
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1
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Estimation of current traffic matrices from long-term traffic
variations

Yuichi OHSITA†a), Takashi MIYAMURA††b), Shin’ichi ARAKAWA†††c), Eiji OKI††††d), Members,
Kohei SHIOMOTO††e), and Masayuki MURATA†††f), Fellows

SUMMARY Obtaining current traffic matrices is essential to traffic en-
gineering (TE) methods. Because it is difficult to monitor traffic matrices,
several methods for estimating them from link loads have been proposed.
The models used in these methods, however, are incorrect for some real
networks. Thus, methods improving the accuracy of estimation by chang-
ing routes also have been proposed. However, existing methods for esti-
mating the traffic matrix by changing routes can only capture long-term
variations and cannot obtain current traffic matrices accurately. In this pa-
per, we propose a method for estimating current traffic matrices that uses
route changes introduced by a TE method. In this method, we first esti-
mate the long-term variations of traffic by using the link loads monitored
at previous times. Then, we adjust the estimated long-term variations so as
to fit the current link loads. In addition, when the traffic variation trends
change and the estimated long-term variations fail to match the current
traffic, our method detects mismatch. Then, so as to capture the current
traffic variations, the method re-estimates the long-term variations after re-
moving monitored data corresponding to the end-to-end traffic causing the
mismatches. We evaluate our method through simulation. The results show
that our method can estimate current traffic matrices accurately even when
some end-to-end traffic changes suddenly.
key words: Traffic Matirx, Estimation, Traffic Engineering

1. Introduction

Obtaining current traffic matrices accurately is essential to
traffic engineering (TE) methods [1–4]. By using the current
traffic matrices, TE methods configure routes on a network
so as to fit the current traffic. As a result, even when traffic
changes unpredictably, by reconfiguring routes, the network
can efficiently accommodate all traffic without congestion.

One approach for obtaining traffic matrices is to con-
struct fully meshed label-switched paths using Multiproto-
col Label Switching (MPLS) and directly measure the traffic
amounts over each path. This approach, however, does not
scale because it requires N -squared label-switched paths.
Another approach is to tally the numbers of packets of each
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end-to-end traffic flow at all edge nodes. This, however, is
also difficult to apply in large-scale networks, because tally-
ing these numbers requires a non-negligible amount of CPU
resources at the edge nodes, and gathering the tallied data
for all end-to-end traffic also consumes a non-negligible
amount of network resources such as bandwidth.

Therefore, several methods for estimating traffic ma-
trices from limited information have been proposed [5–14].
In such methods, an entire traffic matrix is estimated using
link loads that can be collected much more easily than by di-
rectly monitoring end-to-end traffic. Because the link load
is the sum of the traffic using a link, we have

X(n) = A(n)T (n), (1)

where X(n) is a matrix indicating the amount of traffic on
each link at time n, T (n) is the traffic matrix at time n, and
A(n) is the routing matrix (i.e., a matrix in which an element
corresponding to an instance of end-to-end traffic and a link
is 1 if the end-to-end traffic passes the link or 0 if it does
not). However, because the number of links is much smaller
than the number of elements of the traffic matrix, Eq. (1) has
multiple solutions in which true traffic matrix is included.

Therefore, several methods use traffic matrix models
to estimate the traffic matrix. For example, the tomograv-
ity method [5] uses a model called the gravity model, in
which the amount of traffic from a source node to a destina-
tion node is proportional to the total incoming or outgoing
traffic for each edge node. According to [15], however, the
gravity model does not fit the actual traffic in some real net-
works. Traffic matrices estimated by this method include
estimation errors, such as underestimates of end-to-end traf-
fic whose amounts are actually large. As a result, when a TE
method uses traffic matrices estimated by this method, these
underestimates can cause high link utilizations.

Recently, several methods estimating the traffic matri-
ces more accurately by using additional measurements have
been proposed [12–14]. These methods obtain the addi-
tional measurements by changing the routing matrices and
observing the differences between the link loads before and
after the route changes. For example, Ref. [12] obtains ad-
ditional measurements by changing routes via a TE method.
By performing TE a sufficient number of times, this ap-
proach obtains a sufficient number of measurements and
then estimates the traffic matrix by assuming that the true
traffic matrix does not change throughout the TE method
execution. It takes a long time to change routes sufficient
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times, however, so the current traffic can differ from the ini-
tial traffic monitored before the first route change. There-
fore, we need a traffic matrix estimation method that consid-
ers the time variations of traffic matrices. Ref. [14] proposes
a method for modeling traffic variations by using periodic
functions and estimates these functions’ parameters. When
traffic changes unpredictably, however, a TE method can-
not configure routes suitable for the current traffic by using
the traffic variations estimated by this approach, since it can
only estimate the average variations of traffic for a period of
a day by monitoring link loads for several days.

Therefore, in this paper, we propose a new estimation
method, with which we can accurately estimate current traf-
fic matrices by using the route changes introduced via a TE
method. Unlike in Ref. [14], the purpose of our method is to
estimate not the long-term variations of traffic but the cur-
rent traffic matrix, which consists of both long-term varia-
tions and short-term variations. By using the accurate traffic
matrix, a TE method can properly work to configure routes
suitable for the current traffic.

In our method, we first estimate the long-term varia-
tions of traffic by using the link loads monitored at previous
times. Then, we adjust the estimated long-term variations
so as to fit the current link loads. In addition, when the
traffic variation trends change and the estimated long-term
variations fail to match the current traffic, our method de-
tects mismatch between the estimated long-term variations
and the current traffic. Then, our method re-estimates the
long-term variations after removing monitored data corre-
sponding to the end-to-end traffic causing the mismatches,
so as to capture the current traffic variations.

The rest of this paper is organized as follows. Section 2
describes the proposed method for estimating current traffic
matrices by using route changes. Then, in Section 3, we give
the results of evaluating our method through simulation. Fi-
nally, Section 4 provides a conclusion.

2. Method for estimating current traffic matrix by us-
ing changes in routes

2.1 Overview of estimation method

In this paper, we propose a new method for estimating cur-
rent traffic matrices accurately. We assume that a TE method
sometimes changes routes in the network. Under this condi-
tion, we can obtain additional measurements, which can be
used in estimating the traffic matrices, by monitoring link
loads while some routes are changed.

