
Quality-Aware Cooperative Proxy Caching
for Video Streaming Services

Yoshiaki Taniguchi, Naoki Wakamiya, Masayuki Murata
Graduate School of Information Science and Technology, Osaka University, Japan

Email: {y-tanigu, wakamiya, murata}@ist.osaka-u.ac.jp

Abstract— By applying a proxy mechanism widely used in
WWW systems to video streaming systems, low-delay and
high-quality video distribution can be accomplished without
imposing extra load on the system. The video streaming
system proposed in this paper consists of a video server
and multiple proxy servers. In our mechanism, proxies
communicate with each other and retrieve missing video
data from an appropriate server by taking into account
transfer delay and offerable quality. In addition, the quality
of cached video data is adapted appropriately at a proxy
to cope with the client-to-client heterogeneity in terms
of the available bandwidth, end-system performance, and
user preferences on the perceived video quality. Through
simulation experiments, it is shown that our proposed
mechanism can provide users with low-delay and high-
quality video streaming services. Furthermore, to verify our
mechanism, we implement a real system for MPEG-4 video
streaming services and show that our proxy caching system
can provide users with a continuous video distribution under
dynamically changing network conditions.

Index Terms— video streaming service, cooperative proxy
caching, quality adjustment, MPEG-4, implementation

I. INTRODUCTION

With the increase in computing power and the pro-
liferation of the Internet, video streaming services have
become widely deployed. However, since only best ef-
fort service is still predominantly used in the current
Internet, video streaming services cannot provide clients
with guaranteed continuous or reliable video streams.
Furthermore, most of today’s Internet streaming services
lack scalability against the number of clients since they
have been constructed using a client-server architecture,
e.g. YouTube, Google Video, GyaO, and so on.

Proxy mechanisms widely used in WWW systems
offer low-delay and scalable delivery of data by means
of a “proxy server”. A proxy server caches multimedia
data that has passed through its local buffer, called the
“cache buffer”, and it then provides the cached data to
users on demand. By applying this proxy mechanism
to video streaming systems, low-delay and high-quality
video distribution can be accomplished without imposing
extra load on the system [1-7]. In addition, the quality of
cached video data can be adapted appropriately at a proxy
to support heterogeneous clients in terms of the available
bandwidth, end-system performance, and user preferences
on the perceived video quality [8-15]. Furthermore, coop-

eration among proxies can provide further effective and
high quality video streaming services [16-18].

In our previous research work [19, 20], we proposed
proxy caching mechanisms where a video stream is
divided into blocks so that the cache buffer and the
bandwidth can be used efficiently. A proxy retrieves a
block from the server, deposits it in its local cache buffer,
and provides the block to the requesting client in time.
It maintains a cache with a limited capacity by replacing
unnecessary cached blocks with a newly retrieved block.
The proxy also prefetches video blocks that are expected
to be required in the near future to avoid cache misses and
adjusts the quality of a cached or retrieved video block
to the appropriate level through video filters to handle
client-to-client heterogeneity.

In this paper, to provide further effective and high
quality video streaming service, we extend our previous
work by considering the cooperation among proxies. The
new mechanism consists of three parts: block provision-
ing, block prefetching, and cache replacement. The main
benefits of our proxy cooperation mechanism include
reducing the perceived network latency and achieving
a higher degree of content availability by cooperative
caching. Through simulation experiments, it is shown
that our proposed mechanism can provide users with
low-delay and high-quality video streaming services. In
addition, to verify the practicality and adaptability of our
proposal to existing video streaming services, we imple-
ment our cooperative proxy caching mechanism on a real
system for MPEG-4 video streaming services extending
our previous research work [20]. We employ off-the-shelf
and common applications for server and client systems.
Our implemented system is designed to conform to the
standard protocols. Through experimental evaluations, it
is shown that our proxy caching system can provide users
with a continuous video distribution under dynamically
changing network conditions.

The rest of this paper is organized as follows. In
Section II, we show related work. Then, in Section III,
we propose the cooperative proxy caching mechanism for
video streaming services, and we evaluate our mechanism
through simulation experiments in Section IV. In Section
V, we describe the implementation of the proposed mech-
anism on a real system and conduct several experiments.
Finally, we conclude this paper in Section VI.

