
Differences in Robustness of Self-Organized Control and Centralized Control in
Sensor Networks Caused by Differences in Control Dependence

Yuichi Kiri
Graduate School of Information

Science and Technology
Osaka University

1-5, Yamadaoka, Suita
565-0871 Osaka, Japan
y-kiri@ist.osaka-u.ac.jp

Masashi Sugano
School of Comprehensive

Rehabilitation
Osaka Prefecture Univ.

3-7-30, Habikino,
583-8555 Osaka, Japan

sugano@acm.org

Masayuki Murata
Graduate School of Information

Science and Technology
Osaka University

1-5, Yamadaoka, Suita
565-0871 Osaka, Japan

murata@ist.osaka-u.ac.jp

Abstract

Self-organized control has received significant attention
in the area of networking, and one of the main factors
for this attention is its robustness. However, it should be
stressed that deciding whether self-organized control is ro-
bust or not is not a trivial task. Even if it is in fact ro-
bust, the factors underlying its robustness have not yet been
explored in sufficient detail. In this paper, we provide the
first quantitative demonstration of the superior robustness
of self-organized control through comparison with central-
ized control in a sensor network scenario. Through sim-
ulation experiments, we show that self-organized control
maintains the functionality of its data collection even in a
variety of perturbations. In addition, we point out that the
difference in the robustness of the abovementioned control
schemes stems from the degree to which the comprehension
of a given node about the state of the network depends on
information obtained from other nodes.

1. Introduction

As networks are becoming increasingly larger and more
complex, a critical issue in today’s dynamically changing
and uncertain environments is to maintain the functionality
of networks in a manner which allows them to adapt to envi-
ronmental changes. A control scheme which maintains the
performance even when the network state changes dramati-
cally or unforeseeable circumstances occur is preferable for
present and future networks, even if the basic network per-
formance in such cases is inferior to that of networks operat-
ing with other control schemes. The property which allows
a system to maintain its functionality despite external and
internal perturbations is called “robustness” [15]. In this

age when networks play an essential role in our everyday
lives, the robustness of networks is becoming increasingly
important.

Distributed control has been said to be superior to cen-
tralized control with respect to robustness. Currently, a
type of distributed control scheme which is beginning to
attract considerable attention is one of self-organized con-
trol [10, 20]. In this control scheme, each component au-
tonomously decides the following action on the basis of lo-
cal information, and the simple microscopic actions of the
components collectively provide structure and functional-
ity at macroscopic level without any centralized coordina-
tion [19]. Such behavior is distinct from plain distributed
control, where individual components act autonomously but
depend on global information. Although scalability, adapt-
ability, and fault tolerance, which are included in the con-
cept of robustness in a broad sense, are “known” as prop-
erties inherent to self-organized control, we stress that this
knowledge is certainly not trivial. Even assuming that the
notion of robustness is true, to the best of our knowledge the
reasons why self-organized control is robust and the factors
which determine the superiority of its robustness as com-
pared to other control schemes have not been examined with
sufficient rigor.

In our previous work [13, 14], we provided quantita-
tive evidence of the robustness of self-organized control
with respect to transmission errors and node failures, and
concluded that the robustness of the self-organized control
scheme is superior to that of other control schemes. How-
ever, since sensor networks face a wider range of perturba-
tions, the purpose of this paper is to demonstrate the advan-
tages of self-organized control against perturbations differ-
ent from those in our previous work. Furthermore, based
on the results of the evaluation, we also pose interesting
questions such as why and how self-organized control is ro-



bust. In [21], from the results of the comparison, we pointed
out that the difference in the robustness is derived from the
degree to which the comprehension of a given node about
the state of the network depends on information from other
nodes. This is the key to differentiating the degrees of ro-
bustness of those two control schemes. In this paper, we
describe the details of each method which were not able to
be described in [21]. Furthermore, we show the character-
istic of self-organized control by distribution of the number
of hop of routes, and present the difference in the robustness
of each control method against bit error.

The remainder of the paper is organized as follows. In
Section 2, earlier approaches to self-organized control are
reviewed. Sections 3 describes the mechanisms of central-
ized control and self-organized control, respectively. Sec-
tion 4 presents the simulation results so as to compare the
robustness of both control approaches. In Section 5, we dis-
cusses what brings robustness to self-organized control on
the basis of these results. The paper is concluded in Section
6 and discusses the generalization of our conclusions.

