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Abstract— Modularity structure is often found in many dif-
ferent types of complex networks. Especially, this topological
property is believed to provide a certain degree of robustness
to networks. This belief leads us naturally to investigate the
impact of modularity structure on the behavior of networks.
In this paper, we carry out two simulation studies to monitor
traffic dynamic in modularized and non-modularized scale free
networks. In the first simulation, coarse-grained traffic is flooded
through networks. This study demonstrates that a modularized
structure localizes damages and stops the malicious effect to the
whole system. In the second simulation, more fine-grained traffic
is used to investigate how a modularity structure impacts on the
saturation of networks. This result shows that a strong modu-
larity structure is saturated much faster than non-modularized
topology as traffic load increases, and additionally we show how
this early saturation in modularized structure can be overcome.

Index Terms— Modularity, Traffic Dynamic, Critical point.

I. I NTRODUCTION

Many different types of properties to characterize complex
networks have been proposed, and some of these such as
average path length, clustering coefficient, and degree distri-
bution, have been adopted to explain robustness of complex
networks. For instance, the degree distribution has attracted
great attention from researchers after it was discovered that
degree distributions of many different complex networks can
be better described by a power law formP (k) ∼ kγ rather
than the conventional Poisson distribution. The power law
degree distribution implies that a few nodes have extremely
large number of links while large number of nodes have small
number of links. Thus, if we assume that high degree nodes
are more important than less degree nodes, the power law
networks (also called scale free networks) provide clues that
they are error tolerance - randomly chosen node is likely to be
small degree nodes- and attack vulnerable - when high degree
nodes are intentionally chosen [1]. In other words, complex
networks with a scale free property are robust to a random
failure and fragile to an intentional attack.

While adopting these basic properties have been well
explored to explain robustness of networks, other types of
properties such as modularity and hierarchy attracted less
attention relatively because of its mathematical complexity
in analysis. In spite of its difficulty, it is worth to investigate
these structural properties for many different reasons such as
evaluating the performance of networking protocols, assessing
the effectiveness of proposed techniques to protect the net-
work from nefarious intrusions and attacks, and developing
improved designs for resource provisioning [2]. Especially,

one of these topological structures called modularity is found
in various complex networks including biological systems
[3]. Since biological systems benefit from its evolutionary
advantage of such an topological architecture, it is natural
to ask why the topological architecture of biological systems
ends up with a modularity structure through the evolution
process. If we understand the advantage of the topological
structure found in biological systems, we may be able to apply
our understanding for building an artificial network so that the
man-made systems can be as robust as biological systems.

As a result, in this paper we present some simulation results
to observe the behavior of modularized and non-modularized
topologies in terms of traffic dynamic. We make use of two
simulation models which were proposed in [4] [5]. Firstly,
traffic fluctuation is simulated with coarse-grained traffic
which can be separated into internal and external fluctuations.
This separation enables us to understand the origin of traffic
fluctuation caused by two different components which are a
topological structure and a traffic burstiness. Secondly, fine-
grained traffic is flooded through topologies to observe the
variation of critical points which represents the saturation of
a network.

The rest of this paper is organized as follows. In Section II,
we provide brief descriptions of two models which have
been used to generate scale free topologies. This section
also describes how the strength of modularity structure is
defined. This is followed by a detail description of the first
simulation scenario called coarse-grained traffic fluctuation in
Section III. Section IV explains a different type of simulation
to observe the saturation of networks with finer scale traffic.
The both Sections include various numerical results based on
two different simulation scenarios. Finally, we conclude the
paper in Section V.

II. T WO MODELS FOR TOPOLOGY GENERATION WITH

MODULARITY STRUCTURE

Since network behaviors in modularized and non-
modularized topologies are investigated, these two types of
topologies are required for our investigation. Two well known
models are used to generate these topologies, namely Barabási
and Albert (BA) model [6] and Fabrikant, Koutsoupias and
Papadimitriou (FKP) model [7] models. They are based on
two representative theories called the preferential attachment
and the optimization process that explain the power-law
phenomenon observed in many different fields of sciences.