Video Server

Proxy

The Internet

LAN A
LAN B

Video sessions among servers

LAN C

Heterogeneous

Clients

Figure 1. Cooperative video streaming system

II. RELATED WORK

By applying proxy mechanism to video streaming
systems, low-delay and high-quality video distribution
can be accomplished without imposing extra load on the
system. There have been many proposals of proxy caching
mechanisms for video streaming services. Typically, they
divide a video stream into blocks to use the cache buffer
and the bandwidth efficiently [4-7]. Division of a video
stream into blocks and caching of initial block, i.e. prefex
caching [2], is efficient to allow the client to watch the
video immediately. [3] considers an exponential division
of a video stream into blocks to reduce the number of
blocks. Blocks at the beginning are more important, and
they are made smaller in the scheme. However, retrieving
cost of postfix block or later blocks is not negligible if
the video stream is popular. We use equal-sized blocks in
this paper.

In addition, many papers consider quality adaptation of
cached video block at a proxy to support heterogeneous
clients in terms of the available bandwidth, end-system
performance, and user preferences on the perceived video
quality [11-15]. For example, [8, 15, 16] consider layered
video coding algorithm. However, the number of layers
is limited due to a coding algorithm employed and, as
a result, the layered encoding based system lacks the
scalability and adaptability to rate and quality variations.

Cooperation among proxies or clients can provide
further effective and high quality video streaming ser-
vices [16-18]. We also consider cooperation among prox-
ies in this paper.

Most of research work use simulation-based evaluation,
or assume specially designed server/client applications
which are not widely available [19, 21]. On the other
hand, in this paper, we build a prototype of our proxy
caching system for MPEG-4 video streaming services
on a real current system. We employ off-the-shelf and
common applications for the server and client programs.
Our system can be applied to any existing video streaming
system as far as they conform to the specifications [24].

III. COOPERATIVE PROXY CACHING MECHANISM

In this section, we describe our cooperative caching
mechanism.

Server
or

Neighboring
Proxy

Proxy

Client

Signal Video Data

Play-out delay Δi

Prefetch
- Check cache
- Predict a cache miss
- Locate an appropriate server
- Request block transfer
- Cache a retrieved block

Provide block from cache
- Read out block from cache
- Quality adjustment
- Transfer

Provide block by retrieving
- Locate an appropriate server
- Determine quality
- Request block transfer
- Cache a retrieved block
- Quality adjustment
- Transfer

Time

Freeze time fi(8)

R
eq

u
es

t
w

it
h

 Q
oS

Play out
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

8673

Inter block time B/F

Figure 2. Basic behavior of our cooperative proxy caching system

A. Overview of the System

The video streaming system we consider in this paper is
illustrated in Fig. 1. Our system consists of a single video
server, cooperative proxies, and heterogeneous clients.
Hereafter we refer to the video server and proxies as
“servers”. Clients are heterogeneous in regard to their
available bandwidth, propagation delays, end-system per-
formance, and user preferences on the video quality.

A video stream is divided into L blocks, each consisting
of B frames and assume a constant frame rate of F . A
proxy retrieves video blocks from the distant video server
or neighboring proxies on behalf of clients, deposits them
in its local cache buffer, and adapts the quality of the
blocks to the user’s demands. Video quality adjustment
is performed by QoS filtering techniques such as frame
dropping, low-pass, and re-quantization filters [22]. In
addition, proxies communicate with each other and ex-
change blocks over a video session established among
them, and maintain information of cached blocks at the
other servers. We should note here that, to reduce the load
on the network and servers, there is only a single session
established between any pair of servers regardless of the
number of clients.

Figure 2 illustrates how servers and client communicate
with each other. The numbers in the figure correspond to
block identifiers, which are in the order of their playout.
The video streaming service is initiated by a request
message issued by a client i to a designated proxy. The
message contains information about preferable level of
video quality Qi (upper-constraint) and tolerable level of
video quality qi (lower-constraint) which are determined
in accordance with the available bandwidth, end-system
performance, and user preferences. A client is allowed
to dynamically change QoS requirements during a video
session to reflect changes of those constraints. A client
which want to minimize quality variation may set same
level for Qi and qi.

On receiving the first request message, the proxy begins
to provide a requested video stream to the client in a
block-by-block fashion. The proxy can 1) read out and
send a cached block, 2) use a block being received, 3)
wait for the preceding request for the same block to be

served, or 4) newly retrieve a block from another server.
The proxy adopts the fastest way that can provide the
client with a block of high level of quality among the
four ways.