2 Related work

The principle of self-organization is developed in na-
ture [8], and we can find it everywhere. Each component
autonomously decides its next action on the basis of lo-
cal information, and the microscopic simple actions of the
components collectively provide structure and functionality
at the macroscopic level without any centralized coordina-
tion [19]. Such self-organized behavior is disparate from
the distributed paradigm where individual components act
autonomously while sharing global information, and many
researchers have tried to derive the advantageous proper-
ties of the self-organizing system in efforts to solve scal-
ability, reliability, availability, and robustness problems.
For example, Directed Diffusion [12] is a well-known self-
organization paradigm for certain novel features, including
reinforcement-based adaptation of the gradient to the em-
pirically best path. It is also known to be robust against
node failures. [9] is proposed to achieve good adaptabil-
ity and scalability by endowing mobile agents with simple
intelligence. Some researchers further this approach and in-
corporate the behavior of social insects into the agents. BiS-
NET [4], which was shown to have strong self-healing capa-
bility for false positive data in data gathering, are examples
that were inspired by the foraging principles of honey bees,
while [16, 5, 25] are inspired by the Ant colony metaheuris-
tic and said to be robust against node mobility. ACE [6]
is an emergent algorithm that forms clusters through three
rounds of feedback between nodes. Using local information
alone, it efficiently covers the network with only a small
amount of overhead. Ant-based clustering [11, 24, 22] is
also a clustering method, drawing its inspiration from the
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Figure 1. Network model.

behavior of ant colonies, but it is applied for data analysis.
In addition, the task allocation method proposed in [17] uses
the concepts of the “division of labor” of ants to achieve
higher coverage in sensor network.

3 Centralized and Self-organized control
schemes in sensor networks

We provide detailed explanation of our centralized and
self-organized control schemes, which are the subjects of
robustness evaluation in the present study. The operations
of both control schemes are based on the premise that mul-
tiple sinks are deployed in their respective monitoring re-
gions. Using this multi-sink configuration, both control
schemes take a cluster-based approach, in which the same
number of node clusters and sinks is formed, and individual
sensor nodes transmit their sensed data to the sink located
in their cluster (Fig. 1).

3.1 Centralized control

Younis et al. [23] proposed a data-gathering scheme
for sensor networks that assumes the existence of multiple
sinks (for consistency with the terminology used in our self-
organized control [13], we use “sinks” here instead of the
“gateway nodes” used in [23]). Sinks are significantly less
energy-constrained than sensor nodes and the sensed data
is gathered first in them. Sensor nodes are divided into the
cluster which each sink manages, and the sinks calculate
the route from each sensor node to themselves based on the
residual power, state, etc. of a sensor node. They then tell



their cluster members their previous- and next-hop nodes
and the state they should stay in next (e.g., active or sleep
state). In this data-gathering scheme the role of the clus-
ters is almost same as that of the clusters in the scheme de-
scribed in [13] — in both the cluster determines the eventual
destination to which data packets are sent — so these two
schemes are well-suited to be compared. Younis et al. [23],
however, describe only the routing and node-state manage-
ment and do not specify how the sensor nodes should be
apportioned into clusters. In addition, some of its assump-
tions, for example, that each sink is located within the one-
hop of all the sensor nodes in its cluster, are not appropriate
for large-scale sensor networks. So we made some mod-
ifications to the proposed mechanism in order to make a
convincing comparison.

We assume the existence of a control station, which is
wired to all sinks. The station knows the initial power and
locations of all nodes and sinks, and manages the overall
network. Up-to-date residual power is reported periodically
from sensor nodes, but the reporting packet is forwarded to
the sink in a multi-hop fashion instead of direct communica-
tion. The station first divides the sensor nodes into as many
clusters as there are sinks. The role of a cluster is to deter-
mine the destination sink for each sensor node, and we say
that “sensor node ni belongs to cluster Sj” if ni transmits
their sensing data to the destination sink Sj . The clustering
method used is same as Voronoi tessellations using loca-
tions of sinks as basing points. In other words, the central
station splits the sensor nodes into clusters in such a way
that each sensor node transmits packets to the nearest sink.

After clusters are determined, the station constructs
routes for packets. As described in [23], the routes are de-
termined by using Dijkstra’s algorithm to minimize the to-
tal link cost. Link cost is assigned by the station beforehand
to all the links between all node-and-node, node-and-sink
pairs. Calculation of link cost is modified from [23] due to
difference of assumptions, and the cost Cij of the link be-
tween node ni and nj is defined by residual power of the
node and the distance between them:

Cij =

⎧⎪⎪⎨
⎪⎪⎩

EIj

ERj

(4π)2d(ni,nj)
2

λ if d(ni,nj)≤δ
EIj

ERj

d(ni,nj)
4

h4 if δ<d(ni,nj)≤rmax

∞ if rmax <d(ni, nj)

(1)

where EIj and ERj are respectively the initial and residual
powers of node nj , λ is the radio wavelength, h is the height
of the antenna, and d(ni, nj) is the distance between nodes
ni and nj . The threshold value δ is a constant defined as

δ = 4πh2

λ , and rmax is the communication range of a sensor
node.

After route construction is finished, the central station
transmits the route information to sinks. For the sake of
simplicity, packets which includes the route information are

called “command packets” hereafter. The sink uses minimal
transmission power when transmitting the command packet
so that all the sensor nodes in its cluster can receive them.
Command packet provides following information to sensor
node ni.