A. Barab́asi and Albert (BA) model

Barab́asi and Albert (BA) [6] explained the emergence of
power law of degree distribution in many complex networks
using the preferential attachment mechanism. Based on the
mechanism, they proposed a model to generate a power law
topology. When a new node arrives, it is connected to an
existing node which is chosen probabilistically from

∏
(ki) =

ki/
∑

j kk, where ki represents the number of degrees in
a node i. It implies that a node with large degrees has a
high probability to be chosen from a new arrived node. This
phenomenon is also described as rich-get-richer. In the model
is there a parameterm which decides the number of existing
nodes to which a new arrived node attaches.

B. Fabrikant, Koutsoupias, and Papadimitriou (FKP) model

Fabrikant, Koutsoupias, and Papadimitriou (FKP) [7] pro-
posed a model to explain of the power law distribution of
degree in the Internet topology. The model imitates human
behavior that minimizes the construction cost of a network.
More specifically, they attach a new arrived node to an
existing node by minimizing their proposed objective function
α · dij + hj , where dij is the Euclidean distance (i.e.,
geographical distance) between nodesi and j, and hj is a
hop counts distance between nodej and a pre-specifiedroot
node (node0). The former distance represents construction
cost and the latter does operating cost. Since two distances
are complement each other, the parameterα gives weight to
one of distances. Whenα has a low value such as0, the
geographical distance is ignored so that each new arrived node
connects to a root node directly, so it results in a star topology.
On the other hand, when the parameter is high, each node
tries to connect to the geographically closest node so that
it creates a topology which is similar to a random network.
In this paper, we make use of values forα as used in [7].
Another interesting observation is that topologies from this
model tend to have strong modularity structure. It is because
geographically closed nodes are grouped together so that it
forms a modularity structure.

C. Quantifying Modularity

Modularity has been studied in many different areas with
different names such as community structure, graph partition-
ing in graph theory and computer science, and hierarchical
clustering in sociology [8]. Basically, this property shows how
easily a network can be divided into groups.

In [8], Newman et al developed an algorithm to quantify
the strength of modularity structure. The method follows an
iteration process. The first step involves finding of a link
where most flows use (such a link is called a link with high
betweeenness centrality). A link with the highest betweenness
centrality is searched and removed continuously until the
removal splits the network. When it is split, the strength of
modularity is calculated using the following equation.

Q =
∑

i

(eii − a2
i ) (1)

whereQ is the quantified modularity value,e is a symmetric
matrix which represents the connectivity among modules. The
dimension ofe is the same as the number of modules in the
network. Also,ai represents a row or column sum of matrix
ai =

∑
j eij . The valueQ shows the ratio between the number

of links inside modules and that of links between modules.
Thus, relatively less number of links among modules produce
a high value ofQ.

Since the iteration process produces a series of modularity
values, the maximum value is chosen to be the modularity
value of the network.

III. C OARSE GRAINED TRAFFIC FLUCTUATION.

In this simulation scenario, two traffic models are con-
sidered. In both models, a certain number of walkersW
are located in randomly chosen nodes and move around a
networkM steps. The difference between two models is how
the walkers are routed in a network. In the first model, a
random routing is simulated which represents the behavior
of an intruder in a system. In the second model, walkers
follow along the shortest path between nodes. In both models,
to obtain time to time fluctuation on each nodei, different
number of walkers are launched on different types of networks
T times independently.

One way to characterize the dynamic of traffic in this
scenario is to capture the relation between meanE[V ]i and
standard deviationσ[V ]i of the number of visits of walkers in
each nodei. The relation is often represented using following
equation.

σ[V ]i = E[V ]αi (2)

When we plot standard deviations as a function of ascent
sorted means in log scale, the exponentα characterizes the
level of fluctuation of traffic. In [4], a model was proposed to
identify the origin of traffic fluctuation. The model separates
the original traffic fluctuationfi(t) at node i into internal
f int

i (t) and externalfext
i (t) traffic fluctuations as follow

fi(t) = fext
i (t) + f int

i (t) (3)

wherefext
i (t) =

∑T
t=1 fi(t)∑T

t=1
∑N

i=1 fi(t)

∑N
i=1 fi(t) and f int

i (t) can

be obtained from subtractingfext
i (t) from fi(t). It means that

the measuredfi(t) can be split into two components. The
reason to choose this model for our investigation is that the
internal fluctuation is related to the topological structure of a
network.