Because it takes a long time to change routes enough
times to obtain a sufficient amount of additional measure-
ments, however, the difference between the initially moni-
tored link loads and the current traffic might be very large.
Therefore, we need to consider long-term variations. By us-
ing the link loads monitored at previous times, our method
estimates the long-term variations of traffic instead of esti-
mating the current traffic matrices directly. Then, we obtain
the current traffic matrices by adjusting the estimated long-
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Fig. 1 Overview of proposed method

term variations so as to fit the current link loads.
In addition, when the traffic variation trends change,

the changes may cause significant estimation errors if we
also use link loads monitored before the changes, since the
differences between these previously monitored link loads
and the current traffic can be very large. Therefore, in our
method, we check whether the estimated long-term varia-
tions match the current link loads. Then, if the mismatch is
detected, we re-estimate the long-term variations.

Fig. 1 shows an overview of the proposed estimation
method. Our method estimates the traffic matrix through
the following steps.

Step 1 Estimate the long-term variations of the traffic ma-
trices by using the link loads monitored at previous
times.

Step 2 Obtain estimation results of the current traffic matrix
by adjusting the estimated long-term variations so as to
fit the current link loads.

Step 3 Check whether the estimated long-term variations fit
the current link loads. If they do not match the current
link loads, return to Step 1 after removing the previ-
ously monitored data about the end-to-end traffic caus-
ing the mismatch. Otherwise, proceed to Step 4.

Step 4 Designate the estimation results from Step 2 as the
final estimation results.

In subsection 2.2, we describe the method for estimat-
ing the long-term traffic variations. Subsection 2.3 explains
how to adjust the estimated long-term variations so as to fit
the current link loads. Subsection 2.4 describes how to the
detect mismatches between the estimated long-term varia-
tions and the current traffic, and how to re-estimate the long-
term variations and the current traffic matrix after mismatch
detection.

2.2 Estimating long-term traffic variations

2.2.1 Traffic variation model

According to [14], the amount of traffic between each node
pair varies periodically with a certain cycle, such as one day
or one week. Therefore, in this paper, we model the traffic
amount between nodes i and j as

ti,j(n) = fi,j(n) + δi,j(n), (2)
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where ti,j(n) is the traffic volume between nodes i and j at
time n, fi,j(n) is a function modeling the periodic variation,
and δi,j(n) is the variation not included in fi,j(n). In our
method, we estimate the long-term variations by modeling
fi,j(n) and estimating its parameters.

We model fi,j(n) by applying the model used in [14].
This approach models the periodic traffic variation by us-
ing Fourier series expansion. With this model, the periodic
variation is represented as

fi,j(n) =
Nf∑
h=0

αh,i,jcos
(

2πnh

Ncycle

)

+
Nf∑
h=0

αh+Nf ,i,jsin
(

2πnh

Ncycle

)
. (3)

where Ncycle is the number of times monitoring link loads
in each cycle, Nf is a parameter determining the number
of terms in Eq. (3), and the αh,i,j are the variables to be
estimated by our estimation method.

This equation can model any periodic traffic variations
by setting Nf to a sufficiently large value. However, set-
ting Nf to a large value, the number of variables to be es-
timated also increases. In our method, we only have to
roughly model the traffic variations, because we can esti-
mate the current traffic matrix by adjusting the roughly esti-
mated long-term variations. That is, in our method, a small
Nf is sufficient.

Though our method uses the periodical function to
model the traffic variation, there are other estimation meth-
ods that do not use the periodical function. For example,
Ref. [16] uses Kalman filter. The method requires to moni-
tor end-to-end traffic in advance. In our model, we can es-
timate the traffic from αh,i,j that is estimated from the link
loads. We discuss the method to estimate them in subsec-
tion 2.2.2.

2.2.2 Method for estimating long-term variations

In the model described by Eq. (3), the variables αh,i,j deter-
mine the long-term variations. Therefore, our method esti-
mates the long-term variations by estimating the αh,i,j . We
estimate the αh,i,j by using the link loads monitored at pre-
vious times. At any time n, the link loads and the traffic
matrix have a relation described by Eq. (1). Therefore, we
estimate all variables so as to satisfy Eq. (1) in any time. In
this paper, we use a least square algorithm to estimate the
variables. That is, when the number of nodes is N , by using
the link loads monitored from the time n−M + 1 to n, the
variables are basically estimated as

minimize
n∑

k=n−M+1

|X(k)−A(k)T̂ est(k)|2 (4)

where

T̂ est(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f0,0(k)
...

fi,j(k)
...

fN,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

By using Eq. (4), when some routes are changed, we can
use additional equations for estimating the variables.

With Eq. (4), however, we may not be able to estimate
the long-term variations accurately because of the effects of
traffic variations that cannot be modeled by Eq. (3). Be-
cause the actual traffic variations do include variations that
cannot be modeled by Eq. (3) (i.e., δi,j(n) in Eq. (2)), long-
term variations modeled by Eq. (3) cannot completely fit all
the monitored link loads. With Eq. (4), however, we esti-
mate the long-term variations so as to completely fit all the
monitored link loads. As a result, estimation results from
Eq. (4) can be affected by traffic variations that cannot be
modeled by Eq. (3), making the results very different from
the actual traffic.

To mitigate the impact of δi,j on the estimated long-
term variations, in our method, by placing constraints on
the variables themselves, we avoid estimating the long-term
variations so as to completely fit all the monitored link loads.
We thus use the following equation instead of Eq. (4):

minimize
n∑

k=n−M+1

|X(k)−A(k)T̂ est(k)|2 (6)

+Φ
∑
i,j

⎛
⎝mi,j

2Nf∑
h=0

(αh,i,j − α′
h,i,j)

2

⎞
⎠ ,

where the α′
h,i,j are the variables estimated the previous

time, mi,j is the amount of previously monitored data, and
Φ denotes a parameter by which we can set the weight to the
constraints on the variables themselves. Using this equation,
we estimate all the αh,i,j(0 ≤ h ≤ 2Nf ) of fi,j(n) so as
to fit all the monitored link loads while keeping the values
close to the values estimated the previous time.

When we estimate the long-term variations the first
time, however, we have not obtained the α′

h,i,j . Thus, in
such cases, we set the α′

0,i,j to the elements of traffic ma-
trices estimated by other methods [5–11], and we set the
α′

h,i,j(1 ≤ h ≤ 2Nf ) to 0. By using this approach, we
can avoid estimating traffic variations as having significantly
larger values than the actual variations.

In addition, even if the initial α′
h,i,j are not accurate,

we can estimate the long-term variations more accurately
by using link loads monitored at multiple times as additional
measurements. Then, when we estimate the long-term vari-
ations the next time, we can use more accurate α′

h,i,j . That
is, as we estimate the long-term variations more times, the
accuracies of these estimations increase.