• Cluster to which ni belongs.

• The previous-hop node from which ni receives a
packet and the next-hop node to which ni should trans-
mit a packet.

The detection of node failure is based on a soft state
model. Each sensor node transmits a hello message at a
regular interval thello. On receiving the hello message from
a neighboring sensor node ni, sensor node nj registers en-
try of ni to its neighboring node table and interprets the
reception as a sign that ni is working properly. Every time
nj receives a hello message from ni, expiry-time field in
the entry is updated to the sum of texpire and the value of
nj’s internal timer. Only if nj’s timer exceeds the value
of expiry-time field, ni is deemed to have failed, and nj

sends a failure-indication packet to its sink. This packet
passes through the same route which the station calculated
for data packets, and it reaches the sink. The sink passes the
failure-indication packet to the station, which then recalcu-
lates new routes that circumvent the failed node. New routes
are packed in a command packet and transmitted from the
sink to sensor nodes.

Even when ni works normally, hello packets from ni

might not arrive within the expiry time because of interfer-
ence or transmission error. This possibility must be allowed
for, because the accumulation of such false positives would
cause a virtual connectivity problem limiting network per-
formance. Preparing for such a false detection, node nj

memorizes an ID of the failed node when detecting the fail-
ure. And if nj could receive a hello packet from ni, it
deems the detection of ni’s failure to have been false pos-
itive, and transmits a failure-recovery packet to inform the
station about that. The sink relays it to the station, and the
station recomputes new routes and distributes them to sen-
sor nodes.

In this centralized control, sink-failure can be easily de-
tected because of the assumption that sinks and the central
station are linked with wire. By keeping track of sinks’ sta-
tus, the station can recompute clusters and routes just after
the sink failure. It does not need to take explicit measures,
and all it has to do is to transmit a command packet con-
taining new cluster organization and route information as
usual. Reliable communication can be readily provided in
wired networks. So we ignore the possibility of false detec-
tion of sink failure.



3.2 Self-organized control

We have proposed a bio-inspired control which shows a
self-organized property [13]. Our self-organized control ap-
proach is based on pheromone-mediated ant-swarm behav-
iors called ant colony optimization (ACO) [3] and ant-based
clustering [11, 24, 22]. Sensor nodes are divided into as
many clusters as there are sinks by using ant-based cluster-
ing with a virtual “cluster pheromone,” and routing is per-
formed in each cluster by using “routing pheromone.” The
detailed operation for our proposal is given in the following.

ACO is a probabilistic approach inspired by ants in their
foraging activity to combinatorial optimization problems
like the traveling salesman problem [7]. Ants follow effi-
cient routes to their food by being attracted to higher con-
centrations of pheromones left by other ants. An ant will
leave a volatile pheromone trail while carrying food back
to the nest. If another ant finds the trail before it dissi-
pates, that ant will follow it to the food and it too will leave
pheromone on the way back, reinforcing the trail. If there is
enough food that several workers can bring food back to the
nest, a high pheromone concentration will be maintained
and even more ants will be attracted. As the food supply
becomes smaller, fewer ants will be attracted and the trail
will gradually disappear as the pheromone evaporates. This
positive-feedback trail building is the basic idea behind the
ACO approach, and ACO has been applied to some of the
routing problems.

We have also applied the principle of ACO to hop-by-
hop routing in our proposed scheme. Each sensor node has
a pheromone table, and the advantages of neighbors as a
next-hop node are stored in the form of routing pheromones.
When a sensor node transmits a packet to notify the sink of
obtained data, it refers to its pheromone table, and stochas-
tically selects the next-hop node leading to the sink based
on the routing-pheromone value. Thus, each sensor nodes
selects a next-hop node with greater probability of hav-
ing more routing pheromones (sensor node with more rout-
ing pheromones means preferable next-hop node). Further-
more, if some neighboring nodes have almost the same
routing-pheromone value, they are selected as next-hop
nodes with almost the same frequency, and the number of
packets that must be relayed is distributed among them.

An important problem of applying ACO to routing is
how to determine which route should have higher routing-
pheromone value, in other words, how to define what are
the “preferable routes” in a given network. We define good
routes in sensor networks as follows:

• routes with a small hop count on the way to a sink.

• routes that go through sensor nodes with high residual
power.

It is not necessary for each node to send packets (ants) in
order to find good paths to the destination as some ant-based
routing employed [5, 25, 2]. Such strategies could cause un-
necessary power consumption and needlessly occupy wire-
less channels, because of ants traveling back and forth over
the network. Thus, we chose sinks to flood the ants, which
we call backward ants. Backward ants do not go back into
the sink. As we previously pointed out, the required next-
hop node is a sensor node located nearer to the sink, which
has enough residual power. With that in mind, the role of
backward ants is to establish a routing-pheromone distri-
bution in which the required next-hop node has a higher
routing-pheromone value. Let us introduce following terms
to simplify our explanation of routing.

ni: ID of sensor node.
Sk: ID of sink. At the same time, Sk also

represents ID of cluster to which sink Sk

is dedicated.
Sni : ID of sink that ni belongs to.
PbSk

(ni): Routing-pheromone value that ni as-
signs to backward ant, which is trans-
mitted by Sk.