Fig. 1 shows the relation among totalfi, externalfext
i , and

internal f int
i fluctuations as the bustiness of traffic varies in

two different types of topologies. The number of walkersW at
time t varies from the uniform distribution[N−4W (t), N +
4W (t)], where N is the number of nodes, and4W
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(a) Total traffic (FKP)
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(b) Total traffic (BA)
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(c) Internal & External traffic (FKP)
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(d) Internal & External traffic (BA)

Fig. 1. (a)(b) Before traffic fluctuation is separated into internal and external
in FKP and BA topology respectively. From bottom to top, the4W is
set to[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 200, 300, 400, 500]. (c)(d) After traffic
fluctuation is separated into internal and external in FKP and BA topology
respectively. Blue circles show the fluctuation of internal traffic, and red
crosses show external traffic fluctuations. From bottom to top, the4W is
set to[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 400, 500].

is from [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 200, 300, 400, 500]. In
Fig.1(a) and Fig.1(b), total traffic fluctuationsfi are plotted
with fitting lines. The first five top lines in both figures
show total traffic fluctuations when high fluctuated traffics
(4W (t): [500,400,300,200,100]) are flooded , and the rest
of lines (actually only one line can be seen since these
lines are overlapped) are with low traffic fluctuation (4W (t):
[10,9,8,7,6,5,4,3,2,1]). In both topologies, the first five top
lines are nearly parallel with similar gradient close to1
when high burstiness traffic are flooded. It is because the
external fluctuation fully dominates the total fluctuation in
both topologies. However, as the traffic burstiness (external
fluctuation) decreases, the total fluctuation is under control
of internal fluctuation so that different gradients start to
appear when small bursty traffics are flooded. In Fig. 1(c)
and Fig. 1(d), the internal fluctuations (fitting lines with blue
circles) and the external fluctuations (fitting lines with red
crosses) are separated from total traffic fluctuation. There
are 12 different set of external fluctuations with4W from
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 400, 500] (lines with red crosses),
and one set of internal fluctuation (lines with blue circles)
which is the counterpart of the 12 sets of external fluctuation.
We observe only one set of internal fluctuation because
internal traffic fluctuation is not affected by the variation of
external traffic burstiness.

Since we make use of two different topologies, the different
gradients of internal fluctuations (lines with blue circles) in
both Fig. 1(c) and Fig. 1(d) are observed as0.8154 and0.5509

respectively. Thus, when the internal fluctuation dominates
over external fluctuation, the total fluctuations in Fig. 1(a)
and Fig. 1(b) are governed by internal fluctuation so that the
gradient of total fluctuations are similar to that of internal
fluctuation, however as the external fluctuations increase,
the impact of internal fluctuation is fade out and the total
fluctuation is totally dominated by the external fluctuation.
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Fig. 2. The variation of exponentα as traffic fluctuation increases.

Fig. 2 shows the variation of gradients (exponentα) of total
traffic fluctuation in FKP (blue circle) and BA (red asterisks)
topologies respectively as traffic burstiness increases. With
small external fluctuations, the total fluctuation is dominated
by the internal fluctuation which is affected by a topological
structure. Thus, the alpha values start from different points and
gradually increases until4W (t) becomes around10. Then,
they rapidly increases, which show the domination of external
fluctuation.
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Fig. 3. The variation of exponentα as network size increases.