The estimated long-term variation T̂ est(n) may include
negative values. However, we do not eliminate the negative
values included in T̂ est(n) here, because we eliminate the
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negative elements during the adjustment of long-term varia-
tions as described in subsection 2.3.

2.3 Adjustment of estimated long-term variations

By using the method in subsection 2.2, we estimate the long-
term variations. Because these estimates do not include the
δi,j(n) in Eq. (2), however, they do not fit the current link
loads. Therefore, we adjust the long-term variations so as to
fit the current link loads.

The adjustment is performed by the method used in
Ref. [5, 7]. This method calculate the traffic matrix that is
consistent with the current link loads and that is close to a
(given) initial traffic matrix. In our case, the initial traffic
matrix is the estimated long-term variations. The method
works as follows. First, by assigning n to the functions cor-
responding to the estimated long-term variations, we obtain
a roughly estimated traffic matrix T̂ est(n). Then, we obtain
a traffic matrix T̂ (n) that is close to T̂ est(n) and fits the link
loads monitored at time n. That is, we obtain the estimation
results by applying a least square algorithm so as to satisfy
the following conditions:

minimize|T̂ (n)− T̂ est(n)|2 (7)

where

A(n)T̂ (n) = X(n). (8)

A traffic matrix estimated by a least square algorithm,
however, can include negative values, which are meaning-
less in the context of a traffic matrix. Therefore, we elimi-
nate negative values through the following steps. We denote
the estimated traffic matrix for the i-th iteration as T̂ (i)(n).

Step 1 Let T̂ (0)(n)← T̂ (n).
Step 2 Obtain the matrix T̂

′(i)(n), in which we replace all
the negative values of T̂ (i)(n) with zero.

Step 3 Obtain D(i)(n) satisfying the following condition:

minimize|D(i)(n)|2 (9)

where

A(n)
(
T̂

′(i)(n) + D(i)(n)
)

= X(n). (10)

Step 4 Let T̂ (i+1)(n)← T̂
′(i)(n) + D(i)(n).

Step 5 If all elements of T̂ (i+1)(n) are non-negative, pro-
ceed to Step 6. Otherwise, return to Step 1.

Step 6 Let T̂ (i+1)(n) be the final result for the traffic matrix
T̂ (n).

2.4 Re-estimation of traffic matrix after mismatch of esti-
mated long-term variations

When traffic variation trends change, long-term variations
estimated by using all the link loads monitored at previous
times can exhibit mismatches with the current traffic. This
is because the long-term variations are estimated so as to fit

the link loads before the change, which can be significantly
different from the current traffic variations.

In such cases of mismatch, we cannot estimate the cur-
rent traffic matrices accurately even after adjustment, be-
cause the adjustment uses only the current link loads, which
are insufficient for estimating the traffic matrices accurately.

Therefore, in our method, when the estimated long-
term variations exhibit mismatches with the current traf-
fic, we detect the mismatches and re-estimate the long-term
variations without using link loads that do not match the
current traffic. In this subsection, we describe how to de-
tect mismatches and identify the end-to-end traffic causing
the mismatches, as well as how to re-estimate the long-term
variations after mismatch detection.

2.4.1 Detecting mismatches and identifying end-to-end
traffic causing mismatches

When the difference between the estimated long-term vari-
ation and the current traffic is large, the differences between
the current link loads and the link loads calculated using the
estimated long-term variations are large. In this case, be-
cause the results of adjusting T̂ (n) must satisfy Eq. (8),
while difference between A(n)T̂ est(n) and the current link
loads X(n) is very large, the elements of T̂ est(n) − T̂ (n),
corresponding to the traffic causing the mismatches, be-
come large. Therefore, we detect mismatches and identify
the end-to-end traffic causing the mismatches by evaluating
T̂ est(n)− T̂ (n).

Because the size of traffic variation that cannot be in-
cluded in Eq. (3) depends on the end-to-end traffic [14], if
we set a single threshold for the elements of T̂ est(n)−T̂ (n),
traffic with large variations that cannot be modeled by Eq.
(3) will be erroneously detected as traffic causing mis-
matches.

Therefore, we detect mismatches and identify their
sources by comparing T̂ est(n)− T̂ (n) with its previous val-
ues. Our method performs the comparison by using the
Smirnov-Grubbs method [17], which can easily detect out-
liers in sampled data.

Here, we define the elements of T̂ est(n) and T̂ (n) cor-
responding to the traffic between nodes i and j as t̂esti,j (n)
and t̂i,j(n) respectively. In the Smirnov-Grubbs method, we
detect whether |t̂esti,j (n)− t̂i,j(n)| is an outlier by calculating

di,j =
|t̂esti,j (n)− t̂i,j(n)| − μi,j

σi,j
, (11)

where μi,j and σi,j are the average and standard deviation
of |t̂esti,j (k) − t̂i,j(k)|(n −M + 1 ≤ k ≤ n), respectively.
Then, |t̂esti,j (n) − t̂i,j(n)| is detected as an outlier if di,j is
larger than the theshold

τ = (M − 1)

√
τ2
θ,M+2

M(M − 2) + Mτ2
θ,M+2

(12)

where M is the number of samples, θ is a parameter spec-
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ifying the detection sensitivity, and τθ,M is a value corre-
sponding to the top θ/M% points of the T distribution with
M − 2 degrees of freedom.

Too small σi,j causes detection of points where
|t̂esti,j (n) − t̂i,j(n)| is small. We do not, however, need to
detect such points, because the estimated long-term varia-
tions there fit the current traffic, since |t̂esti,j (n) − t̂i,j(n)| is
small. Therefore, to avoid detecting such points, we intro-
duce a parameter s and set σi,j to s if σi,j is smaller than
s.

2.4.2 Re-estimation of long-term variations after detection

When mismatches between the estimated long-term varia-
tions and the current traffic are detected, we need to re-
estimate the long-term variations so as to fit the current
traffic. Because such mismatches occur when we estimate
the long-term variations by using previously monitored link
loads which are significantly different from the current traf-
fic variations, we re-estimate the long-term variations by us-
ing link loads and routing matrices in which elements cor-
responding to the end-to-end traffic causing the mismatches
has been removed.

Our method removes elements corresponding to the
end-to-end traffics causing mismatches at time n through
the following steps. We first remove such elements from the
routing matrices A(i)(n −M + 1 ≤ i < n) by setting el-
ements corresponding to the identified end-to-end traffic to
0. We denote the routing matrix after such replacement as
A′(i).

