deterioration in the performance of the

system, such as heavy-tailed query distributions (skewness),

high rates of node joining and leaving (churn), and wide

variations in network and storage capabilities and capacities

(heterogeneity) [5]. So in order to cope with these aforemen-

tioned issues, adaptation of the nodes’ state is a necessary

and important condition in designing robust DHT networks.

Attractor selection is a biological dynamical adaptation

model introduced by Kashiwagi et al. [4]. It is a stochas-

tic approach that determines the system state according to

the suitability of the current system state. In this paper we

propose a variation of Pastry that can achieve traffic-based

adaptation by adopting attractor selection. Each node has

an internal state, e.g., the routing table size. This state

controls the behavior of forwarding the query requests and

affects the total query traffic of the DHT network. After re-

ceiving the query reply, the querist (i.e. source of the query)

keeps track of how many hops it is away from the destina-

tion (i.e. the node which holds the queried key). This hop

count contributes to an overhead in the network query traffic

as occasionally non-optimal routes are chosen, and its mea-

surements reflect the network state. Beside the query traffic,

the maintenance traffic also needs to be considered. A node

must periodically contact its neighbors that are stored as en-

tries in the routing table and leafset, to assure that they are

still alive. Node or connection failures will result in query

failures and additional traffic and latency. The maintenance

traffic is proportional to the routing table size and the update

interval. After a fixed interval, if the querist accumulates suf-

ficient data to obtain an updated view of the network, it will

change its state by using attractor selection to achieve better

performance causing less overhead traffic.

The rest of this paper is structured as follows. Section 2

briefly discusses related work on current adaptation schemes

in DHT. Section 3 gives the details of attractor selection and

in Sect. 4 we demonstrate how this concept can be applied

to the self-adaptation of the Pastry routing table size. In

Sect. 5 we evaluate the performance of the proposed adapta-

tion scheme through numerical simulations. Section 6 sum-

marizes our approach and we give some remarks on possible

future extensions.

2 Related Work
There exists some similar work to ours on adapting the

DHT routing table size. Shen et al. [14] proposed an elas-

tic routing table to deal with the query load balancing and

avoid congestion. This mechanism allows each node to have

a routing table of variable size corresponding to node ca-

pacities. The in-degree and out-degree of the routing table

are also adjusted dynamically in response to the change of

file popularity and network churn. Li et al. [8] presented a

performance versus cost framework (PVC) that allows de-

signers to compare the effects of different protocol features

and parameter values. PVC analysis shows that the key to

efficiently using additional bandwidth is for a protocol to ad-

just its routing table size. However, these above-mentioned

proposals focus only on specific aspects of DHT and cannot

deal with more complex network conditions, which is the goal

of our research.

3 Attractor Selection Model
In this section we will give an outline of the principle of at-

tractor selection which is the key component in our method.

The original model for adaptive response by attractor selec-

tion is given by Kashiwagi et al. in [4] and is based on the

dynamics of biological experiments on mutually inhibitory

operons in the gene expression of E. Coli cells.

Basically, we can outline the attractor selection method as

follows. Using a set of differential equations, we describe the

dynamics of an M -dimensional system, see Eqn. (1).

dmi

dt
= f(m1, . . . , mM) g(α) + ηi i = 1, . . . , M (1)

The state of the system is given by the vector over all mi

values and its dynamic behavior is influenced by the two

functions f and g. When the system evolves over time, it

converges to certain attracting equilibrium points that are

defined by the product of functions f and g. Each differ-

ential equation is furthermore under the stochastic influence

of a noise term ηi that corresponds to an inherent Gaussian

noise found in the original gene expression model. This ran-

dom noise term causes the system to be constantly in motion.

However, once the system has converged to an attractor, it

remains there as long as the attractor is stable.

Additionally, we introduce an activity term α, which

changes the sensitivity of the system to the influences from

the noise terms. For example, if g(α) → 1, the system be-

haves rather deterministic and converges to attractor states

predefined by the structure of the differential equations.

However, for g(α) → 0 the noise term will become the dom-

inating factor in the behavior of the system and essentially

a random walk is performed. When the input values require

the system to react to modified environmental conditions,

activity α changes accordingly, causing the system to search

for a more suitable state. In the course of this random search,

the activity value increases again as soon as a better solu-

tion is approached and the influence of the random term is

reduced.