Pni(ni) Routing-pheromone value for ni to de-
clare as its own pheromone.

Pni(nj , Sk): Routing-pheromone value stored in ni’s
pheromone table that represents bene-
fits of nj as next-hop node to transmit
packet to Sk.

Cni(Sk): Cluster pheromone of Sk estimated by
ni.

A sink Sa broadcasts backward ant B with maximum
routing-pheromone value PbSa(Sa) = Pmax. On receiving
B, sensor node ni stores routing pheromone carried by the
backward ant (PbSa(Sa)), its source node (Sa), and sensor
node which relays B immediately before (Sa) as an entry,
in its own pheromone table. Thus, ni memorizes that the
benefit of selecting Sa as a next-hop node for transmitting
packets to Sa is Pmax. After that, ni relays B, making B
carry a new routing-pheromone value. This new routing-
pheromone value Pbni(Sa) is calculated according to:

Pbni(Sa)=α

(
1−exp

(
−β

ERi

EIi

))
PbSa(Sa)

0 < α < 1, β > 0 (2)

After receiving B, which is relayed by ni, nj creates a
new entry (ni, Sa, Pbni(Sa)) as in the case of ni. Then,
nj calculates a new routing-pheromone value according to
Eq. (2), and forwards B with a new routing-pheromone
again. A good pheromone distribution emerges through fre-
quent repetitions of these behaviors.

Sensor nodes periodically communicate using a hello
message like that in the centralized control described in



Sect. ??. But the purpose of this hello message is not only to
provide a countermeasure to node failures but also to com-
prehend the situation of surrounding area. The hello mes-
sage transmitted from ni conveys routing-pheromone value
of ni itself (pni ), cluster ID to which ni belongs to (Sni),
and cluster pheromone of Sni evaluated by ni (Cni(Sni)),
which is described in detail later in this section. pni is the
mean routing-pheromone value for all entries in ni’s rout-
ing table. After receiving the hello message, nj updates the
routing-pheromone value for the ni’s entry in nj’s routing
table following Eq. (3) with γ ∈ [0, 1].

Pnj (ni, Snj ) = γPnj (ni, Sni) + (1 − γ)pni (3)

A sensor node chooses its next-hop node stochastically
using the routing-pheromone distribution, and relays pack-
ets to it. Assuming Nni is a set of neighboring nodes for
ni, which is equivalent to candidate set of next-hop nodes,
the probability of ni selecting nj as its next-hop node is
represented as:

pni(nj) =
Pni(nj , Sni)

2

∑
k∈Nni

Pni(k, Sni)
2 (4)

This form of equation is used in some propositions using the
ACO approach, e.g., [5]. Routing loop can be constructed
due to the probabilistic approach, but discarding the looped
packets made the data collection unreliable in our simula-
tions. So now we avoid routing loops by appending node
IDs the packet went through to the header. Sensor nodes
listed in the header are excluded from the set of candidate
for next-hop node. This requires only a small amount of
communications overhead.

How to select a destination sink still remains a ques-
tion in multi-sink sensor networks. Our clustering method,
ant-based clustering, is also inspired by a swarm behav-
ior of ants. Ant-based clustering was originally a method
of swarm intelligence by ants grouping eggs or larvae ac-
cording to their size. Ants repeatedly pick up and drop lar-
vae based on their degree of similarity with neighbor eggs
while wandering around. In such a behavior, larvae which
differ substantially from their neighbors in size move to-
ward similar-sized ones, and clusters of different-sized lar-
vae emerge in a self-organized way. We substitute similarity
with the advantage of belonging to a cluster, and do cluster-
ing to suit the network situation.

Each node calculates a cluster-pheromone value based
on the routing-pheromone values, and uses them to deter-
mine which cluster it should belong to. Cluster Sni’s cluster
pheromone evaluated by ni is defined as:

Cni(Sni) =

∑
k∈blngni

(Sni
) Ck(Sni) + avg phni

(Sni)

|blngni
(Sni)| + 1

(5)

where blngni
(Sni) represents a set of neighboring nodes of

ni that participate in cluster Sni . This information can be
recognized via hello messages, which has the cluster ID of
the sender. The term avg phni

(Sni) is the mean of routing-
pheromone values in entries having destination sink Sni :

avg phni
(Sni)=

∑
k∈blngni

(Sni
) Pni(k, Sni)

|blngni
(Sni)|

(6)