Then, we create a link load matrix X ′(i)(n−M +1 ≤
i < n) from which elements about the identified end-to-
end traffic has been removed. The sum of the elements
of traffic matrix T corresponding to the identified end-to-
end traffic traversing each link at time i is calculated as
(A(i)−A′(i))T . Therefore, X ′

i is given by

X ′(i) = X(i)− (A(i)−A′(i)) T̂
′est(i). (13)

where T̂
′est(i) is the traffic matrix at time i calculated using

the estimated long-term variations. In calculating T̂
′est(i),

we use the long-term variations estimated at time n−1, since
the long-term variations estimated at time n can be affected
by changing trends.

Next, our method re-estimates the long-term variations
by using Eq. (14), which is refined from Eq. (6) to use
X ′(k) and A′(k):

minimize
n−1∑

k=n−M+1

|X ′(k)−A′(k)T̂ est(k)|2 (14)

+|X(n)−A(n)T̂ est(n)|2

+Φ
∑
i,j

⎛
⎝mi,j

2Nf∑
h=0

(αh,i,j − α′
h,i,j)

2

⎞
⎠ .

We only have to re-estimate the long-term variations
so as to fit the current traffic, because the purpose of our

method is to estimate the current traffic matrix. Moreover,
in estimating the traffic amounts of the identified end-to-end
traffic by using Eq. (14), we do not need to consider the
related traffic variations, because the traffic amounts corre-
sponding to the identified traffic are included only in X(n).

Therefore, in re-estimating the long-term variations,
we model the amounts of the identified end-to-end traffic
by

fi,j(n) = α0,i,j , (15)

instead of using Eq. (3). By using Eq. (15), we can mini-
mize the number of variables to be estimated.

In this re-estimation method, we remove a previously
monitored data corresponding only to the end-to-end traffic
causing the mismatch. Yet, the end-to-end traffic causing the
mismatch can be estimated accurately from the current link
loads, because the other end-to-end traffic not causing the
mismatch are accurately estimated by using the previously
monitored data.

2.4.3 Re-estimation of traffic matrix after re-estimation of
long-term variations

After re-estimating the long-term variations, we re-estimate
the current traffic matrix through the same steps described
in subsection 2.3.

3. Evaluation

3.1 Metrics

In this section, we describe an evaluation of our method by
simulation. In the simulation, we evaluated our method by
two general metrics: (1) the accuracy of estimation, and (2)
the performance of a TE method using the estimated traffic
matrices.

To evaluate the accuracy, we used two specific metrics
– the root mean squared error (RMSE), and the root mean
squared relative error (RMSRE) – as defined below:

RMSE =
√

1
N2

∑
1≤i,j≤N

(t̂i,j(n)− ti,j(n))2 (16)

RMSRE =

√√√√ 1
N2

t̃

∑
1≤i,j≤N,ti,j>t̃

(
t̂i,j(n)− ti,j(n)

ti,j(n)

)2

(17)

The RMSE gives an overall measure for the errors in
estimation, while the RMSRE gives a relative measure. For
small matrix elements, however, the relative errors are not
really important. Thus, in computing the RMSRE, we con-
sider only matrix elements greater than a threshold t̃. Nt̃ is
the number of elements greater than t̃ in a traffic matrix. In
the following simulation, t̃ was set so that the sum of the
end-to-end traffic whose actual rate was greater than t̃ com-
posed 75 % of the total traffic.

To evaluate the performance of a TE method using the
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Fig. 2 EON topology

estimated traffic matrices, we investigated whether the pur-
pose of the TE method was achieved. The next subsection
describes the purpose of the TE method used in our simula-
tion.

3.2 Environment used in evaluation

In our method, we assume that a TE method changes routes
sometimes. In this evaluation, we used the optical layer TE
as an example of a TE method. The optical layer TE es-
tablishes optical layer paths between two IP routers over a
physical network consisting of IP routers and optical cross-
connects (OXCs). A set of optical layer paths forms a vir-
tual network topology (VNT). Traffic between two routers is
carried over the VNT by using IP layer routing. Under these
conditions, the optical layer TE accommodates traffic that
fluctuates widely by dynamically reconfiguring the VNT.

In our simulation, we used the European Optical Net-
work (EON) (19 nodes, 37 links) shown in Fig. 2 as the
physical topology and executed the optical layer TE method
proposed in [12] once an hour. The purpose of this method
is to keep the maximum link utilization under the threshold
TH . In this method, optical layer paths are added or deleted
with a limitation on the number of optical layer paths recon-
figured at one time. Optical layer paths are added if at least
one path whose utilization exceeds the threshold TH exists.
Otherwise, if there is an optical layer path whose utilization
is less than a threshold TL, the path is deleted. In this sim-
ulation, we set the maximum number of optical layer paths
reconfigured at one time to 30, TH to 0.7, and TL to 0.4. We
set the bandwidth for an optical layer path to 10 Gbps. We
implement the above TE method by using C++.

In our simulation, we implement our estimation
method by using MATLAB. The link loads used as the in-
puts of the estimation program are calculated by the ac-
tual traffic matrices and current routes. In the simulation,
the actual end-to-end traffic are generated by setting the
amplitudes and phases of the sin functions randomly to
show that our method can estimate traffic matrices accu-
rately even when there are no correlation between phases
of end-to-end traffics. The cycles of the sin functions are
set to 1 day. Futhermore, we add the random variations less
than 0.25 times the amplitudes to the sin functions. Link
loads are monitored once per 20 minutes. That is, Ncycle is
24×60

20 = 72.

3.3 Case without sudden traffic changes

In this subsection, we investigate the accuracy of our method
for estimating the long-term variations and the effectiveness
of adjusting the estimated long-term variations when there
are no sudden traffic changes. In the simulation, we set M =
160 and Nf = 2.

3.3.1 Accuracy of estimation of long-term variations

In our method, we estimate long-term traffic variations by
using Eq. (6) instead of Eq. (4) to avoid the impact of traffic
variations that cannot be modeled by Eq.(3). Therefore, to
verify the effectiveness of using Eq. (6), we compared the
estimation results obtained with Eqs. (4) and (6).

