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Abstract—Modularity structure is often found in many dif- one of these topological structures called modularity is found
ferent types of complex networks. Especially, this topological in various complex networks including biological systems
property is believed to provide a certain degree of robustness [3]. Since biological systems benefit from its evolutionary

to networks. This belief leads us naturally to investigate the dvant f h ¢ loaical hitect it i tural
impact of modularity structure on the behavior of networks. advantage or such an topological architecture, 1t Is natura

In this paper, we carry out two simulation studies to monitor 0 ask why the topological architecture of biological systems
traffic dynamic in modularized and non-modularized scale free ends up with a modularity structure through the evolution
networks. In the first s_imulation, coarse-grained traffic is ﬂoo_ded process. If we understand the advantage of the topological
through networks. This study demonstrates that a modularized g \;cture found in biological systems, we may be able to apply

structure localizes damages and stops the malicious effect to the . - .
whole system. In the second simulation, more fine-grained traffic °U" understanding for building an artificial network so that the

is used to investigate how a modularity structure impacts on the Man-made systems can be as robust as biological systems.
saturation of networks. This result shows that a strong modu-  As a result, in this paper we present some simulation results
larity structure is saturated much faster than non-modularized g ghserve the behavior of modularized and non-modularized
topology as traffic load increases, and additionally we show how topologies in terms of traffic dynamic. We make use of two
this early saturation in modularized structure can be overcome. . . . . -

Index Terms—Modularity, Traffic Dynamic, Critical point. S'mt_”at'on mo_dels_whl_ch were er’posed in [4] _[5]' F'rStIY'

traffic fluctuation is simulated with coarse-grained traffic

which can be separated into internal and external fluctuations.
This separation enables us to understand the origin of traffic

Many different types of properties to characterize compléictuation caused by two different components which are a
networks have been proposed, and some of these suchiop®logical structure and a traffic burstiness. Secondly, fine-
average path length, clustering coefficient, and degree disgfained traffic is flooded through topologies to observe the
bution, have been adopted to explain robustness of compligiation of critical points which represents the saturation of
networks. For instance, the degree distribution has attractgéhetwork.
great attention from researchers after it was discovered thatrhe rest of this paper is organized as follows. In Section Il

degree distributions of many different complex networks cage provide brief descriptions of two models which have
be better described by a power law fotft(k) ~ k7 rather peen used to generate scale free topologies. This section
than the conventional Poisson distribution. The power layso describes how the strength of modularity structure is
degree distribution implies that a few nodes have extremejgfined. This is followed by a detail description of the first
large number of links while large number of nodes have smajmulation scenario called coarse-grained traffic fluctuation in
number of links. Thus, if we assume that high degree nodggction I11. Section IV explains a different type of simulation
are more important than less degree nodes, the power i@\observe the saturation of networks with finer scale traffic.
networks (also called scale free networks) provide clues thgie hoth Sections include various numerical results based on
they are error tolerance - randomly chosen node is likely to Bgo different simulation scenarios. Finally, we conclude the
small degree nodes- and attack vulnerable - when high degfger in Section V.
nodes are intentionally chosen [1]. In other words, complex
networks with a scale free property are robust to a random || T\vo MODELS FOR TOPOLOGY GENERATION WITH
failure and fragile to an intentional attack. MODULARITY STRUCTURE

While adopting these basic properties have been well
explored to explain robustness of networks, other types ofSince network behaviors in modularized and non-
properties such as modularity and hierarchy attracted lessdularized topologies are investigated, these two types of
attention relatively because of its mathematical complexitgpologies are required for our investigation. Two well known
in analysis. In spite of its difficulty, it is worth to investigatemodels are used to generate these topologies, namely&arab
these structural properties for many different reasons suchasml Albert (BA) model [6] and Fabrikant, Koutsoupias and
evaluating the performance of networking protocols, assessiPgpadimitriou (FKP) model [7] models. They are based on
the effectiveness of proposed techniques to protect the n®te representative theories called the preferential attachment
work from nefarious intrusions and attacks, and developirmsnd the optimization process that explain the power-law
improved designs for resource provisioning [2]. Especiallphenomenon observed in many different fields of sciences.

