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Abstract— Obtaining current traffic matrices is essential to
traffic engineering (TE) methods. Because it is difficult to monitor
traffic matrices, several methods for estimating them from link
loads have been proposed. The models used in these methods,
however, are incorrect for some real networks. Thus, methods
improving the accuracy of estimation by changing routes also
have been proposed. However, existing methods for estimating
the traffic matrix by changing routes, however, can only capture
long-term variations and cannot obtain current traffic matrices
accurately. In this paper, we propose a method for estimating
current traffic matrices by using route changes introduced by
a TE method. In this method, we first estimate the long-term
variations of traffic by using the link loads monitored the last
M times. Then, we adjust the estimated long-term variations
so as to fit the current link loads. In addition, when the traffic
variation trends change and the estimated long-term variations
cannot match the current traffic, our method detects mismatches.
Then, so as to capture the current traffic variations, the method
re-estimates the long-term variations after removing information
about the end-to-end traffic causing the mismatches. For this
paper, we evaluated our method through simulation. The results
show that our method can estimate current traffic matrices
accurately even when some end-to-end traffic changes suddenly.

I. INTRODUCTION

Obtaining current traffic matrices accurately is essential to
traffic engineering (TE) methods [1–4]. By using the current
traffic matrices, TE methods configure routes on a network
so as to fit the current traffic. As a result, even when traffic
changes unpredictably, by reconfiguring routes, the network
can efficiently accommodate all traffic without congestion.

One approach for obtaining traffic matrices is to construct
fully meshed label-switched paths using Multiprotocol Label
Switching (MPLS) and directly measure the traffic amounts
over each path. This approach, however, does not scale because
it requires N -squared label-switched paths. Another approach
is to tally the numbers of packets of each end-to-end traffic
flow at all edge nodes. This, however, is also difficult to
apply in large-scale networks, because tallying these numbers
requires a non-negligible amount of CPU resources at the edge
nodes, and gathering the tallied data for all end-to-end traffic
also consumes a non-negligible amount of network resources
such as bandwidth.

Therefore, several methods for estimating traffic matrices
from limited information have been proposed [5–14]. In such

methods, an entire traffic matrix is estimated using link loads
that can be collected much more easily than by directly
monitoring end-to-end traffic. Because the link load is the sum
of the traffic using a link, we have

X(n) = A(n)T (n), (1)

where X(n) is a matrix indicating the amount of traffic on
each link at time n, T (n) is the traffic matrix at time n, and
A(n) is the routing matrix (i.e., a matrix in which an element
corresponding to an instance of end-to-end traffic and a link
is 1 if the end-to-end traffic passes the link or 0 if it does
not). However, because the number of links is much smaller
than the number of elements of the traffic matrix, Eq. (1) has
multiple solutions in which true traffic matrix is included.

Therefore, several methods use traffic matrix models to
estimate the traffic matrix. For example, the tomogravity
method [5] uses a model called the gravity model, in which
the amount of traffic from a source node to a destination node
is proportional to the total incoming or outgoing traffic for
each edge node. According to [15], however, the gravity model
does not fit the actual traffic in some real networks. Traffic
matrices estimated by this method include estimation errors,
such as underestimates of end-to-end traffic whose amounts
are actually large. As a result, when a TE method uses traffic
matrices estimated by this method, these underestimates can
cause high link utilizations.

Recently, several methods increasing the accuracy of es-
timation by using additional measurements have been pro-
posed [12–14]. These methods obtain the additional infor-
mation by changing the routing matrices and observing the
differences between the link loads before and after the route
changes. For example, Ref. [12] obtains additional mea-
surements by using the route changes performed by a TE
method. By performing TE a sufficient number of times, this
approach obtains a sufficient number of measurements and
then estimates the traffic matrix by assuming that the true
traffic matrix does not change throughout the TE method
execution. It takes a long time to change routes sufficient
times, however, so the current traffic can differ from the initial
traffic monitored before the first route change. Therefore, we
need a traffic matrix estimation method that considers the time
variations of traffic matrices. Ref. [14] proposes a method for
modeling traffic variations by using periodic functions and



2

estimates these functions’ parameters. However, when traffic
changes unpredictably, the traffic matrices estimated by this
approach cannot fit the current traffic matrices since it can
only estimate the average variations of traffic for a period of
a day by monitoring link loads for several days. As a result,
a TE method cannot configure routes suitable for the current
traffic.