In Fig.3, with fixed external fluctuation, the size of network
increases from80 to 1000 nodes by 10. These topologies
are generated from FKP model (blue circles) and BA model
(red asterisks). The reason we increase the sizes of FKP and
BA topologies is that the strength of modularity structure



in FKP topology increases as the size of network increase,
while, that of modularity structure in BA topology does
not change much. From the figure, we can see that strong
correlation between modularity structure and traffic fluctuation
represented as an alpha which shows the relation between
mean and standard deviation shown in Equation (2). The
alpha value in FKP topologies proportionally increases from
0.65 to 0.75 as the size of topology increases, while for BA
topology the alpha value does not change very much. It shows
that topologies with strong modularity structure experience
higher traffic fluctuation. In other words, when same amounts
of traffics are observed in nodes in modularized and non-
modularized topologies, the node in modularized topology
experiences higher fluctuation than one in non-modularized
topology. High traffic fluctuation in a modularized topology
seems to be negative effect in terms of robustness point
of view. Then, why many biological systems have strong
modularized structure? This question leads us to investigate
more about this phenomenon.

In the previous results, each walker moves around topolo-
gies randomly. However, data exchanged between nodes in
real networks follow fixed routes in order to maximize
performance of systems. Thus, we simulate another traffic
model based on the shortest path routing. In Fig.4, each
point represents the variance and mean ratio (VMR), and the
mean of traffic in time series in each node. Especially, in
Fig.4(a), Fig.4(c), Fig.4(e), and Fig.4(g), we classify the nodes
according to their location in a network using our previous
work [9]. There are four different groups in these figures. Data
points (red upside-down triangles) in the most right side show
data observed in nodes on the top layer of topology. Nodes on
the top layer mean nodes which are used to connect among
modules. Then, nodes in sub-layers are decided according to
hop counts from the nodes on the top layer. Since topologies
from BA model are fully connected each other, nodes are not
classified into multiple layers as shown in Fig.4(b), Fig.4(d),
Fig.4(f), and Fig.4(h). First thing we see is that the large
amount of traffic is observed on nodes on the top layer in
modularized topology in Fig.4(e) and Fig.4(g). It shows these
nodes actually experience a bottle-neck phenomenon.

Most interesting observation in these results is that a mod-
ularized topology experiences high fluctuation when walk-
ers are routed randomly as shown in Fig.4(a) compared to
Fig.4(b). However, when walkers are routed along the shortest
path, both modularized and non-modularized topologies expe-
rience the same fluctuation in Fig.4(c) and Fig.4(d). Under the
assumption that the random routing represents the behavior of
an intruder, the large fluctuation in Fig.4(a) can be translated
that intruders are trapped inside modules so that they rarely
damage nodes outside the module they belong to. It shows that
a modularity structure localizes or isolates damages caused by
an intruder.

IV. F INE GRAINED TRAFFIC FLUCTUATION

As the second part of experiment, a different type of simula-
tion scenario is used based on a model in [5]. This scenario is
involved with a fine traffic control. In each time step, packets
are generated with a probabilityρ from randomly chosen
nodes and forwarded along the shortest path to randomly
chosen the other nodes. In this scenario, every node has a
queue. Thus, when traffic load increases by increasing the
probability ρ, packets begin to be accumulated in queues and
experience delay. These packets in queues are served based
on FIFO(First-In First-Out) principle, and move to the next
hop according to the probability calculated as follow:

µi→j =
1

(ninj)γ
(4)

whereni and nj represent the number of queued packets in
nodei and j, andγ is a parameter which controls the speed
of packet forwarding process in a node. Thus, the probability
µi→j means that the probability of a packet moving from node
i to nodej is inverse proportional to the number of packets in
nodei and nodej and proportional to the control parameter
γ. In order to observe the saturation of a given network, we
use the order parameter [5] as follow:

η(p) = lim
t→∞

1
ρS

< 4N >

4t
(5)

where 1
ρS shows the total number of packets offered to a

network with the number of nodesS, and <4N>
4t means the

rate of packet increase in a network. Fig. 5 plots the order pa-
rameters as a function ofρ with fixedγ = 0.01 in modularized
(blue circles) and non-modularized (red asterisks) topologies.
The offered trafficρ, where the order parameterη becomes
non-zero, is called a critical pointρc that a network begins
to saturate. In the figure, modularized topology reaches to the
critical point much earlier than non-modularized topology. It
is because, as we saw in Fig.4(e) and Fig.4(g), some nodes in
modularized topology have high betweenness centrality1 , so
that these nodes cause modularized networks to be collapsed
much earlier than non-modularized networks.