In our approach, we control the selection of the appropri-

ate attractor by the activity term α, which indicates how

well the current system state corresponds to the influencing

factors from the environment. The activity directly influ-

ences the differential equation system by causing attractors

— 2 —

activity

potential

f(m) state m

Brownian

motion

attractors A
1

A
2

A
3

Fig. 1 Schematic figure of attractor selection principle

to become unstable if the current system state is not suitable

for the environmental conditions.

The principle of attractor selection is sketched in Fig. 1.

The x-axis represents the system internal state m, which is

for simplicity only shown in the one-dimensional case. Let

us assume that three attractors A1, A2, and A3 exist and the

system is currently attracted to A3. If now an influencing

environmental factor makes this solution no longer suitable,

the function α will cause a decrease in the growth function

g(α), leading to a “flatter” potential landscape defined by f .

Since the noise term always exists, the system will be driven

away from attractor A3 and perform a Brownian motion in

the phase space. Once m approaches a more suitable attrac-

tor (in this case attractor A1, the system will become more

deterministic keeping the system state at this attractor in

spite of the still existing noise terms.

4 Proposed Extension of Pastry
In the following we will consider an extension to Pastry,

which is a popular DHT algorithm that specifies how keys are

distributed among the nodes and how the node responsible

for holding a key can be found. Its variation Bamboo [12] is

considered the most promising candidate for IETF P2PSIP.

4. 1 Routing Table Handling in Pastry DHT

Each node in the Pastry network has a unique identifier

(nodeId), maintains a routing table, a neighborhood set, and

a leafset. When presented with a message and a key, a Pas-

try node efficiently routes the message to the node with a

nodeId that is numerically closest among all currently live

Pastry nodes to the key. The expected number of routing

steps is O(log 2N), where 2N is the current number of Pas-

try nodes in the network. Each Pastry node keeps track of

its immediate neighbors in the nodeId space and notifies the

users of the routing algorithm (for example, the querist and

forwarders) of new node arrivals, node failures, and failure

recoveries.

4. 1. 1 Node Identifier and Neighborhood Set

Each node in the Pastry overlay network is assigned a 128-

bit nodeId, which is used to indicate a node’s position in a

circular nodeId space ranging from 0 to 2128−1. The nodeId

is assigned randomly using a hash function such as SHA-1

when a node joins the system, such that the resulting set of

nodeIds is uniformly generated. Assuming a network consist-

ing of N nodes, Pastry can route to the numerically closest

node for a given key in less than

l

log2b 2N
m

=
N

b

steps under normal operation (b is a configuration parame-

ter with typical value 4). For the purpose of routing, nodeIds

and keys are thought of as a sequence of digits with base 2b.

Pastry routes messages to the node whose nodeId is numeri-

cally closest to the given key. This is accomplished as follows.

In each routing step, a node tries to forward the message to a

node whose nodeId shares a key with a prefix that is at least

one digit (or b bits) longer than that of the present node. If

no such node is known, the message is forwarded to the node

whose nodeId shares a same length prefix with the key as the

current node, but which is numerically closer to the key.

4. 1. 2 Routing Table

A node’s routing table is organized into N/b rows with

2b entries each. The 2b − 1 entries at row n of the routing

table each refer to a node who shares the first n digits in

the nodeId, but whose (n + 1)-th digit has one of the 2b − 1

possible different values than that in the present node’s id.

The entries are divided into 3 categories: valid, empty, and

self. Each row of the routing table includes one self entry

corresponding to the own node’s id. The other entries in this

row are valid or empty, meaning that they do or do not con-

tain other nodes’ information. Thus, the appropriate choice

of b requires a trade-off between the size of occupancy of the

routing table and the maximum number of hops required

between any pair of nodes.

4. 1. 3 Leafset

The leafset L is the set of nodes with the numerically clos-

est |L|/2 larger nodeIds and the |L|/2 nodes with smaller

nodeIds relative to the node’s own id. Typical values for |L|
are 2b or 2b+1. The leafset allows forwarding even in the case

that the routing table is incomplete. Moreover, the leafset

greatly contributes to the static resilience of the geometry [2].

4. 2 Definition of the Parameters

In the following sections we describe the parameters used

in our proposal.

4. 2. 1 Id Space and Network Size Exponents

The parameter N is the id space size exponent. Typical

values are 128, 160, or 256 and the actual value depends

on the hash algorithm. In the simulations in this paper, we

consider a smaller network with N = 16. The network size

exponent is expressed by n. This value represents that the

number of the active nodes of the DHT network is between

— 3 —

2n−1 and 2n. The possible range of n lies between 1 to N .