Therefore, in this paper, we propose a new estimation
method, with which we can accurately estimate current traffic
matrices by using the route changes introduced via a TE
method. Unlike in Ref. [14], the purpose of our method is to
estimate not the long-term variations of traffic but the current
traffic matrix, which consists of both long-term variations and
short-term variations. By using the accurate traffic matrix, a
TE method can properly work to configure routes suitable for
the current traffic.

In our method, we first estimate the long-term variations
of traffic by using the link loads monitored the last M times.
Then, we adjust the estimated long-term variations so as to fit
the current link loads. In addition, when the traffic variation
trends change and the estimated long-term variations cannot
match the current traffic, our method detects mismatches
between the estimated long-term variations and the current
traffic. Then, our method re-estimates the long-term variations
after removing information about the end-to-end traffic causing
the mismatches, so as to capture the current traffic variations.

The rest of this paper is organized as follows. Section II
describes the proposed method for estimating current traffic
matrices by using route changes. Then, in Section III, we
give the results of evaluating our method through simulation.
Finally, Section IV provides a conclusion.

II. METHOD FOR ESTIMATING CURRENT TRAFFIC MATRIX

BY USING CHANGES IN ROUTES

A. Overview of estimation method

Obtaining current traffic matrices is essential to TE methods.
The existing estimation methods, however, cannot estimate
current traffic matrices accurately. As a result, if a TE method
uses traffic matrices estimated by the existing estimation
methods, the TE method cannot reconfigure routes suitable
to the current traffic.

Therefore, in this paper, we propose a new method for
estimating current traffic matrices accurately. We assume that a
TE method sometimes changes routes in the network. Under
this condition, we can obtain additional information, which
can be used in estimating the traffic matrices, by monitoring
link loads while some routes are changed.

Because it takes a long time to change routes enough
times to obtain a sufficient amount of additional information,
however, the current traffic might be very different from the
initially monitored link loads. Therefore, we need to consider
long-term variations. By using the link loads monitored the
last M times, our method estimates the long-term variations of
traffic instead of estimating the current traffic matrices directly.
Then, we obtain the current traffic matrices by adjusting the
estimated long-term variations so as to fit the current link
loads.
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Fig. 1. Overview of proposed method

In addition, when the traffic variation trends change, the
changes may cause significant estimation errors if we also use
information obtained before the changes, since this informa-
tion can be very different from the current traffic. Therefore,
in our method, we check whether the estimated long-term
variations match the current link loads. Then, if we detect
a mismatch between the estimated long-term variations and
the current link loads, we re-estimate the long-term variations
after removing the traffic information causing the mismatch,
so as to follow the current variations of traffic.

Fig. 1 shows an overview of the proposed estimation
method. Our method estimates the traffic matrix through the
following steps.

Step 1 Estimate the long-term variations of the traffic ma-
trices by using the link loads monitored the last M
times.

Step 2 Obtain estimation results of the current traffic matrix
by adjusting the estimated long-term variations so as
to fit the current link loads.

Step 3 Check whether the estimated long-term variations
fit the current link loads. If they do not match the
current link loads, return to Step 1 after removing
the previous information about the end-to-end traffic
causing the mismatch. Otherwise, proceed to Step 4.

Step 4 Designate the estimation results from Step 2 as the
final estimation results.

In the above steps, estimating the long-term variations
requires the longest computation time because this step uses
the link loads monitored the last M times while other steps
use only the currently monitored link loads. However, we do
not need to estimate the long-term variations every time we
estimate the current traffic matrices because we can estimate
the current traffic matrices accurately if only the estimated
long-term variations match the current traffic. Setting the
interval of estimating the long-term variations independently
of the interval of estimating the current traffic matrices is one
of our future works.