Cluster-pheromone value is conveyed in hello packets,
so each sensor node can acquire the cluster-pheromone val-
ues of neighboring clusters. Sensor nodes regard a cluster
with a higher cluster-pheromone value as a good cluster to
join, and stochastically switch to it. The probability of ni

changing its cluster from Sj to Sk is

Pni(Sj → Sk) =
(

fni(Sj , Sk)
kth + fni(Sj , Sk)

)2

(7)

where kth is a constant value used to control the probability
and where fni(Sj , Sk) is calculated as follows:

fni(Sj , Sk)=max
(

0,
|blngni

(Sk)|
Nni

Cni(Sk)−Cni(Sj)
Cni(Sk)

)

(8)

The detection of node failures is exactly equivalent to
that of centralized control described in Sect. 3.1. After texpire

passes without receiving hello packets from sensor node nj ,
neighboring node ni detects that nj has failed. By deleting
the entry for nj in its pheromone table, ni selects appropri-
ate next-hop nodes according to Eq. (4) without any special
handling.

Detecting sink failure was also based on the same soft-
state model. That is, the sink periodically broadcast hello
message as well as sensor nodes. Sensor nodes around the
sink determine that the sink has failed if they had not re-
ceived hello message from the sink for 3 × texpire. The
cluster in sink failure is no longer preferable. Thus, sensor
nodes set cluster-pheromone values of all the entries stored
in their neighbors table to 0 and abandon their membership.
As hello messages indicating the sink failure propagated
over the network after that, sensor nodes participating in
the failed sink’s cluster also abandoned their membership,
and joined other clusters.

4 Evaluation and discussion

4.1 Simulation Environment

We implemented our self-organized and centralized con-
trols on ns-2 network simulator [1]. In the following ex-
periments, we randomly placed 300 sensor nodes over a



Table 1. Sensor node parameters
Transmission power 0 dB

Communication range 10 m
Frequency 2,450 MHz

Bit rate 250 kbps
Height of antenna 20 cm

Initial power 25 J
Power consumption in transmission state 40.95 mW

Power consumption in receiving state 45.78 mW

region monitoring a square, 100 m per side, unless other-
wise stated. We assumed there were four sinks at (25, 25),
(75, 25), (25, 75), (75, 75), respectively. We tested other
sink positions, and obtained almost the same results.

We used the two-ray ground reflection model [1] as the
radio propagation model, and the MAC and PHY layers
follow the IEEE 802.15.4 specification. In the simulation
of the centralized control, the size of command packet can
easily exceeded the value specified in IEEE 802.15.4. We
therefore virtually set aMaxPHYPacketSize, which deter-
mines the maximum length of a packet, to infinity. The size
of the command packet transmitted from sink Sj is calcu-
lated using the following equation:

∑
i

6 · eni · numSj + 7 (9)

where eni is the number of previous- and next-hop node
pairs assigned to node ni and numSj is the number of sensor
nodes in cluster Sj . We assume that 6 bytes are enough
for the pair, and that 7 bytes are enough for a header. We
set the parameters of sensor nodes (listed in Table. 1) by
referring to [18]. The simulation parameters are also listed
in Table. 2. We do not consider FEC to take particular note
of the effect of transmission error, therefore the packet is
discarded even if one bit error occurs.

In the following data-collection model we used, sensor
nodes send the information they obtain to their sinks in a
multi-hop way at a predefined interval tintval = 10 s. Sensor
nodes do not synchronized with each other, and the trans-
mission time of it is independent of that of the others. One
of the most important metrics for sensor networks is the re-
liability of which information is brought to a sink. We there-
fore defined a metric we call the data-collection rate. When
the number of sensor nodes that work properly is Nact, the
number of data packets generated in tintval is of course Nact.
When the number of packets that reach one of the sinks is
r, the data-collection rate is defined as r/Nact.

In the centralized control, the parameter with the great-
est influence on the data-collection rate is command-packet
transmission interval. If this interval is too long, sensor
nodes will only slowly find out what it should do next, espe-

Table 2. Simulation parameters
thello 1 s
texpire 5 s
Pmax 10
α 0.7
β 7
γ 0.875
kth 0.5

Size of a hello packet 10 bytes
Size of a failure detection packet 10 bytes
Size of a failure recovery packet 10 bytes

Size of a data packet 64 bytes

cially when the command packets are frequently lost. And
if the interval is too short, command packets coming one
after another result in severe interference problems. We
conducted simulation experiments to find out whether 1 s,
10 s, 100 s, or 500 s would be the best interval and chose
10 s as the one yielding the best balance between data-
collection rate and power consumption. Not only in central-
ized control, transmission interval of backward ants in our
self-organized control also has great influence. Too short an
interval causes repeated interference and too long an inter-
val does not construct pheromone distribution enough for
data gathering. We simulated transmission intervals of 10 s,
100 s, and 500 s and selected 100 s.

In the simulation experiments, each sink transmits com-
mand packets or backward ants until at least 100 s pass over.
So we consider the network is in the transient state for 100 s
from the start, and do not plot a graph in the time window.