|. INTRODUCTION



A. Barahisi and Albert (BA) model

2

Barahisi and Albert (BA) [6] explained the emergence of Q= Z(e“ - a;) @
power law of degree distribution in many complex networks ) ! ) ) )
using the preferential attachment mechanism. Based on ¥aere( is the quantified modularity value,is a symmetric
mechanism, they proposed a model to generate a power IRRLIX v_vh|ch represents the connectivity among moduIe.s. The
topology. When a new node arrives, it is connected to &imension ofe is the same as the number of modules in the
existing node which is chosen probabilistically frd(k;) = network. Also,a; represents a row or_column sum of matrix
ki/ Y, kr, where k; represents the number of degrees ifi = 2_; ¢ij- The valueQ) shows the ratio between the number
a nodei. It implies that a node with large degrees has @f links |n§|de modules and tha_t of links between modules.
high probability to be chosen from a new arrived node. TthhU_Sv relatively less number of links among modules produce
phenomenon is also described as rich-get-richer. In the mo@dpigh value ofQ.

is there a parameten which decides the number of existing Since the iteration process produces a series of modularity
nodes to which a new arrived node attaches. values, the maximum value is chosen to be the modularity

value of the network.
B. Fabrikant, Koutsoupias, and Papadimitriou (FKP) model I1l. COARSE GRAINED TRAFFIC FLUCTUATION

Fabrikant, Koutsoupias, and Papadimitriou (FKP) [7] pro- In this simulation scenario, two traffic models are con-
posed a model to explain of the power law distribution dfidered. In both models, a certain number of walk&frs
degree in the Internet topology. The model imitates humame located in randomly chosen nodes and move around a
behavior that minimizes the construction cost of a networketwork M steps. The difference between two models is how
More specifically, they attach a new arrived node to ahe walkers are routed in a network. In the first model, a
existing node by minimizing their proposed objective functiorandom routing is simulated which represents the behavior
a - d;; + hj, where d;; is the Euclidean distance (i.e.,of an intruder in a system. In the second model, walkers
geographical distance) between nodeand j, and h; is a follow along the shortest path between nodes. In both models,
hop counts distance between ngdand a pre-specifiedoot to obtain time to time fluctuation on each nodedifferent
node (node0). The former distance represents constructiamumber of walkers are launched on different types of networks
cost and the latter does operating cost. Since two distan@esimes independently.
are complement each other, the parametayives weight to  One way to characterize the dynamic of traffic in this
one of distances. When has a low value such a8 the scenario is to capture the relation between méawn]; and
geographical distance is ignored so that each new arrived natiendard deviation|[V]; of the number of visits of walkers in
connects to a root node directly, so it results in a star topologyach node. The relation is often represented using following
On the other hand, when the parameter is high, each nastgiation.
tries to connect to the geographically closest node so that
it creates a topology which is similar to a random network. olV]; = E[V]® 2

In this paper, we make use of values feras used in [7]. o i
Another interesting observation is that topologies from this YWhen we plot standard deviations as a function of ascent

model tend to have strong modularity structure. It is becau$grted means in log scale, the exponentharacterizes the

geographically closed nodes are grouped together so thafyfe! of fluctuation of traffic. In [4], a model was proposed to
forms a modularity structure. identify the origin of traffic fluctuation. The model separates