In subsection II-B, we describe the method for estimating
the long-term traffic variations. Subsection II-C explains how
to adjust the estimated long-term variations so as to fit the
current link loads. Subsection II-D describes how to the
detect mismatches between the estimated long-term variations
and the current traffic, and how to re-estimate the long-
term variations and the current traffic matrix after mismatch
detection.
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B. Estimating long-term traffic variations

1) Traffic variation model: According to [14], the amount
of traffic between each node pair varies periodically with a
certain cycle, such as one day or one week. Therefore, in this
paper, we model the traffic amount between nodes i and j as

ti,j(n) = fi,j(n) + δi,j(n), (2)

where ti,j(n) is the traffic volume between nodes i and j at
time n, fi,j(n) is a function modeling the periodic variation,
and δi,j(n) is the variation not included in fi,j(n). In our
method, we model the long-term variations by fi,j(n) and
estimate them by estimating the parameters of fi,j(n).

We model fi,j(n) by applying the model used in [14]. This
approach models the periodic traffic variation by using sin
and cos functions. With this model, the periodic variation is
represented as

fi,j(n) =
Nf∑
h=0

αh,i,jcos
(

2πnh

Ncycle

)

+
Nf∑
h=0

αh+Nf ,i,jsin
(

2πnh

Ncycle

)
. (3)

where Ncycle is the number of times monitoring link loads in
each cycle, Nf is a parameter determining the number of terms
in Eq. (3), and the αh,i,j are the variables to be estimated by
our estimation method. With Nf set to a large value, the traffic
variation modeled by Eq. (3) captures more of the short-term
variation, but the number of variables to be estimated also
increases. In our method, we only have to roughly model the
traffic variations, because we can estimate the current traffic
matrix by adjusting the roughly estimated long-term variations.
That is, in our method, a small Nf is sufficient.

2) Method for estimating long-term variations: In the
model described by Eq. (3), the variables αh,i,j determine
the long-term variations. Therefore, our method estimates the
long-term variations by estimating the αh,i,j . We estimate the
αh,i,j by using the link loads monitored the last M times. At
any time n, the link loads and the traffic matrix have a relation
described by Eq. (1). Therefore, we estimate all variables so
as to satisfy Eq. (1) in any time. In this paper, we use a least
square algorithm to estimate the variables. That is, when the
number of nodes is N , the variables are basically estimated
as

minimize
n∑

k=n−M+1

|X(k)−A(k)T̂ est(k)|2 (4)

where

T̂ est(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f0,0(k)
...

fi,j(k)
...

fN,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

By using Eq. (4), when some routes are changed, we can use
additional equations for estimating the variables.

With Eq. (4), however, we may not be able to estimate
the long-term variations accurately because of the effects of

traffic variations that cannot be modeled by Eq. (3). Because
the actual traffic variations do include variations that cannot
be modeled by Eq. (3) (i.e., δi,j(n) in Eq. (2)), long-term
variations modeled by Eq. (3) cannot completely fit all the
monitored link loads. With Eq. (4), however, we estimate the
long-term variations so as to completely fit all the monitored
link loads. As a result, estimation results from Eq. (4) can be
affected by traffic variations that cannot be modeled by Eq.
(3), making the results very different from the actual traffic.

To mitigate the impact of δi,j on the estimated long-
term variations, in our method, by placing constraints on
the variables themselves, we avoid estimating the long-term
variations so as to completely fit all the monitored link loads.
We thus use the following equation instead of Eq. (4):

minimize
n∑

k=n−M+1

|X(k)−A(k)T̂ est(k)|2 (6)

+Φ
∑
i,j

⎛
⎝mi,j

2Nf∑
h=0

(αh,i,j − α′
h,i,j)

2

⎞
⎠ ,

where the α′
h,i,j are the variables estimated the previous time,

mi,j is the amount of information monitored before, and Φ
denotes a parameter by which we can set the weight to the
constraints on the variables themselves. Using this equation,
we estimate all the αh,i,j(0 ≤ h ≤ 2Nf ) of fi,j(n) so as to
fit all the monitored link loads while keeping the values close
to the values estimated the previous time.

When we estimate the long-term variations the first time,
however, we have not obtained the α′

h,i,j . Thus, in such cases,
we set the α′

0,i,j to the elements of traffic matrices estimated
by other methods [5–11], and we set the α′

h,i,j(1 ≤ h ≤ 2Nf )
to 0. By using this approach, we can avoid estimating traffic
variations as having significantly larger values than the actual
variations.