4.2 Instability of Generated Routes

We first compared the efficiency, in terms of hop counts
and delay, of the routes generated using centralized control
and self-organized control. The hop counts reported here
are mean values of all routes between each sensor node and
its sink. Delay is the mean time from transmitting a packet
to the packet being received by the sink. The distribution of
hop count is shown in Fig. 2 with 95% confidence intervals.
This graph is for the idealized scenario in which no node
failures occur, and bit error rate is set to 10−5. Changing
BER did not generate significant influence. Actually, there
is only a little difference in their distribution as shown in
Fig. 2, and the same is true for their mean values as shown
in Table. 3, where statistics values of the routes are listed.
However, variance of both control approaches differs sub-
stantially. These interesting results suggest that quality of
generated routes can fluctuate widely, i.e., low predictability
and controllability, in self-organized control. A sensor node
in self-organized control decides its own action on the basis



Table 3. Statistics of routes generated in centralized control and self-organized control. 95% confi-
dence intervals are also shown.

Centralized control Self-organized control
Average hop count 7.47 ± 0.36 9.08 ± 0.34

Average delay 0.156 ± 8.62 × 10−3 0.226 ± 1.56 × 10−2
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Figure 2. Efficiency of routes generated by
centralized control and of routes generated
by self-organized control.

of limited, local information. Their lack of global viewpoint
leads to difficulty in finding global optimum, and results in
wide fluctuation.

4.3 Measures against Transmission Error

We conducted simulation experiments to study the ro-
bustness of both control approaches against transmission er-
ror under the assumption that no node failures occur. In
Fig. 3, both kinds of control show about the same data-
collection rate with BER = 10−5, but that of centralized
control becomes slow to rise up along with the increase in
BER.

In the centralized control, the tremendous amount of
information is gathered to the central station to decide a
course of actions for each sensor node, and the station issues
the instructions to sensor nodes. Sensor nodes completely
rely on the control information from the station, and the sta-
tion believes sensor nodes follow the order. With this strong
dependency, what will happen when the information is be-
yond some sensors’ reach? This situation just arises due to
transmission error in this simulation experiment. In the case
where some sensors can receive the instruction and others
cannot, inconsistent views of the routes can be introduced
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Figure 3. Influence of BER on data-collection
rate.

among them. Such inconsistency makes sensor nodes lose
their next-hop node for a received packet, and the network
gets stuck in the pathological state until their views get con-
sistent. Actually, data-collection rate increases with time in
Fig. 3, but this is because frequently transmitted command
packets (i.e., with an interval of only 10 s) compensate dis-
carded ones. This slow ascent means that the network does
not adapt well when the route changes for any reason.

In the self-organized control, sensor nodes are not able
to know global information of the network, leading to easily
have inconsistent information among them. But the adverse
effects of their inconsistency are localized around them, be-
cause they have its own knowledge base based on their lim-
ited view, instead of sharing global information. That re-
sults in the good robustness against transmission error as
shown in Fig. 3.

Differences in the behaviors of the two kinds of control
also appear in Fig. 4, where mean of the data-collection
rate are plotted against BER. Logarithmic approximation
lines for their decays are also shown. Self-organized control
keeps data-collection rate above 80% about 3 times longer.
In addition, the gradient of the self-organized control is
only 58% of the centralized control. When the gradient is
steep, the network function might deteriorate markedly in
response to even a small change of BER. When the gradi-
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Figure 4. Data-collection rate versus BER.

ent is gentle, however, data collection is not affected signif-
icantly if the BER changes. For that reason, self-organized
control is more robust against transmission error.

4.4 Measures against sink failure

Figure 5 presents the results for the case in which a sink
located at (25, 25) fails at 400 s. After the sink failure, the
data collection rate drops sharply to about 75%, except in
the case of centralized control with 10−5 BER (Bit Error
Rate), where the rate drops to only 90%. A rate of 75%
means that one cluster suffered catastrophic damage (the ra-
tio of data packets gathered within a cluster is about 25%).
Not only is the drop in the data collection rate in the case
of centralized control and low BER small, but also the re-
covery is almost immediate. The control station which is
wired to the sinks becomes aware of the failure within a
short amount of time (in our simulations, it is set to 0 s),
after which the clusters are reconstructed and the routes are
recomputed upon receiving the command packet, in order
to adapt the whole network to the failure. Sensor nodes im-
mediately modify their cluster membership and routing ta-
ble according to the instructions contained in the command
packet, and the data collection rate is restored soon after
that. Indeed, in cases where the channel quality is poor, the
data collection rate in the centralized control scheme is un-
able to recover within the simulation time shown in Fig. 5,
since centralized control is weak with respect to transmis-
sion errors, as indicated in [14].