the original traffic fluctuationf;(t) at node: into internal
C. Quantifying Modularity fimt(t) and externalf¢**(¢) traffic fluctuations as follow
Modularity has been studied in many different areas with fi(t) = fE55) + £ 3)
different names such as community structure, graph partition- - _
ing in graph theory and computer science, and hierarchigdnere f{*(t) = % SN fi(t) and £i"(t) can
clustering in sociology [8]. Basically, this property shows howe obtained from subtractin “t(¢t) from f;(t). It means that
easily a network can be divided into groups. the measuredf;(¢t) can be split into two components. The
In [8], Newman et al developed an algorithm to quantifyeason to choose this model for our investigation is that the
the strength of modularity structure. The method follows anternal fluctuation is related to the topological structure of a
iteration process. The first step involves finding of a linketwork.
where most flows use (such a link is called a link with high Fig. 1 shows the relation among total| externalf¢*t, and
betweeenness centrality). A link with the highest betweennensgernal i fluctuations as the bustiness of traffic varies in
centrality is searched and removed continuously until theo different types of topologies. The number of walkBrsat
removal splits the network. When it is split, the strength dfme ¢ varies from the uniform distributiofV — AW (¢), N +
modularity is calculated using the following equation. AW (t)], where N is the number of nodes, and\IWV



respectively. Thus, when the internal fluctuation dominates
over external fluctuation, the total fluctuations in Fig. 1(a)

and Fig. 1(b) are governed by internal fluctuation so that the
gradient of total fluctuations are similar to that of internal

fluctuation, however as the external fluctuations increase,
the impact of internal fluctuation is fade out and the total
fluctuation is totally dominated by the external fluctuation.
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Fig. 1. (a)(b) Before traffic fluctuation is separated into internal and external 05 = =
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in FKP and BA topology respectively. From bottom to top, théV is
setto[1,2,3,4,5,6,7,8,9, 10, 100, 200, 300, 400, 500]. (c)(d) After traffic
fluctuation is separated into internal and external in FKP and BA topology
respectively. Blue circles show the fluctuation of internal traffic, and red
crosses show external traffic fluctuations. From bottom to top Ah& is
setto[1,2,3,4,5,6,7,8,9, 10,400, 500].

Traffic Variation

Fig. 2. The variation of exponent as traffic fluctuation increases.

Fig. 2 shows the variation of gradients (exponehbf total
traffic fluctuation in FKP (blue circle) and BA (red asterisks)
topologies respectively as traffic burstiness increases. With
is from [1,2,3,4,5,6,7,8,9, 10,100, 200, 300,400, 500]. In  small external fluctuations, the total fluctuation is dominated
Fig.1(a) and Fig.1(b), total traffic fluctuation/s are plotted py the internal fluctuation which is affected by a topological
with fitting lines. The first five top lines in both figuresstructure. Thus, the alpha values start from different points and
ShOW tOtal traf'fiC ﬂuctuations When h|gh ﬂuctuated traﬁ:icgradua”y increases unth(t) becomes aroundo_ Then'

(AW(t): [500,400,300,200,100]) are flooded , and the regiey rapidly increases, which show the domination of external
of lines (actually only one line can be seen since theg@ctuation.

lines are overlapped) are with low traffic fluctuatioh i/ (¢):
[10,9,8,7,6,5,4,3,2,1]). In both topologies, the first five top
lines are nearly parallel with similar gradient close 1o

0.8

when high burstiness traffic are flooded. It is because the
external fluctuation fully dominates the total fluctuation in
both topologies. However, as the traffic burstiness (external
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fluctuation) decreases, the total fluctuation is under control 0o
of internal fluctuation so that different gradients start to 085 o
appear when small bursty traffics are flooded. In Fig. 1(c)
and Fig. 1(d), the internal fluctuations (fitting lines with blue 4T . e
circles) and the external fluctuations (fitting lines with red . '
crosses) are separated from total traffic fluctuation. There =
are 12 different set of external fluctuations withiv' from o5
[1,2,3,4,5,6,7,8,9,10,400,500] (lines with red crosses), 10
and one set of internal fluctuation (lines with blue circles)
which is the counterpart of the 12 sets of external fluctuation.
We observe only one set of internal fluctuation because
internal traffic fluctuation is not affected by the variation of |n Fig.3, with fixed external fluctuation, the size of network
external traffic burstiness. increases fromg80 to 1000 nodes by 10. These topologies
Since we make use of two different topologies, the differemre generated from FKP model (blue circles) and BA model
gradients of internal fluctuations (lines with blue circles) ifred asterisks). The reason we increase the sizes of FKP and
both Fig. 1(c) and Fig. 1(d) are observed)asl 54 and0.5509 BA topologies is that the strength of modularity structure