In addition, even if the initial α′
h,i,j are not accurate, we can

estimate the long-term variations more accurately by using link
loads monitored at multiple times as additional information.
Then, when we estimate the long-term variations the next
time, we can use more accurate α′

h,i,j . That is, as we estimate
the long-term variations more times, the accuracies of these
estimations increase.

C. Adjustment of estimated long-term variations

In described in subsection II-B, we estimate the long-term
variations. Because these estimates do not include the δi,j(n)
in Eq. (2), however, they do not fit the current link loads.
Therefore, we adjust the long-term variations estimated as
given in subsection II-B so as to fit the current link loads.

The adjustment is performed through the following steps.
First, by assigning n to the functions corresponding to the
estimated long-term variations, we obtain a roughly estimated
traffic matrix T̂ est(n). Then, we obtain a traffic matrix T̂ (n)
that is close to T̂ est(n) and fits the link loads monitored at
time n. That is, we obtain the estimation results by applying a
least square algorithm so as to satisfy the following conditions:

minimize|T̂ (n)− T̂ est(n)|2 (7)
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where
A(n)T̂ (n) = X(n). (8)

A traffic matrix estimated by a least square algorithm,
however, can include negative values, which are meaningless
in the context of a traffic matrix. Therefore, we eliminate
negative values through the following steps. We denote the
estimated traffic matrix for the i-th iteration as T̂ (i)(n).

Step 1 Let T̂ (0)(n)← T̂ (n).
Step 2 Obtain the matrix T̂

′(i)(n), in which we replace all
the negative values of T̂ (i)(n) with zero.

Step 3 Obtain D(i)(n) satisfying the following condition:

minimize|D(i)(n)|2 (9)

where

A(n)
(
T̂

′(i)(n) + D(i)(n)
)

= X(n). (10)

Step 4 Let T̂ (i+1)(n)← T̂
′(i)(n) + D(i)(n).

Step 5 If all elements of T̂ (i+1)(n) are non-negative, pro-
ceed to Step 6. Otherwise, return to Step 1.

Step 6 Let T̂ (i+1)(n) be the final result for the traffic matrix
T̂ (n).

D. Re-estimation of traffic matrix after mismatch of estimated
long-term variations

When traffic variation trends change, long-term variations
estimated by using all the link loads monitored the last M
times can exhibit mismatches with the current traffic. This
is because the long-term variations are estimated so as to fit
the link loads before the change, which can be very different
from the current traffic variations. In such cases of mismatch,
we cannot estimate the current traffic matrices accurately even
after adjustment, because the adjustment uses only the current
link loads, which are insufficient for estimating the traffic
matrices accurately.

Therefore, in our method, when the estimated long-term
variations exhibit mismatches with the current traffic, we
detect the mismatches and re-estimate the long-term variations
without using link loads that do not match the current traffic.
In this subsection, we describe how to detect mismatches and
identify the end-to-end traffic causing the mismatches, as well
as how to re-estimate the long-term variations after mismatch
detection.

1) Detecting mismatches and identifying end-to-end traffic
causing mismatches: When the estimated long-term variations
are very different from the current traffic, the differences
between the current link loads and the link loads calculated
using the estimated long-term variations are large. In this case,
because the results of adjusting T̂ (n) must satisfy Eq. (8),
while A(n)T̂ est(n) is very different from the current link loads
X(n), the elements of T̂ est(n) − T̂ (n), corresponding to the
traffic causing the mismatches, become large. Therefore, we
detect mismatches and identify the end-to-end traffic causing
the mismatches by evaluating T̂ est(n)− T̂ (n).

Because the size of traffic variation that cannot be included
in Eq. (3) depends on the end-to-end traffic [14], if we set a
single threshold for the elements of T̂ est(n) − T̂ (n), traffic

with large variations that cannot be modeled by Eq. (3) will
be erroneously detected as traffic causing mismatches.

Therefore, we detect mismatches and identify their sources
by comparing T̂ est(n) − T̂ (n) with its previous values. Our
method performs the comparison by using the Smirnov-
Grubbs method [16], which can easily detect outliers in
sampled data.