In contrast to the centralized control scheme, the self-
organized control scheme needs more time for the distant
sensor nodes to adapt to the sink failure. In addition, since
the network has no supervisor and no explicit instructions,
some nodes might be prone to taking contradicting actions
based on the possibility of receiving inaccurate information
about the condition of the network. For these reasons, in
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Figure 5. Features of the process of recovery
from sink failure.

low BER environments, the self-organized control scheme
exhibits worse recovery than the centralized one. In high
BER environments, however, the relationship between self-
organized control and centralized control is reversed, since
the self-organized control scheme inherently does not have
critically important information whose loss can bring seri-
ous and adverse influence to the network.

4.5 Measures against node failure

We already demonstrated the robustness against node
failure in our previous work [14]. Moreover, we showed
that although most of the sensor nodes other than the failed
ones exhibit data collection rates of about 100% in the self-
organized control scheme, failures in the case of the cen-
tralized control scheme have considerable influence on the
data collection rates at the cluster level, where many sen-
sor nodes are unable to transmit packets to their sinks, and
this influence is especially notable when concentrated and
simultaneous failures occur. However, when we tested ran-
dom failures in a 100 m ×100 m monitoring region con-
taining 300 nodes, the difference in the robustness of the
self-organized and the centralized control schemes was not
clear due to the connectivity degradation caused by the con-
tinual node failures. Therefore, here we temporarily used
a narrower monitoring region of 50 m × 50 m while keep-
ing the number of nodes and sinks, and defined pfail as the
failure rate per second for each sensor node.

The variances of the data collection rates of both control
schemes among trials are shown in Fig. 6. The variance in
the self-organized control scheme is small and not as sensi-
tive to the failure rates. However, in the centralized control
scheme, the data collection rates in some trials experience
sudden drops, which lead to the higher variance of the data
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rates among trials.

collection rates, as shown in Fig. 6. The high variance in
the case of centralized control indicates the difficulty of pre-
dicting the data gathering capability in harsh environments,
although all of the plots are prepared using the same param-
eters.

4.6 Measures against link disconnection

As links can become disconnected intermittently in wire-
less networks, in the case where the link between nodes ni

and nj is disconnected but the link between ni and nk is still
connected, there is a possibility that the status of ni as seen
from the perspective of nj and nk is inconsistent. There-
fore, in order to study the differences in the robustness of
the two schemes, we randomly disconnected a percentage
of the links. We assume that each node is linked to an arbi-
trary neighboring node, and each link is disconnected with
probability plink in both directions. This disconnection pro-
cess was conducted for all nodes, and the duration of the
disconnection was 400 s, from t=300 s to t=700 s.

In the results shown in Fig. 7, the data collection rate in
the self-organized control scheme immediately recovers to
the rate before the disconnection, although it experiences a
declination for a short amount of time. The centralized con-
trol scheme, on the other hand, suffers greatly from the dis-
connections, where detection of massive node failures oc-
curs since neighboring nodes regard disconnected nodes as
failed due to their inability to transmit hello messages. In
other words, sensor nodes cannot distinguish failures from
link disconnections in our centralized control scheme. Fur-
thermore, after the detection of a missing link, the neighbor-
ing nodes transmit failure-indication packets, which are in
fact false-positive detection packets, to the control station.
As a result, the control station does not provide routes to the
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Figure 7. Influence of link disconnections on
the data collection rate.

node which is considered as failed, and the packets from the
disconnected node are discarded, which is the main reason
for the decay of the data detection rate in Fig. 7(b).

5 Dependence on control information

5.1 Factors influencing the difference in
robustness

In the evaluation presented in Section 4 and in previous
works, there was a significant difference between the ro-
bustness of self-organized control and centralized control.
We are inclined to explain this trend in terms of “depen-
dence on control information”. In this case, “dependence”
has almost the same meaning as that used in fault manage-
ment. The dependence is a relation in which an error or
failure in an object may cause an error or failure in another
object. We define control information as the information



exchanged between entities of a given network which coor-
dinates their joint operation.

In Sections 4.5 and 4.6, even the control station itself did
not comprehend the correct state of the network. This is
caused by the fact that the control station also depends on
control information received from the nodes in the network.
The control station constructs a precise view of the whole
network by integrating each piece of information about the
state of the network. In other words, the problem of the
dependence is that the control information from potentially
unreliable nodes in environments where reliable communi-
cation is not guaranteed plays a critical role in generating
the control scheme at the control station. In Section 4.5,
failure indication packets, which notify the command node
about the correct state of the network, did not reach the con-
trol station, resulting in a sudden drop of the data collection
capability of the clusters. In Section 4.6, one node consid-
ers a neighboring node to be operating correctly, while an-
other node considers the same neighboring node as faulty,
resulting in the transmission of failure indication packets
even though no nodes have failed. In this way, information
which does not reflect the correct state of the network brings
vulnerability to the centralized control scheme.