Note that estimation results obtained with Eq. (6) de-
pend on previously estimated variables (i.e., the long-term
variations are accurately estimated when the estimation re-
sults of the previous time are accurate). Here, however, be-
cause the purpose of this comparison was to verify the effec-
tiveness of adding constraints on the variables themselves
even in the case of inaccurate α′

h,i,j , we set α′
0,i,j = μ and

α′
h,i,j = 0(1 ≤ i ≤ 2Nf ), where μ is the total volume of

incoming traffic divided by the amount of end-to-end traffic.
Figure 3 shows the comparison results. As seen from

this figure, both Eq. (4) and Eq. (6) can be applied to accu-
rately estimate the traffic between nodes 2 and 14. The traf-
fic between nodes 12 and 16, however, cannot be estimated
accurately with Eq. (4), and the estimated traffic variation is
significantly larger than the actual traffic variation.

This is because Eq. (4) estimates the variables so as to
completely fit all the link loads monitored at previous times,
even though the actual traffic variations include those that
cannot be modeled by Eq. (3) (i.e., δi,j(n) in Eq. (2)). As a
result, the long-term variations estimated by Eq. (4) are af-
fected by δi,j(n), and the long-term variations of some end-
to-end traffic become very different from the actual varia-
tions.

On the other hand, by using Eq. (6), we can avoid esti-
mating variations as significantly larger than the actual vari-
ations. That is, by adding constraints on the variable them-
selves, we can mitigate the impact of δi,j(n) and increase
the accuracy of estimating long-term variations.

Next, to evaluate the effectiveness of the constraints on
the variables themselves in detail, we estimated the long-
term variations with various values of Φ. Figure 4 shows the
relation between Φ and the maximum RMSRE for the esti-
mated long-term variations. According to this figure, when
Φ is set to a value close to 0, the RMSRE becomes larger.
This is because with small values of Φ, the estimation results
become more sensitive to δi,j(n). As a result, δi,j(n) causes
estimation errors like that shown in Fig. 3(b). On the other
hand, with large values of Φ, the variables in the long-term
variations are estimated so as to be close to the α′

h,i,j . As a
result, when Φ is too large, the long-term variations cannot
be estimated so as to fit the monitored link loads. The opti-
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(a) Traffic between nodes 2 and 14 (case of us-
ing Eq.(4))
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ing Eq.(4))
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(c) Traffic between nodes 2 and 14 (case of us-
ing Eq.(6) with Φ=0.01)
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(d) Traffic between nodes 12 and 16 (case of us-
ing Eq.(6) with Φ=0.01)

Fig. 3 Results of estimating long-term variations
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mal Φ depends on the environment (e.g., the amplitudes of
traffic variations), and determining optimal value of Φ is a
goal for our future works. From Fig. 4, however, we can see
that the estimation errors are not significant even if Φ is not
optimal.

3.3.2 Effectiveness of adjustment

In our method, we obtain estimation results by adjusting the
estimated long-term variations so as to fit the current link
loads. Therefore, we investigated the effectiveness of ad-
justing the estimated long-term variations, by comparing the
accuracy of the estimated traffic matrices after adjustment

with the accuracies of the following methods:

• A method using only the current link loads. By com-
parison with this method, we investigated the effec-
tiveness of using the link loads monitored at previ-
ous times. For this method, we used the tomogravity
method with the simple gravity model [5]. Although
the simple gravity model does not fit the traffic matrices
used in our simulation, because we use randomly gen-
erated traffic matrices, this model also is not incorrect
in some real networks [15]. The focus of this compar-
ison is the effectiveness of using link loads monitored
at previous times when the simple gravity model is not
correct.

• A method using the link loads monitored at previous
times but not considering the time variations of traf-
fic. By comparison with this method, we investigated
the effectiveness of modeling long-term traffic varia-
tions. For this method, we used the additional equation
method proposed in [12].

• A method using the link loads monitored at previ-
ous times but only estimating the long-term variations.
That is, this method uses T̂ est(k) described in subsec-
tion 2.3 as the final estimation results. We call this
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method Long-term estimation. By comparison with
this method, we investigated the effectiveness of ad-
justing the estimated long-term variations so as to fit
the current link loads. In this simulation, for estimat-
ing the long-term variations, we set Φ to 0.01.

Figures 5 and 6 show the RMSE and RMSRE, respec-
tively, at each time. The results show that the errors for the
tomogravity method are the largest. This is because the to-
mogravity method uses only the current link loads, which
is an insufficient amount of measurements, while other
methods use the additional measurements caused by route
changes.

However, the errors for the additional equation method
are also large. This is because that method does not con-
sider traffic variations but assumes instead that the true traf-
fic matrix does not change during TE execution. Therefore,
this method cannot estimate traffic matrices accurately when
traffic varies, even while monitoring the link loads a suffi-
cient number of times.

On the other hand, the errors for the method estimat-
ing the long-term variations are relatively small. That is,
by including the link loads monitored at previous times in
considering the time variations of traffic, we can effectively
use the additional measurements caused by route changes
and estimate traffic matrices accurately. In addition, by ad-
justing the estimated long-term variations, we can estimate
traffic matrices even more accurately. This is because the
adjustment enables the estimation results to also follow traf-
fic variations that cannot be modeled by Eq. (3).

The traffic variations in the real networks may be dif-
ferent from the traffic matrices used in this simulation. Even
if the traffic variations are different from the case of this
simulation, our method can estimate traffic matrices accu-
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rately as long as the amount of traffic between each node
pair varies periodically because Eq. (3) can model any pe-
riodic traffic variations by setting Nf to a sufficiently large
value.

3.4 Case with sudden traffic changes

In the previous subsection, we evaluated our method in the
case without sudden traffic changes. In real networks, how-
ever, traffic can change suddenly, and traffic variation trends
can also change. When the trends change and the estimated
long-term variations do not match the current traffic, our
method detects mismatch and identifies the end-to-end traf-
fic causing them, after which it re-estimates the long-term
variations. In this subsection, we investigate the accuracy
of this detection and the effectiveness of re-estimation after
detection. In addition, we investigate how well a TE method
works when it uses traffic matrices estimated by our method.
In all the simulations described below, we set Φ to 0.01, θ to
0.01, and s to 60 Mbps.

3.4.1 Accuracy of detection of trend changes

To investigate the accuracy of mismatch detection, we cal-
culated d2,14 for the traffic generated by adding sudden
changes to the traffic between nodes 2 and 14 in the scenario
from the previous subsection. Figure 7 shows the results. In
Fig. 7, the horizontal axis represents the rate of added traffic
divided by the maximum rate of traffic before the addition,
and the vertical axis represents d2,14. In addition, we show
the maximum relative error corresponding to the traffic be-
tween nodes 2 and 14 for the case without re-estimation.