Here, we define the elements of T̂ est(n) and T̂ (n) corre-
sponding to the traffic between nodes i and j as t̂esti,j (n) and
t̂i,j(n) respectively. In the Smirnov-Grubbs method, we detect
whether |t̂esti,j (n)− t̂i,j(n)| is an outlier by calculating

di,j =
|t̂esti,j (n)− t̂i,j(n)| − μi,j

σi,j
, (11)

where μi,j and σi,j are the average and standard deviation of
|t̂esti,j (k) − t̂i,j(k)|(n −M + 1 ≤ k ≤ n), respectively. Then,
|t̂esti,j (n)− t̂i,j(n)| is detected as an outlier if di,j is larger than
the theshold

τ = (M − 1)

√
τ2
θ,M+2

M(M − 2) + Mτθ,M+2
(12)

where M is the number of samples, θ is a parameter specifying
the detection sensitivity, and τθ,M is a value corresponding to
the top θ/M% points of the T distribution with M−2 degrees
of freedom.

Too small σi,j causes detection of points where |t̂esti,j (n) −
t̂i,j(n)| is small. We do not, however, need to detect such
points, because the estimated long-term variations there fit the
current traffic, since |t̂esti,j (n)− t̂i,j(n)| is small. Therefore, to
avoid detecting such points, we introduce a parameter s and
set σi,j to s if σi,j is smaller than s.

2) Re-estimation of long-term variations after detection:
When mismatches between the estimated long-term variations
and the current traffic are detected, we need to re-estimate the
long-term variations so as to fit the current traffic. Because
such mismatches occur when we estimate the long-term vari-
ations by using previously monitored link loads that are very
different from the current traffic variations, we re-estimate the
long-term variations by using link loads and routing matrices
in which information about the end-to-end traffic causing the
mismatches has been removed.

Our method removes previous information corresponding to
the end-to-end traffics causing mismatches at time n through
the following steps. We first remove such information from
the routing matrices A(i)(n −M + 1 ≤ i < n) by setting
elements corresponding to the identified end-to-end traffic to
0. We denote the routing matrix after such replacement as
A′(i).

Then, we create a link load matrix X ′(i)(n − M + 1 ≤
i < n) from which information about the identified end-to-end
traffic has been removed. The sum of the elements of traffic
matrix T corresponding to the identified end-to-end traffic
traversing each link at time i is calculated as (A(i)− A′(i))T .
Therefore, X ′

i is given by

X ′(i) = X(i)− (A(i)−A′(i)) T̂
′est(i). (13)

where T̂
′est(i) is the traffic matrix at time i calculated using

the estimated long-term variations. In calculating T̂
′est(i), we
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use the long-term variations estimated at time n−1, since the
long-term variations estimated at time n can be affected by
changing trends.

Next, our method re-estimates the long-term variations by
using Eq. (14), which is refined from Eq. (6) to use X ′(k)
and A′(k):

minimize
n−1∑

k=n−M+1

|X ′(k)−A′(k)T̂ est(k)|2 (14)

+|X(n)−A(n)T̂ est(n)|2

+Φ
∑
i,j

⎛
⎝mi,j

2Nf∑
h=0

(αh,i,j − α′
h,i,j)

2

⎞
⎠ .

We only have to re-estimate the long-term variations so as to
fit the current traffic, because the purpose of our method is to
estimate the current traffic matrix. Moreover, in estimating the
traffic amounts of the identified end-to-end traffic by using Eq.
(14), we do not need to consider the related traffic variations,
because the traffic amounts corresponding to the identified
traffic are included only in X(n).

Therefore, in re-estimating the long-term variations, we
model the amounts of the identified end-to-end traffic by

fi,j(n) = α0,i,j , (15)

instead of using Eq. (3). By using Eq. (15), we can minimize
the number of variables to be estimated.

3) Re-estimation of traffic matrix after re-estimation of
long-term variations: After re-estimating the long-term vari-
ations, we re-estimate the current traffic matrix through the
same steps described in subsection II-C.

III. EVALUATION

A. Metrics

In this section, we describe an evaluation of our method
by simulation. In the simulation, we evaluated our method by
two general metrics: (1) the accuracy of estimation, and (2)
the performance of a TE method using the estimated traffic
matrices.