4. 2. 2 Routing Table Parameters

We define b as the Pastry parameter with possible values

from 1 to N and R is the routing table size of a Pastry node

with

R =

‰

N

b

ı

2b. (2)

Another parameter is expressed by R1, which is the num-

ber of valid entries in the routing table. Thus, R1/R gives

us the routing table utilization. The appropriate choice of

R1 depends on b and n, since the first n/b rows should be

kept full, which means that this node gets enough routing

information from the network.

R1 ≈ n

b

“

2b − 1
”

(3)

Figure 2 shows the relationship between b, R, and R1. In

this example, N = 8 and nodeId = 01101100. If b = 2 and

R = 4×4 = 16, nodeId is treated as a sequence of 2-bit digits

01-10-11-00. If b = 3, R = 3 × 8 = 24, and nodeId is repre-

sented as 011-011-00. In each row, there is an entry (denoted

as self id) with the same number as the corresponding digit

of this nodeId and this entry is not used for routing purposes.

When n < N , which is a common case with large N , only

the first several rows are filled with neighbor information.

R1 depends on the network size and is an estimation of the

overall network condition from the viewpoint of this node.

4. 2. 3 Timer Values

We define ts as the traffic sample interval. Every ts time

interval, a node calculates its traffic and performs a selection

of a new routing table. Furthermore, tu denotes the rout-

ing table and leafset update interval. Every tu time interval,

a node validates the entries of the routing table and leaf-

set through ping messages. If there is no response from the

queried node, that entry is removed. Reasons for such a case

may be a node’s silent departure, node failure, or conges-

tion. If the routing table or the leafset of a node are not full,

update requests are sent to its neighbors. The neighbors’

routing table or leafset are included in the update responses

and merged by the node. Finally, tq is defined as the query

interval.

4. 2. 4 Traffic Metrics

Our traffic metrics are based on the number of hop counts,

expressed by value hi for query request i. Many factors affect

the hop count, such as the network condition (size, churn,

connection failures), the node state (routing table size, etc.),

and the routing mode (iterative or recursive). We denote

Tq as the query traffic, which is the sum of all hi for all i

in ts, i.e., Tq =
P

ts
hi, and Tm is the maintenance traffic.

For instance, if n < N , the routing table is not fully occu-

pied. At every tu interval, a node pings the existing entries in

the table and receives acknowledgment messages, then sends

update requests and receives their responses. If R1 is kept

constant during ts (with fixed n and the leafset is full), the

maintenance traffic Tm will be

Tm = 4 (R1 + |L|) ts

tu
.

The total traffic is then defined as the weighted sum of Tm

and Tq and we use β to balance their influence. For a busy

node, Tq may be much larger than Tm, whereas for an idle

node Tq may be 0. If not stated otherwise, we consider in

this paper β = 0.5, i.e., both traffic values contribute in equal

proportion to the total traffic T .

T = β Tm + (1 − β) Tq

4. 3 Adaptation with Attractor Selection

In our model, the Pastry parameter b represents the node

state. Each node uses this parameter to control the routing

table size R and adapts to the changes in the network con-

ditions. Some possible values of b may be pre-configured by

an operator as especially desirable configurations, e.g., from

b = 1, . . . , N/2, which we define as set of attractors A.

If the node chooses a small b, the values of R and R1 be-

come smaller, leading to a decrease of the rate of maintenance

traffic over time. However, the query request through this

node will now require more hops, because the node doesn’t

know as many neighbors as before and can’t choose the next

hop which is closer to the destination.

On the other hand, if the node uses a large b, it has larger

R and R1, leading to more maintenance traffic, but less query

traffic. Our goal is to minimize the total traffic of the en-

tire DHT network. So the activity function g(α) in Eqn. (1)

must be defined inversely proportional to the total traffic T .

Let us now formulate an algorithmic description of the

attractor selection problem. Note that this type of prob-

lem we are facing requires an entirely different way of for-

mulation from previous applications of attractor selection

(e.g. [6], [7], [18]), since only discrete values of a state value

attractor(t) can be used. Let T (t) be the total traffic at

time t and Tmin(t) be the minimum value of T over a slid-

ing window, which stores several previous values of T (t). If

T (t) exceeds the threshold of (1 + γ) Tmin(t), the activity is

α = 0 and the next attractor is selected uniformly randomly

among all possible attractors. Otherwise, if the current selec-

tion is suitable, it is deterministically maintained and, thus,

this formulation resembles the basic dynamic behavior of at-

tractor selection.

attractor(t + ts) =

8

<

:

attractor(t) T (t) < (1 + γ) Tmin(t)

rand (1, |A|) T (t) >= (1 + γ) Tmin(t)