From this figure, we can see that the larger the added
traffic is, the larger d2,14 becomes. This is because the dif-
ference between the estimated long-term variations and the
current link loads becomes large when the rate of added traf-
fic is large. As a result, the differences between the traffic
matrices before and after adjustment also become large. In
this simulation, because we set M to 160 and θ to 0.01, the
threshold τ calculated from Eq. (12) is 3.75. Therefore, if
the added traffic is more than 0.3 times the rate of the traffic
before addition (i.e., when the added traffic causes a relative
error of more than 0.20 in the case without re-estimation),
we can detect mismatches between the estimated traffic vari-
ations and the current traffic. In this situation, our method
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Fig. 8 Complementary cumulative distribution of di,j with no changes

re-estimates the long-term variations so as to fit the current
traffic.

In detecting mismatches, false positives (i.e., the cases
of mistakenly detecting end-to-end traffic with no changes)
can occur. Thus, we investigated the likelihood of such
false positives. Figure 8 shows the complementary cumu-
lative distribution of di,j in the case without adding sud-
den changes. The vertical line in Fig. 8 represents 3.75,
the threshold τ calculated above. This figure shows that
the probability of mistaken detection in the case with no
changes is about 0.03 %. We discuss the impacts of these
false positives later.

3.4.2 Effectiveness of re-estimation

When mismatches between the estimated long-term varia-
tions and the current traffic are detected, we re-estimate the
long-term variations after removing monitored data about
the end-to-end traffic identified as causing the mismatches.
In this subsection, we investigate the effectiveness of the re-
estimation through simulation. In this simulation, we used
traffic generated by adding sudden changes to the traffic
used for the simulation described in the previous subsection.
We added sudden increases to the traffic from nodes 2 to 4,
9 to 1, and 0 to 12 at times 22, 36, and 47, respectively. The
rates of the sudden increases from nodes 2 to 4, 9 to 1, and
0 to 12 were, respectively, 120 % , 150 %, and 160 % of the
maximum rate of traffic before the addition. The increased
rates from nodes 2 to 4 and 9 to 1 continue until the end of
this simulation. The increased rate from 0 to 12 continues
for 1 hour.

Figure 9 shows the RMSE when we added these sudden
traffic changes, for four different methods: our method with
re-estimation, our method without re-estimation, the addi-
tional equation method, and the tomogravity method. For
our method without re-estimation, we estimated the long-
term variations and adjusted them but did not re-estimate
them even when the variation trends changed.

From this figure, similarly to the results shown in
Figs. 5 and 6, we can see that the RMSEs for the tomograv-
ity method and the additional equation method are large.
The figure also shows that the RMSE for our method with-
out re-estimation is small before time 22 but increases after-
ward, whereas the RMSE for our method with re-estimation
remains small after time 22. This difference is caused by the
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Fig. 9 Time variation of RMSE (when some traffic variations change)

sudden changes, whose impact we discuss in detail later.
The results shown in Fig. 9 also verify that the impact

of false positives is small. As described above, about 0.03 %
of the end-to-end traffic without changes in the traffic vari-
ation trends will be mistakenly identified as causing mis-
matches between the estimated long-term variations and the
current traffic. For example, at time 21 in Fig. 9, the end-to-
end traffic between nodes 1 and 10 is mistakenly identified
as causing a mismatch. From the figure, however, we can
see that the RMSE for our method does not become sig-
nificant even when such false positives occur; it always re-
mains the smallest among the four methods. This is because
we have sufficient measurements to estimate the long-term
variations and traffic matrices accurately even when some
false positives occur and measurements about the mistak-
enly identified end-to-end traffic is removed.

To investigate the impact of sudden changes in detail,
we compared the estimation results obtained for traffic with
sudden changes added. Figures 10 and 11 show the estima-
tion results for our method with and without re-estimation,
respectively.

These figures show that both methods can accurately
estimate all the traffic amounts before adding the sudden
changes. After adding the changes, however, the traffic rate
estimated by our method without re-estimation cannot cap-
ture the changes. This is because that method also uses
the link loads monitored before adding the sudden changes,
which are significantly different from the current traffic vari-
ations. Therefore, because of this link loads that does not fit
the current traffic variations, the long-term variations can-
not be estimated accurately. Even though we adjust the esti-
mated long-term variations so as to fit the current link loads,
the adjusted results still do not capture the sudden changes,
because the adjustment process can use only the current link
loads, which is insufficient to estimate the traffic matrices
accurately.

On the other hand, our method with re-estimation can
estimate all the traffic amounts accurately even after adding
the sudden changes. This is because by re-estimating the
long-term variations after removing monitored data about
the end-to-end traffic causing the mismatches between the
estimated long-term variations and the current traffic, we
avoid the impact of monitored link loads which are signifi-
cantly different from the current traffic variations.

According to the result of traffic between nodes 0 and
12, our method can correctly detect sudden changes in the
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0

2

4

6

8

10

12

0 10 20 30 40 50 60

T
ra

ffi
c 

am
ou

nt
 [G

bp
s]

Time [Hour]

Estimated amount
Actual amount

(b) Traffic between nodes 9 and 1
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(c) Traffic between nodes 0 and 12

Fig. 10 Estimation results for our method with re-estimation
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Fig. 11 Estimation results for our method without re-estimation

traffic rate and can estimate traffic matrices accurately even
when the increase of the traffic is temporal.

3.4.3 Impact on performance of TE methods

Finally, we evaluate the performance of TE methods using
traffic matrices estimated by our method. The TE method
used in our simulations configured the VNT and routes over
the VNT so as to keep the maximum link utilization under
the threshold TH . When we use traffic matrices including
estimation errors, however, these errors can cause the max-
imum link utilization to be above TH . Therefore, in this
evaluation, we investigated the maximum link utilization af-
ter TE was performed. For this simulation, we used the same
traffic described in the previous subsection.

Figure 12 shows the results of this simulation. The fig-
ure shows that when using the tomogravity method or the
additional equation method, the maximum link utilization
becomes significantly larger than the threshold TH . This is
because the estimation errors of these methods are large, as
described above. When the estimation errors are large, the
link utilizations after executing the TE method, as calculated
using the estimated traffic matrix, can be very different from
the actual link utilizations. As a result, the link utilizations
after TE are mistakenly regarded as being lower than TH ,
even though the actual link utilizations are still high and the

necessary optical layer paths have not been added.
This figure also shows that the maximum link utiliza-

tions in the case of using our method without re-estimation
sometimes become significantly larger than the threshold,
as well. This is caused by significant underestimation of
the traffic including the sudden changes. As shown in
Fig. 11, our method without re-estimation cannot capture
the added sudden changes and significantly underestimates
their amounts. Because of these underestimates, when the
TE method changes the routes of the underestimated traffic,
it does not reserve enough bandwidth. As a result, since the
actual traffic rates are much higher than expected, the link
utilizations become high.