To evaluate the accuracy, we used two specific metrics – the
root mean squared error (RMSE), and the root mean squared
relative error (RMSRE) – as defined below:

RMSE =
√

1
N2

∑
1≤i,j≤N

(t̂i,j(n)− ti,j(n))2 (16)

RMSRE =

√√√√ 1
N2

t̃

∑
1≤i,j≤N,ti,j>t̃

(
t̂i,j(n)− ti,j(n)

ti,j(n)

)2

(17)

The RMSE gives an overall measure for the errors in
estimation, while the RMSRE gives a relative measure. For
small matrix elements, however, the relative errors are not
really important. Thus, in computing the RMSRE, we consider
only matrix elements greater than a threshold t̃. Nt̃ is the
number of elements greater than t̃ in a traffic matrix. In the
following simulation, t̃ was set so that the sum of the end-
to-end traffic whose actual rate was greater than t̃ composed
75 % of the total traffic.
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Fig. 2. EON topology

To evaluate the performance of a TE method using the
estimated traffic matrices, we investigated whether the purpose
of the TE method was achieved. The next subsection describes
the purpose of the TE method used in our simulation.

B. Environment used in evaluation

In our method, we assume that a TE method changes routes
sometimes. In this evaluation, we used the optical layer TE as
an example of a TE method. The optical layer TE establishes
optical layer paths between two IP routers over a physical
network consisting of IP routers and optical cross-connects
(OXCs). A set of optical layer paths forms a virtual network
topology (VNT). Traffic between two routers is carried over
the VNT by using IP layer routing. Under these conditions, the
optical layer TE accommodates traffic that fluctuates widely
by dynamically reconfiguring the VNT.

In our simulation, we used the European Optical Network
(EON) (19 nodes, 37 links) shown in Fig. 2 as the physical
topology and executed the optical layer TE method proposed
in [12] once an hour. The purpose of this method is to keep
the maximum link utilization under the threshold TH . In
this method, optical layer paths are added or deleted with a
limitation on the number of optical layer paths reconfigured
at one time. Optical layer paths are added if at least one path
whose utilization exceeds the threshold TH exists. Otherwise,
if there is an optical layer path whose utilization is less than
a threshold TL, the path is deleted. In this simulation, we set
the maximum number of optical layer paths reconfigured at
one time to 30, TH to 0.7 and TL to 0.4.

In the simulation, we investigate the accuracy of the esti-
mation when the some traffic change suddenly. Therefore, we
generate end-to-end traffic by adding sudden changes to the
traffic generated by adding variations to sin functions whose
amplitudes and phases were randomly generated. We added
sudden changes to the traffic from nodes 2 to 4, 9 to 1, and
0 to 12 at times 70, 110, and 140, respectively. The rates of
the sudden traffic changes from nodes 2 to 4, 9 to 1, and 0
to 12 were, respectively, 120 % , 150 %, and 160 % of the
maximum rate of traffic before the addition.

In our estimation method, we use parameters M , Nf , Φ,
θ and s. In this simulation, we set M to 160, Nf to 2, Φ to
0.01, θ to 0.01, and s to 1.

C. Accuracy of the estimation

In our method, we obtain estimation results by adjusting
the estimated long-term variations so as to fit the current link
loads. In addition, when the trends of traffic variations change
and the estimated long-term variations do not match the
current traffic, our method detects mismatches and identifies



6

the end-to-end traffic causing them, after which it re-estimates
the long-term variations.

Therefore, we investigated the effectiveness of adjusting
the estimated long-term variations and effectiveness of re-
estimation, by comparing the accuracy of our estimation
method with the accuracies of the following methods:

• A method using only the current link loads. By compari-
son with this method, we investigated the effectiveness of
using the link loads monitored at previous times. For this
method, we used the tomogravity method with the simple
gravity model [5]. Although the simple gravity model
does not fit the traffic matrices used in our simulation,
because we use randomly generated traffic matrices, this
model also is not incorrect in some real networks [15].
The focus of this comparison is the effectiveness of using
link loads monitored at previous times when the simple
gravity model is not correct.

• A method using the link loads monitored at previous
times but not considering the time variations of traffic.
By comparison with this method, we investigated the
effectiveness of modeling long-term traffic variations. For
this method, we used the additional equation method
proposed in [12].