(4)

— 4 —

00xxxxxx self id 10xxxxxx 11xxxxxx n = 2, R1 = 3

0100xxxx 0101xxxx self id 0111xxxx n = 4, R1 = 6

011000xx 011001xx 011010xx self id

self id 01101101 01101110 01101111

(a) b = 2, R = 4 × 4 = 16, nodeId = 01-10-11-00

000xxxxx 001xxxxx 010xxxxx self id 100xxxxx 101xxxxx 110xxxxx 111xxxxx

011000xx 011001xx 011010xx self id 011100xx 011101xx 011110xx 011111xx

self id 01101101 01101110 01101111

(b) b = 3, R = 8 × 3 = 24, nodeId = 011-011-00

Fig. 2 Illustration of Pastry routing table with parameter b, N and n

5 Simulation Results
In order to show the efficiency of our proposal we con-

duct simulation experiments and compare the results with

the standard Pastry implementation. In this section, we first

describe the simulation environment and then present our

comparative simulation evaluation.

5. 1 Description of the Simulation Environment

As simulator for DHT we use Overlay Weaver, which is an

overlay construction toolkit written in Java. It enables over-

lay designers to implement a structured overlay algorithm

with only a few hundreds of lines of code and to improve it

rapidly by iterative testing on a single computer. The struc-

ture in this toolkit is composed of three parts: routing driver,

routing algorithm, and messaging service. This decomposi-

tion enables an implementation of a number of well-known

overlay algorithms with only minor modifications of the code.

The available toolkit currently contains implementations of

Chord, Kademlia, Koorde, Pastry, and Tapestry. Addition-

ally, this decomposition allows multiple implementations of

the routing driver and the toolkit provides iterative and re-

cursive routing drivers.

We used the key-based routing layer by Dabek et al. [1]

and built an enhanced scenario generator. In this generator,

each node’s online time ton and offline time toff follow expo-

nential distributions and these two parameters control the

network size with a mean of 2n = 2N ton/ (ton + toff) nodes

and ton/ts is the node’s life time in the unit of the sample

interval.

5. 2 Discussion of the Simulation Results

The following figures are simulation results of a single sce-

nario, where Node 0 is the bootstrap node that introduces

other nodes to the DHT network. All the nodeId are uni-

formly distributed and Node 0 uses our modified Pastry rout-

ing algorithm with attractor selection based on (4).

We define 4 attractors (0 to 3) that are represented by the

value of b = 1, . . . , 4. All other nodes in the DHT operate

with the standard Pastry with the fixed parameter b = 2,

i.e., they stay at attractor 1 without any adaptation. Fur-

thermore, we use the parameters β = 0.5, γ = 0.2, ts = 10s,

0 20 40 60
0

500

1000

1500

2000

2500

3000

3500

time [t
s
]

tr
af

fic
 [p

ac
ke

ts
]

maintenance
traffic T

m

total
traffic T

query traffic T
q

(a) Traffic of Node 0

0 20 40 60
0

1

2

3

time [t
s
]

at
tr

ac
to

r

(b) Attractor of Node 0

Fig. 3 Simulation results of our prosal

tu = 1s, tq = 10ms. So in each sample interval, Node 0 pro-

cesses 10 routing table updates and 1000 queries. The unit

of traffic is given in packets.

Initially, 63 nodes were introduced by Node 0 in the time

interval [0, 10]. These nodes form a static network without

any joining or leaving nodes. Then, Node 0 queries the keys

with uniform distribution and accumulates the hop counts.

From time 30 to 40, further 192 nodes join the network. In

this 256-node network, nodes know the existence of more

neighbors (with increasing R1) and feel more crowded (with

increasing hi). After the network is stable again, Node 0

continues performing queries until time 60.

Figure 3(a) shows the maintenance traffic, the query traf-

fic, and the total traffic of Node 0. The unit on the x-axis is

given in ts. The traffic of Node 0 in the larger network (be-

tween time [40, 60]) is higher than that in the small network

— 5 —

0 20 40 60
0

500

1000

1500

2000

2500

time [t
s
]

tr
af

fic
 T

 [p
ac

ke
ts

]

attractor
b = 1
b = 3

Fig. 4 Comparison of adaptive and fixed parameter settings

(between time [10, 30]). More query traffic Tq means that

Node 0 should use a larger routing table and more main-

tenance traffic Tm means that Node 0 is currently using a

larger routing table. After some fluctuations (time intervals

from [0, 10] and [30, 40]), the traffic becomes stable in a static

network.