On the other hand, in the case of using our method
with re-estimation, we can reduce the maximum link uti-
lization to around TH at all times. This is because, with
re-estimation, our method can estimate traffic matrices ac-
curately even when the traffic changes suddenly.

Although the maximum link utilization is reduced to
around TH with traffic matrices estimated by our method
with re-estimation, however, it is not always smaller than
TH . This is because estimation errors can still be included
in the results of our method with re-estimation, even though
this method is the most accurate of the four methods consid-
ered here.
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Fig. 12 Variation in maximum link utilization after TE execution

Especially when multiple instances of end-to-end traf-
fic are identified as causing mismatches between the esti-
mated long-term variations and the current traffic, the es-
timation errors increase, because removing the previously
monitored data about these multiple instances decreases the
amount of monitored data used for estimation. That is, if
many instances of end-to-end traffic are errorneously iden-
tified as causing the mismatch at the same time, these false
positives cause a increase in the estimation error. Thus, to
estimate traffic matrices more accurately, we need to min-
imize the number of false positives by setting parameters
optimally or using a more sophisticated detection method.
These considerations remain for our future work.

Minimizing the number of false positives is insuffi-
cient, however, because it is possible for multiple instances
of end-to-end traffic to actually change suddenly, causing
mismatches between the estimated long-term variations and
the current traffic. When this happens, increases in estima-
tion errors are difficult to avoid, because we cannot obtain
sufficient measurements about such traffic changing sud-
denly. Therefore, to avoid the impact of such errors on meth-
ods using estimated traffic matrices, TE methods also need
to consider estimation errors. This is another topic for our
future work.

4. Concluding remarks

In this paper, we have proposed a method for estimating cur-
rent traffic matrices by using the changes in routing matrices
introduced via a TE method. In this method, we first esti-
mate the long-term variations of traffic matrices by using the
link loads monitored at previous times. Then, we obtain the
current traffic matrix by adjusting the estimated long-term
variations of traffic so as to fit the current link loads. In ad-
dition, when the traffic variation trends change and the esti-
mated long-term variations cannot fit the current variations,
our method detects mismatch and identifies the end-to-end
traffic causing them. Then, our method re-estimates the
long-term traffic variations after removing monitored data
about the end-to-end traffic causing the mismatches.

We evaluated our method through simulation. Accord-
ing to the results, our method can obtain accurate traffic ma-
trices by adjusting the estimated long-term variations. In
addition, when some end-to-end traffic changes suddenly
and the estimated long-term variations do not match the cur-

rent traffic, our method can detect mismatches accurately.
Then, by re-estimating the long-term variations after remov-
ing monitored link loads about the end-to-end traffic causing
the mismatches, the method can estimate current traffic ma-
trices accurately even when some end-to-end traffic changes
suddenly.

In addition to evaluating the proposed method, we eval-
uated a TE method using traffic matrices estimated by our
method. According to these results, by using the traffic ma-
trices estimated by our method, a TE method can reduce the
maximum link utilization to around its target value, whereas
the maximum link utilization becomes high with other meth-
ods considered here.

Our future works include optimally setting parameters
such as Φ and Nf . In particular, although we used fixed
values of Nf in this work, it might be possible to estimate
traffic matrices more accurately by setting Nf dynamically
according to the current measurement. Another future work
is to evaluate our method using the traffic traces of the real
networks. In addition, our future works also include con-
structing a TE method that considers estimation errors.

Acknowledgement

This work was partially supported by Japan Society for the
Promotion of Science (JSPS), Grant-in-Aid for Young Sci-
entists (Start-up) 19800023.

References

[1] B. G. Jozsa, D. Orincsay, and L. Tamasi, “Multi-hour design of dy-
namically reconfigurable MPLS networks,” in Proceedings of Net-
working 2004, pp. 502–503, May 2004.

[2] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proceedings of IEEE INFOCOM 2000, pp. 519–
527, Mar. 2000.

[3] K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Ya-
manaka, “Distributed virtual network topology control mechanism
in GMPLS-based multiregion networks,” IEEE Journal on Selected
Areas in Communications, vol. 21, pp. 1254–1262, Oct. 2003.

[4] A. Gencata and B. Mukherjee, “Virtual-topology adaptation for
WDM mesh networks under dynamic traffic,” IEEE/ACM Transac-
tions on Networking, vol. 11, pp. 236–247, Apr. 2003.

[5] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accu-
rate computation of large-scale IP traffic matrices from link loads,”
in Proceedings of ACM SIGMETRICS 2003, pp. 206–217, June
2003.

[6] A. Medina, K. Salamatian, N. Taft, I. Matta, and C. Diot, “A two-
step statistical approach for inferring network.” Technical Report
BUCS-2004-11, Computer Science Department, Boston University,
Mar. 2004.

[7] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An information-
theoretic approach to traffic matrix estimation,” in Prodceedigs of
ACM SIGCOMM, pp. 301–312, Aug. 2003.

[8] C. Tebaldi and M. West, “Bayesian inference of network traffic using
link count data,” Journal of the American Statistical Association,
vol. 93, pp. 557–576, June 1998.

[9] J. Cao, D. Davis, S. V. Wiel, and B. Yu, “Time-varying network to-
mography,” Journal of the American Statistical Association, vol. 95,
pp. 1063–1075, Feb. 2000.

[10] Y. Vardi, “Network tomography: Estimating source-destination traf-
fic intensities from link data,” Journal of the Americal Statistical



12
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Association,, pp. 365–377, Mar. 1996.
[11] I. Juva, S. Vaton, and J. Virtamo, “Quick traffic matrix estimation

based on link count covariances,” in Proceedings of IEEE ICC 2006,
vol. 2, pp. 603–608, June 2006.

[12] Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto,
and M. Murata, “Gradually reconfiguring virtual network topologies
based on estimated traffic matrices,” in Proceedings of INFOCOM
2007, pp. 2511–2515, May 2007.

[13] A. Nucci, R. Cruz, N. Taft, and C. Diot, “Design of IGP link weight
changes for estimation of traffic matrices,” in Proceedings of INFO-
COM 2004, vol. 4, pp. 2341–2351, Mar. 2004.

[14] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft, “Esti-
mating dynamic traffic matrices by using viable routing changes,”
IEEE/ACM Transactions on Networking, vol. 13, pp. 485–498, June
2007.