• Our method without re-estimation. For our method with-
out re-estimation, we estimated the long-term variations
and adjusted them but did not re-estimate them even
when the variation trends changed. By comparing with
this method, we investigate the effectiveness of the re-
estimation after detection of the mismatches between the
estimated long-term variations and the current link loads.

Figures 3 and 4 show the RMSE and RMSRE when we
added these sudden traffic changes. The results show that
the errors for the tomogravity method are the largest. This
is because the tomogravity method uses only the current link
loads, which is an insufficient amount of information.

The errors for the additional equation method are also
large. This is because that method does not consider traffic
variations but assumes instead that the true traffic matrix does
not change during TE execution. Therefore, this method cannot
estimate traffic matrices accurately when traffic varies, even
while monitoring the link loads a sufficient number of times.

On the other hand, the errors for our methods are relatively
small. That is, by including the link loads monitored at
previous times in considering the time variations of traffic, we
can estimate traffic matrices accurately. However, the RMSE
for our method without re-estimation increases after time 70,
whereas the RMSE for our method with re-estimation remains
small after time 70. This difference is caused by the sudden
changes, whose impact we discuss in detail later. The RMSRE
for our method without re-estimation does not increase as
much as the RMSE. This is because the end-to-end traffic
whose estimation errors increase due to the sudden change
have large amounts of traffic in this case. So, the increases of
the relative errors are small.

The results shown in Figs. 3 and 4 also verify that the impact
of false positives (i.e., the cases of mistakenly detecting end-
to-end traffic with no changes) is small. In this case, some
end-to-end traffic without changes in the traffic variation trends
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Fig. 4. Time variation of RMSRE (when some traffic variations change)

will be mistakenly identified as causing mismatches between
the estimated long-term variations and the current traffic. For
example, at time 76 in Fig. 3, the end-to-end traffic between
nodes 14 and 0 is mistakenly identified as causing a mismatch.
From the figure, however, we can see that the RMSE and
RMSRE for our method do not become significant even when
such false positives occur; they always remain the smallest
among the four methods. This is because we have sufficient
information to estimate the long-term variations and traffic
matrices accurately even when some false positives occur and
information about the mistakenly identified end-to-end traffic
is removed.

To investigate the impact of sudden changes in detail, we
compared the estimation results obtained for traffic with sud-
den changes added. Figures 5 and 6 show the estimation results
for our method with and without re-estimation, respectively.

These figures show that both methods can accurately esti-
mate all the traffic amounts before adding the sudden changes.
After adding the changes, however, the traffic rate estimated by
our method without re-estimation cannot capture the changes.
This is because that method also uses the link loads monitored
before adding the sudden changes, which are very different
from the current traffic variations. Therefore, because of this
information that does not fit the current traffic variations,
the long-term variations cannot be estimated accurately. Even
though we adjust the estimated long-term variations so as to fit
the current link loads, the adjusted results still do not capture
the sudden changes, because the adjustment process can use
only the current link loads, which is insufficient information
for estimating the traffic matrices accurately.

On the other hand, our method with re-estimation can
estimate all the traffic amounts accurately even after adding
the sudden changes. This is because by re-estimating the long-
term variations after removing information about the end-to-
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Fig. 5. Estimation results for our method with re-estimation
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Fig. 6. Estimation results for our method without re-estimation

end traffic causing the mismatches between the estimated long-
term variations and the current traffic, we avoid the impact
of information that is very different from the current traffic
variations.

D. Impact on performance of TE methods

Finally, we evaluate the performance of TE methods using
traffic matrices estimated by our method. The TE method
used in our simulations configured the VNT and routes over
the VNT so as to keep the maximum link utilization under
the threshold TH . When we use traffic matrices including
estimation errors, however, these errors can cause the max-
imum link utilization to be above TH . Therefore, in this
evaluation, we investigated the maximum link utilization after
TE was performed. For this simulation, we used the same
traffic described in the previous subsection.

Figure 7 shows the results of this simulation. The fig-
ure shows that when using the tomogravity method or the
additional equation method, the maximum link utilization
becomes significantly larger than the threshold TH . This is
because the estimation errors of these methods are large, as
described above. When the estimation errors are large, the
link utilizations after executing the TE method, as calculated
using the estimated traffic matrix, can be very different from
the actual link utilizations. As a result, the link utilizations
after TE are mistakenly regarded as being lower than TH ,
even though the actual link utilizations are still high and the
necessary optical layer paths have not been added.