Of course, at the node level, self-organized control is
identical to centralized control, meaning that individual
nodes potentially have an erroneous understanding about
the state of the network. However, individual nodes affect
only their surrounding environment or neighboring nodes
since all nodes have only partial view of the network, and
do not transmit or receive explicit control information. Due
to this behavior, the influence of individual nodes on the
global state of the network is much smaller than in the cen-
tralized control scheme. In this regard, since we have not
yet clarified the influence of erroneous information received
from individual nodes, in the next section we verify our idea
by deliberately injecting incorrect information into the net-
work.

5.2 Influence of incorrect information

The purpose of this demonstration is to determine how
strong the influence of information received from individual
nodes is, as well as how potentially unreliable nodes affect
the behavior of the whole network. Therefore, in this sec-
tion, we deliberately inject spurious information in order to
show unambiguously the influence of information received
from individual nodes on the functionality of the network.
At first, in the centralized control scheme, we considered
two scenarios: 1) we injected false-positive failure detection
packets, which convey the misinformation that a properly
working node is detected as failed, and 2) false-recovery
packets, which inform the surrounding nodes that a node
which has failed is detected as recovered.
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Figure 8. Results of injecting incorrect infor-
mation.

Although we deliberately injected incorrect information
at t=200 s that the node nearest to the coordinate (25, 25)
had failed, there was no fluctuation or drop in the data col-
lection rate due to the injection, as seen from the results
shown in Fig. 8(a). In fact, the node which was wrongly de-
tected as failed was not able to send its packets to the sink
as the control station did not consider the failed node as a
member of the data collection cluster. However, routing in-
formation was supplied to the other sensor nodes correctly,
and thus the influence of the erroneous information was lim-
ited.

Next, we tested the scenario where incorrect information
about the recovery of a node is injected into the network. At
first, we made the node nearest to the coordinate (25, 25)
fail at t=160 s, followed by the injection of information that
the node has recovered at t=200 s. Figure 8(b) shows the re-
sults of five trials, and it is clear that the behavior of the data



collection rates are different among them, i.e., they are dif-
ferent depending on the node deployment. There is a clear
drop in two of the plotted lines just after the injection of
erroneous information at t=200 s. Given this factor, focus-
ing on one of those lines, in Fig. 9 we visualized the data
collection rate of the individual nodes from the time when
node fails (t=160 s) until the injection of misinformation
(t=200 s), and from the injection (t=200 s) to the end of the
simulation (t=1000 s), respectively. As shown in Fig. 9(a),
the influence of the node failure can be limited. However,
after the injection, data collection in the larger part of the
respective cluster becomes impossible.

Self-organized control does not have any means for ex-
plicit indication of failure or failure recovery. Therefore,
it was impossible to compare it directly with the central-
ized control in terms of the influence of erroneous informa-
tion. Instead, we used the indication of sink failure, which
is a message which explicitly conveys information about the
failure of a sink to the neighboring nodes by using a hello
message. Furthermore, we made the sensor node nearest to
the coordinate (25, 25) transmit the information about the
sink failure. This indication is spread over the respective
cluster through forwarding by nodes which receive the in-
dication.

As a result, although spurious sink failure indication was
injected into the network at t = 200 s, there was no clear
difference in the data collection rate before and after the in-
jection, as seen from the data collection rates from five trials
presented in Fig. 10. In our self-organized control scheme,
sensor nodes invalidate their membership to the respective
cluster upon receiving the sink failure indication, and neg-
ative influence was expected due to the dynamic change of
cluster membership. However, contrary to our expectation,
the cluster memberships were restored to those before the
injection. In other words, correct information from other
nodes naturally adjusts the situation caused by erroneous
information, and this fact contributes to the robustness of
self-organized control.

6 Conclusion

In spite of growing interest, there are many points re-
garding self-organization which remain insufficiently un-
derstood. In this paper, we studied the robustness of self-
organized control against a wide range of perturbations by
comparing it with centralized control, and we attempted
to answer some important questions. One such question
is whether self-organized control is in fact robust, and we
quantitatively demonstrated the affirmative answer by ex-
amining various scenarios. Although this result is not sur-
prising, it was found that self-organized control has the ob-
vious benefit of superior robustness, especially if applied to
systems in dynamically changing environments, although

0
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be notified of having recoverd
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(b) From t=200 s to t=1000 s

Figure 9. State of the network after injecting
false-recovery information.

at the cost of reduced system predictability. Furthermore,
the questions about why self-organized control is robust
and what factors determine the robustness of self-organized
control were also addressed, and based on the results ob-
tained from the simulation experiments, we arrived at the
conclusion that the dependence on the control information
in the system plays a critical role in determining whether
or not the robustness is sufficient. In a network which is
composed of potentially unreliable nodes and is located in a
harsh environment, decreasing the dependence on the con-
trol information received from the nodes is critical to yield-
ing sufficient robustness, and self-organized control inher-
ently possesses such properties.
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