In Fig. 3(b), we see how Node 0 chooses the attractors.

In time intervals [0, 10] and [35, 45], it performs a random

selection due to the fluctuations of the traffic. The selection

of the new attractor is performed at time 35, following at a

slight delay after the node joinings (time 30). In the other

time, Node 0 remains at either attractor 0 or 2, depending

on which attractor results in the least traffic.

Figure 4 is the comparison of the proposed modification to

Pastry with attractor selection with standard Pastry. The

curves show the traffic of Node 0 in the same scenario, but

compares it with different parameter settings (constant b = 1

and b = 3). In most of the time, the traffic of our adaptive

proposal is below that of Pastry with constant routing table

size. It should be noted that the traffic values are rather

close, as we selected nearly optimal settings for constant b

values to which our proposal automatically adapts.

6 Conclusion and Outlook
In this paper, we proposed the application of attractor se-

lection for self-adaptively configuring the routing table size

in a DHT network. Based on Pastry we proposed a mecha-

nism that minimizes the traffic of the whole network. With

our approach, a node self-adaptively changes its routing table

size based on the query hop counts and maintenance traffic

it obtains only by local communication with its neighboring

nodes. Simulation results confirmed that our method is ca-

pable of adaptively reducing the traffic of the whole network.

As part of our future work, we plan to examine the state

consistency, load balance, and convergence time in more de-

tail, as well as consider alternate forms for the definition

of the attractors. Furthermore, more detailed performance

studies are required to highlight the benefits of our proposal

over conventional DHT strategies in the presence of churn.

Acknowledgments
This research was supported in part by “Global COE (Cen-

ters of Excellence) Program”of the Ministry of Education,

Culture, Sports, Science and Technology, Japan.

References

[1] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-

ica. Towards a common api for structured peer-to-peer over-

lays. In Proc. 2nd International Workshop on Peer-to-Peer

Systems (IPTPS’03), February 2003.

[2] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,

S. Shenker, and I. Stoica. The impact of dht routing geome-

try on resilience and proximity. In Proc. ACM SIGCOMM,

August 2003.

[3] M. F. Kaashoek and R. Karger. Koorde: A simple degreeop-

timal distributed hash table. In Proc. 2nd International

Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[4] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo. Adap-

tive response of a gene network to environmental changes by

fitness-induced attractor selection. PLoS ONE, 1(1), 2006.

[5] J. Ledlie and M. Seltzer. Distributed, secure load balanc-

ing with skew, heterogeneity, and churn. In Proc. IEEE

INFOCOM, March 2005.

[6] K. Leibnitz, M. Murata, and A. Nakao. Biologically-inspired

path selection scheme for multipath overlay networks. In

Proc. ISABEL, Aalborg, Denmark, October 2008.

[7] K. Leibnitz, N. Wakamiya, and M. Murata. Biologically in-

spired self-adaptive multi-path routing in overlay networks.

Commun. ACM, 49(3):62–67, 2006.

[8] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M.

Gil. A performance vs. cost framework for evaluating dht

design tradeoffs under churn. In Proc. IEEE INFOCOM,

March 2005.

[9] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scal-

able and dynamic emulation of the butterfly. In Proc. 21st

ACM Symposium on Principles of Distributed Computing

(PODC), 2002.

[10] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-

peer information system based on the xor metric. In Proc.

IPTPS, 2002.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In

Proc. ACM SIGCOMM, August 2001.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling

churn in a dht. In Proc. USENIX Technical Conference

(USENIX ’04), Boston, MA, June 2004.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-

ized object location and routing for large-scale peer-to-peer

systems. In IFIP/ACM International Conference on Dis-

tributed Systems Platforms (Middleware), Nov. 2001.

[14] H. Shen and C.-Z. Xu. Elastic routing table with provable

performance for congestion control in dht networks. In Proc.

ICDCS, 2006.

[15] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable con-

stantdegree p2p overlay network. Performance Evaluation,

63(3):195–216, March 2006.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proc. ACM SIGCOMM, Au-

gust 2001.

[17] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,

and J. D. Kubiatowicz. Tapestry: A resilient global-scale

overlay for service deployment. IEEE JSAC, 22(1), 2004.

[18] 若宮直紀, ライプニッツ賢治, 村田正幸. 生物の適応性・頑健性
に学ぶ：自己組織型ネットワーク設計手法・制御技術. 電子情報
通信学会誌, 91(10):870–874, 2008.

— 6 —