This figure also shows that the maximum link utilizations in

the case of using our method without re-estimation sometimes
become significantly larger than the threshold, as well. This is
caused by significant underestimation of the traffic including
the sudden changes. As shown in Fig. 6, our method without
re-estimation cannot capture the added sudden changes and
significantly underestimates their amounts. Because of these
underestimates, when the TE method changes the routes of the
underestimated traffic, it does not reserve enough bandwidth.
As a result, since the actual traffic rates are much higher than
expected, the link utilizations become high.

On the other hand, in the case of using our method with
re-estimation, we can reduce the maximum link utilization to
around TH at all times. This is because, with re-estimation,
our method can estimate traffic matrices accurately even when
the traffic changes suddenly.

Although the maximum link utilization is reduced to around
TH with traffic matrices estimated by our method with re-
estimation, however, it is not always smaller than TH . This is
because estimation errors can still be included in the results
of our method with re-estimation, even though this method is
the most accurate of the four methods considered here.

Especially when multiple instances of end-to-end traffic are
identified as causing mismatches between the estimated long-
term variations and the current traffic, the estimation errors in-
crease, because removing the previous information about these
multiple instances decreases the amount of information used
for estimation. In the case of Fig. 7, two instances of end-to-
end traffic are erroneously identified as causing the mismatch
at time 183. These false positives cause a slight increase in
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Fig. 7. Variation in maximum link utilization after TE execution

the estimation error, leading to a link utilization higher than
TH . Thus, to estimate traffic matrices more accurately, we
need to minimize the number of false positives by setting
parameters optimally or using a more sophisticated detection
method. These considerations remain for our future work.

Minimizing the number of false positives is insufficient,
however, because it is possible for multiple instances of end-
to-end traffic to actually change suddenly, causing mismatches
between the estimated long-term variations and the current
traffic. When this happens, increases in estimation errors
are difficult to avoid, because we cannot obtain sufficient
information about such traffic changing suddenly. Therefore,
to avoid the impact of such errors on methods using estimated
traffic matrices, TE methods also need to consider estimation
errors. This is another topic for our future work.

IV. CONCLUDING REMARKS

In this paper, we have proposed a method for estimating cur-
rent traffic matrices by using the changes in routing matrices
introduced via a TE method. In this method, we first estimate
the long-term variations of traffic matrices by using the link
loads monitored the last M times. Then, we obtain the current
traffic matrix by adjusting the estimated long-term variations
of traffic so as to fit the current link loads. In addition, when
the traffic variation trends change and the estimated long-term
variations cannot fit the current variations, our method detects
mismatches and identifies the end-to-end traffic causing them.
Then, our method re-estimates the long-term traffic variations
after removing information about the end-to-end traffic causing
the mismatches.

For this paper, we evaluated our method through simulation.
According to the results, our method can obtain accurate traffic
matrices by adjusting the estimated long-term variations. In
addition, when some end-to-end traffic changes suddenly and
the estimated long-term variations do not match the current
traffic, our method can detect mismatches accurately. Then, by
re-estimating the long-term variations after removing informa-
tion about the end-to-end traffic causing the mismatches, the
method can estimate current traffic matrices accurately even
when some end-to-end traffic changes suddenly.

In addition to evaluating the proposed method, we evaluated
a TE method using traffic matrices estimated by our method.
According to these results, by using the traffic matrices es-
timated by our method, a TE method can reduce the maxi-
mum link utilization to around its target value, whereas the

maximum link utilization becomes high with other methods
considered here.

Our future work will include optimally setting parameters
such as M , Φ and Nf . In particular, M needs to be set to small
value so as not to require too many resources (e.g., CPU and
memories) especially in a large network, though setting M
to smaller value may cause larger estimation errors. Thus, we
need to set M , taking such trade-off into account. Additionally,
although we used fixed values of Nf in this work, it might
be possible to estimate traffic matrices more accurately by
setting Nf dynamically according to the current measurement.
Another future work is evaluation of our method by using the
actual traffic traces.
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