In Fig.6, the variation of critical pointsρc are plotted as
the size of both FKP (blue circles) and BA (red asterisks)
topologies increase from100 to 1000. Although, the critical
points differ from each other, the critical values in both
topologies are reduced at the similar rate. We believe that
the scale free property in both topologies cause this result. It
means that modularized topology keeps a certain characteristic
of scale free property.

The early saturation experienced by modularized topology
can be overcome in many different ways. Since the main
reason of this early saturation is that the top layer nodes
in a modularized topology cause a bottleneck phenomenon,

1shows how heavily a node is used by flows that exist between every two
nodes in a network
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Fig. 4. Variance and mean ratio(VMR), and mean of traffic variation in each node of highly modularized ((a)(c)(e)(g)) and non-modularized topology
((b)(d)(f)(h)). (a)Nearly 70% (365/523) of total nodes are under the average VMR(3.9488 black dot line). (b)55% (288/523) are under the average VMR
(1.4947- black dot line). (e)80% (427/523) nodes are under the total mean average(523), also the average mean traffic of nodes located in the first layer
(1480) (red down side triangles) is well over 2 times larger than total average (black dot line). (f)70% of nodes are under the average(523 black dot line)(c)A
half of total nodes (260/523) are under the average VMR(0.9711 - black dot line). (d)Around 45% (235/523) are under the average VMR (0.9454 - black
dot line).(g)90% (471/523) nodes are under the total mean average(580.38), also the average mean traffic of nodes located in the first layer (3359) (red down
side triangles) is well over 2 times larger than total average (black dot line).(h)79% of nodes are under the average(437.28 black dot line).
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Fig. 5. The variation of critical points as the offered traffic increases in
modularized network (blue circles), and in non-modularized network (red
asterisks)

increasing the speed of packet processing only in these nodes
releases the networks from the early saturation. Fig.7 shows
the variation of critical points as the speed of packet process-
ing increases in modularized topology. We decrease the values
of γ in Equation (4) to increase the speed of packet processing
in nodes. The blue circles show the variation of critical points
when the packet processing power of top nodes increases,
and the red triangles show a result when nodes other than
top layer nodes are chosen to increase the packet forwarding
power. It demonstrates that actually top layer nodes cause the
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Fig. 6. The observation of critical points in modularized network (blue
circles), and in non-modularized network (red asterisks)

bottleneck and this bottleneck phenomenon can be resolved
by increasing the capacity of these nodes on top layer.

V. CONCLUSIONS

In this paper, traffic fluctuation in modularized and non-
modularized topologies has been investigated with various
simulation scenarios.

In the first scenario, we simulated coarse-grained traffic
fluctuation. Initially, we separated the observed traffic fluctua-
tion into internal and external fluctuations as proposed in [4] to
identify the impact of topological impact on traffic fluctuation.
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We found that a topology with strong modularity structure
tends to experience high traffic fluctuation. However, this
fluctuation is observed only when traffic is routed randomly
which represents the behavior of intruders in a network. It
implies that modularity structure provides a natural protection
for the system against attacks from an intruder.

In the second scenario, fine-grained traffic is flooded
through networks to observe how modularity structure impacts
on the saturation of different types of networks. A topology
with high modularity structure becomes saturated earlier as
traffic load increases than one with non-modularized structure
because of a bottleneck phenomenon of modularized topology.
In addition, the saturation points decreased at the similar
rate in both topologies, we believe, it is because both are
scale free topologies although their structures are different.
This bottleneck phenomenon can be overcome by increasing
the speed of packets processing in nodes which are used to
connect modules.

Finally, it is worthwhile to emphasize that the FKP model,
we used to generate topologies with strong modularity struc-
tures, needs to be improved since it was initially designed for
ISP-level topology with a scale free property. Thus, we leave
the improvement as our future work.
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