3
Network Size 10

Fig. 3. The variation of exponent as network size increases.



in FKP topology increases as the size of network increase, IV. FINE GRAINED TRAFFIC FLUCTUATION

while, that of modularity structure in BA topology does g e second part of experiment, a different type of simula-

not change much. From the figure, we can see that SUAGh scenario is used based on a model in [5]. This scenario is

correlation between modularity structure and traffic fluctuatiqﬂvolved with a fine traffic control. In each time step, packets
represented as an alpha which shows the relation betw D generated with a probability from randomly éhosen

mean and ;tandard deviat_ion shown_ in quation ). Tlﬂ%des and forwarded along the shortest path to randomly
alpha value in FKP topologies proportionally increases frorffhosen the other nodes. In this scenario, every node has a

0.65 t0 0.75 as the size of topology increases, while for & eue. Thus, when traffic load increases by increasing the
topology the alpha value does not change very much. It sho bability p, packets begin to be accumulated in queues and

that topolo_gies with_strong modularity structure experien perience delay. These packets in queues are served based
higher traffic fluctuation. In other words, when same amounts, FIFO(First-In First-Out) principle, and move to the next
of traffics are observed in nodes in modularized and no X

Hop according to the probability calculated as follow:
modularized topologies, the node in modularized topology P "9 P ty . W

experiences higher fluctuation than one in non-modularized 1
topology. High traffic fluctuation in a modularized topology Himj = (ninj )Y )
seems to be negative effect in terms of robustness point

of view. Then, why many biological systems have stronﬂhere”i andn; rep_resent the number of queued packets in
modularized structure? This question leads us to investigiigde? andj, and~ is a parameter which controls the speed
more about this phenomenon. of packet forwarding process in a node. Thus, the probability

wi—; means that the probability of a packet moving from node
) i to nodej is inverse proportional to the number of packets in
In the previous results, each walker moves around topol@gge; and nodej and proportional to the control parameter

gies randomly. However, data exchanged between nodes,inn order to observe the saturation of a given network, we
real networks follow fixed routes in order to maximizg,gse the order parameter [5] as follow:

performance of systems. Thus, we simulate another traffic

model based on the shortest path routing. In Fig.4, each . 1 <AN>

point represents the variance and mean ratio (VMR), and the n(p) = Jim o ©)
mean of traffic in time series in each node. Especially, in L

Fig.4(a), Fig.4(c), Fig.4(e), and Fig.4(g), we classify the nod ere 5 shows the total number of packets offered to a
according to their location in a network using our previoudetwork with the number of node$, and <55= means the
work [9]. There are four different groups in these figures. Dafate of packet increase in a network. Fig. 5 plots the order pa-
points (red upside-down triangles) in the most right side shd@meters as a function pfwith fixedy = 0.01 in modularized
data observed in nodes on the top layer of topology. Nodes @ue circles) and non-modularized (red asterisks) topologies.
the top layer mean nodes which are used to connect amdritg offered trafficp, where the order parameterbecomes
modules. Then, nodes in sub-layers are decided accordind'@h-zero, is called a critical point. that a network begins
hop counts from the nodes on the top |ayer_ Since top0|ogil@55aturate. In the figure, modularized tOpO'Ogy reaches to the
from BA model are fully connected each other, nodes are rf@itical point much earlier than non-modularized topology. It
classified into multiple layers as shown in Fig.4(b), Fig.4(d}$ because, as we saw in Fig.4(e) and Fig.4(g), some nodes in
Fig.4(f), and Fig.4(h). First thing we see is that the larg@odularized topology have high betweenness centraljtgo
amount of traffic is observed on nodes on the top layer that these nodes cause modularized networks to be collapsed
modularized topology in Fig.4(e) and Fig.4(g). It shows thegBuch earlier than non-modularized networks.