[15] A. Gunnar, M. Johansson, and T. Telkamp, “Traffic matrix estima-
tion on a large IP backbone –a comparison on real data,” in Proceed-
ings of Internet Measurement Conference, pp. 149–160, Oct. 2004.

[16] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian,
A. Nucci, M. Crovella, and C. Diot, “Traffic matrices: Balancing
measurements, inference and modeling,” in Proceedings of ACM
SIGMETRICS 2005, pp. 362–373, June 2005.

[17] S. Burke, “Missing values, outliers, robust statistics & non-
parametric methods,” LC-GC Europe Online Supplement, Statistics
& Data Analysis, vol. 2, pp. 19–24, Jan. 2001.

Yuichi Ohsita received the M.E. and
Ph.D. degrees in Information and Computer Sci-
ence from Osaka University, Japan, in 2005 and
2008, respectively. He is now an Assistant Pro-
fessor in the Graduate School of Economics
at Osaka University. His research interests in-
clude traffic matrix estimation and countermea-
sure against DDoS attacks. He is a member of
ACM and IEEE.

Takashi Miyamura received the B.S. and
M.S. degrees from Osaka University, Osaka,
Japan, in 1997 and 1999, respectively. In 1999,
he joined NTT (Nippon Telegraph and Tele-
phone Corp.) Network Service Systems Lab-
oratories, where he was engaged in research
and development of a high-speed IP switching
router. He is now researching next-generation
backbone network architecture and design. He
received Paper Awards from the 7th Asia-Pacific
Conference on Communications in 2001. He is

a member of the Operations Research Society of Japan.

Shin’ichi Arakawa received the M.E. and
D.E. degrees in Informatics and Mathematical
Science from Osaka University, Osaka, Japan,
in 2000 and 2003, respectively. He is currently
an Assistant Professor at the Graduate School
of Information Science and Technology, Osaka
University, Japan. His research work is in the
area of photonic networks. He is a member of
IEEE.

Eiji Oki is an Associate Professor of
University of Electro-Communications, Tokyo
Japan. He received B.E. and M.E. degrees in
Instrumentation Engineering and a Ph.D. de-
gree in Electrical Engineering from Keio Uni-
versity, Yokohama, Japan, in 1991, 1993, and
1999, respectively. In 1993, he joined Nippon
Telegraph and Telephone Corporation’s (NTT’s)
Communication Switching Laboratories, Tokyo
Japan. He has been researching multimedia-
communication network architectures based on

ATM techniques, traffic-control methods, and high-speed switching sys-
tems. From 2000 to 2001, he was a Visiting Scholar at Polytechnic Uni-
versity, Brooklyn, New York, where he was involved in designing tera-
bit switch/router systems. He was engaged in researching and developing
high-speed optical IP backbone networks with NTT Laboratories. Dr. Oki
was the recipient of the 1998 Switching System Research Award and the
1999 Excellent Paper Award presented by IEICE, and the 2001 Asia-Pacific
Outstanding Young Researcher Award presented by IEEE Communications
Society for his contribution to broadband network, ATM, and optical IP
technologies. He co-authored two books, “Broadband Packet Switching
Technologies,” published by John Wiley, New York, in 2001 and “GMPLS
Technologies,” published by RC Press, Boca Raton, in 2005. He is an IEEE
Senior Member.

Kohei Shiomoto is a Senior Research Engi-
neer, Supervisor, Group Leader at NTT Network
Service Systems Laboratories, Tokyo, Japan.
He joined the Nippon Telegraph and Telephone
Corporation (NTT), Tokyo, Japan in April 1989,
where he was engaged in research and develop-
ment of ATM traffic control and ATM switching
system architecture design. From August 1996
to September 1997, he was engaged in research
on high-speed networking as Visiting Scholar at
Washington University in St. Louis, MO, USA.

From September 1997 to June 2001, he was directing architecture design
for high-speed IP/MPLS label switching router research project at NTT
Network Service Systems Laboratories, Tokyo, Japan. From July 2001 to
March 2004, he was engaged in the research fields of photonic IP router
design, routing algorithm, and GMPLS routing and signaling standardiza-
tion at NTT Network Innovation Laboratories. Since April 2004, he has
been engaged in the research fields of photonic IP router design, routing
algorithm, and GMPLS routing and signaling standardization at NTT Net-
work Service Systems Laboratories. Since April 2006, he has been lead-
ing the IP Optical Networking Research Group in NTT Network Service
Systems Laboratories. He is active in standardization of GMPLS in the
IETF. He received the B.E., M.E., and Ph.D degrees in information and
computer sciences from Osaka University, Osaka in 1987 1989, and 1998,
respectively. He is a member of IEEE, and ACM. He was a Secretary of In-
ternational Relations of the Communications Society of IEICE from June
2003 to May 2005. He was the Vice Chair of Information Services of
IEEE ComSoc Asia Pacific Board from January 2004 to December 2005.



OHSITA et al.: ESTIMATION OF CURRENT TRAFFIC MATRICES FROM LONG-TERM TRAFFIC VARIATIONS
13

He was engaged in organization of several international conferences in-
cluding HPSR 2002, WTC 2002, HPSR 2004, WTC 2004, MPLS 2004,
iPOP 2005, MPLS 2005, WTC2006, iPOP 2006, and MPLS 2006. He re-
ceived the Young Engineer Award from the IEICE in 1995. He received the
Switching System Research Award from the IEICE in 1995 and 2001. He
co-authored ”GMPLS Technologies: Broadband Backbone Networks and
Systems (Optical Engineering)” Marcel Dekker Inc.

Masayuki Murata received the M.E. and
D.E. degrees in Information and Computer Sci-
ences from Osaka University, Japan, in 1984 and
1988, respectively. In April 1984, he joined
Tokyo Research Laboratory, IBM Japan, as a
Researcher. From September 1987 to January
1989, he was an Assistant Professor with Com-
putation Center, Osaka University. In February
1989, he moved to the Department of Informa-
tion and Computer Sciences, Faculty of Engi-
neering Science, Osaka University. From 1992

to 1999, he was an Associate Professor in the Graduate School of Engi-
neering Science, Osaka University, and from April 1999, he has been a
Professor of Osaka University. He moved to Graduate School of Infor-
mation Science and Technology, Osaka University in April 2004. He has
more than three hundred papers of international and domestic journals and
conferences. His research interests include computer communication net-
works, performance modeling and evaluation. He is a member of ACM,
The Internet Society and IPSJ.