nodes actually experience a bottle-neck phenomenon. In Fig.6, the variation of critical pointg. are plotted as
the size of both FKP (blue circles) and BA (red asterisks)

Epologies increase from00 to 1000. Although, the critical
0

IM.ostdlrlterelstlng obser_vauon w;ftf;}esﬂe r?SL{[I.tS IS tEat a m;) oints differ from each other, the critical values in both
ularized topology experiences high fuctuation when wa ologies are reduced at the similar rate. We believe that

ers are routed randomly as shown in Fig.4(a) comparedt scale free property in both topologies cause this result. It

Fig.4(b). However, yvhen walkers are rout_ed along the_ Short?’ﬁéans that modularized topology keeps a certain characteristic
path, both modularized and non-modularized topologies eXR8-ccale free property

rience the same fluctuation in Fig.4(c) and Fig.4(d). Under the

tion that th q i s the behavi he early saturation experienced by modularized topology
assumption that the random routing represents the DENAVIOL. 9L, oy ercome in many different ways. Since the main

an intruder, the large fluctuation in Fig.4(a) can be translat? Lson of this early saturation is that the top layer nodes

that intruders are trapped inside modules so that they rarely :
: a modularized topology cause a bottleneck phenomenon,
damage nodes outside the module they belong to. It shows that pology P

a m_Odmamy structure localizes or isolates damages caused b qys how heavily a node is used by flows that exist between every two
an intruder. nodes in a network
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Fig. 4. Variance and mean ratio(VMR), and mean of traffic variation in each node of highly modularized ((a)(c)(e)(g)) and non-modularized topology
((b)(d)(F)(h)). (a)Nearly 70% (365/523) of total nodes are under the average VMR(3.9488 black dot line). (b)55% (288/523) are under the average VMR
(1.4947- black dot line). (€)80% (427/523) nodes are under the total mean average(523), also the average mean traffic of nodes located in the first lay:
(1480) (red down side triangles) is well over 2 times larger than total average (black dot line). (f)70% of nodes are under the average(523 black dot line)(c)A
half of total nodes (260/523) are under the average VMR(0.9711 - black dot line). (d)Around 45% (235/523) are under the average VMR (0.9454 - black
dot line).(g)90% (471/523) nodes are under the total mean average(580.38), also the average mean traffic of nodes located in the first layer (3359) (red dov
side triangles) is well over 2 times larger than total average (black dot line).(h)79% of nodes are under the average(437.28 black dot line).
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asterisks)

_ . . _ bottleneck and this bottleneck phenomenon can be resolved
increasing the speed of packet processing only in these noggsncreasing the capacity of these nodes on top layer.
releases the networks from the early saturation. Fig.7 shows

the variation of critical points as the speed of packet process- V. CONCLUSIONS

ing increases in modularized topology. We decrease the valuetn this paper, traffic fluctuation in modularized and non-

of v in Equation (4) to increase the speed of packet processimgdularized topologies has been investigated with various
in nodes. The blue circles show the variation of critical pointsimulation scenarios.

when the packet processing power of top nodes increasedn the first scenario, we simulated coarse-grained traffic
and the red triangles show a result when nodes other tHarctuation. Initially, we separated the observed traffic fluctua-
top layer nodes are chosen to increase the packet forwardiiog into internal and external fluctuations as proposed in [4] to
power. It demonstrates that actually top layer nodes cause ithentify the impact of topological impact on traffic fluctuation.
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@ Finally, it is worthwhile to emphasize that the FKP model,
/ we used to generate topologies with strong modularity struc-
/ tures, needs to be improved since it was initially designed for
0.03f 1 ISP-level topology with a scale free property. Thus, we leave

£ ,/ the improvement as our future work.
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