For example, if the proxy has a block of the same
number and its quality can satisfy the request, the proxy
may consider that using the cached block is the best way.
It applies the video quality adjustment to the block as
necessary and transfers it to the client over a video session
established between them. If a block being received has
satisfactory quality, the proxy may decide to send the
block under transmission to the client. If there is a
preceding request for the same block of higher quality,
the proxy can wait for the request to be served. In
some cases the proxy determines to retrieve the block. It
first identifies an appropriate server among servers, then
determines the quality of the block to retrieve, and sends a
request message to the server. A retrieved block is cached
and sent to the client after the video quality adjustment
is applied as necessary. Detials of block provisioning
mechanism will appear in Section III-B. When the proxy
finishes sending out the block, it moves to the next block
and repeats the same procedure.

While providing clients with video blocks, the proxy
predicts and prepares for a future potential cache miss
by prefetching a block from other servers. A prefetching
request is processed without disturbing normal block
retrievals. Details of the prefetching mechanism will
be given in Section III-C. In addition, if there is not
enough space to store the newly retrieved block, a proxy
replaces unnecessary cached block with a new block.
Details of cache replacement mechanism will be shown
in Section III-D.

To handle unexpected block transmission delays, client
i first defers playing out a received video block for a
predetermined waiting time Δi as shown in Fig. 2. Then,
it begins to decode and display received blocks one after
another, at regular intervals of B/F . In some cases such
as a cache miss, a block does not arrive in time and the
client is forced to pause. The time required for client i to
wait until the arrival of block j is called freeze time and
denoted as fi(j) ≥ 0 in this paper.

In the following sections, we describe the block pro-
visioning mechanism, the block prefetching mechanism,
and the cache replacement mechanism for the video
streaming system to provide users with low-delay and
high-quality services under a heterogeneous environment.

B. Block Provisioning

In providing a client with a block, a proxy chooses
the best way among the four described in Section III-
A in accordance with the offerable quality and the block
transfer delay. For this purpose, servers communicate with
each other and maintain the up-to-date information on
other servers, such as the quality of offerable blocks,
round-trip time, and available bandwidth in two tables.
Information on locally cached blocks is maintained in the
cache table, while the remote table is for information on

cached blocks at other servers. To predict the transfer time
as accurately as possible, a proxy is assumed to be able to
estimate the block size, propagation delay, and available
bandwidth. Information related to the network condition
among a proxy and its clients is also required.

Assume that proxy k is trying to provide client i with
block j at time t. The quality of block j must be higher
than qi(j) and as high as Qi(j), which are determined by
QoS requirements specified by the latest request message.
The deadline Ti(j) that client i should finish receiving
block j is determined as

Ti(j) = Ti + Δi + (j − 1)
B

F
− δi + Di(j − 1), (1)

where Ti indicates the instant when client i issues the
first request message. δi is introduced to absorb unex-
pected delay jitters and estimation errors. Di(j − 1) =∑j−1

l=1 fi(l) is the accumulated freeze time. A proxy
estimates the four offerable quality of providing a block
to a client as follows. After estimation, the proxy takes
the best choice.

1) Estimation of offerable quality in case of successful
cache hit: The first case is that the desired block j already
exist in the cache buffer of proxy k. The offerable quality
cPC
k,i (j) of block j to client i by using block j cached at

the proxy k’s buffer is derived as

cPC
k,i (j) = min(qk(j), cPC

k,i (j)), (2)

where

cPC
k,i (j) = max(q|t + dPC

k,i (t) +
aj(q)

rPC
k,i (t)

≤ Ti(j)). (3)

qk(j) stands for the quality of block j cached at the
proxy k’s buffer. aj(q) is a function indicating the size
of block j of quality q and is defined as 0, if j = 0 or
q = 0. This function depends on the employed codec and
we will provide an example later in Section IV. dPC

k,i (t)
and rPC

k,i (t) are estimates of one-way propagation delay
and available bandwidth from proxy k to client i at t,
respectively. Thus, dPC

k,i (t)+ aj(q)

rP C
k,i (t)

provides the estimated

time required for client i to receive the whole of block j of
quality q via a video session whose available bandwidth
is rPC

k,i (t) and propagation delay is dPC
k,i (t).

2) Estimation of offerable quality in case of cache miss
with block download in progress: The second case is that
the block j is not available in the cache at proxy k and
it is currently being retrieved from another server s. The
quality offerable is derived as

bPC
k,i (j) = max

∀s,s�=k
(min(qSP

s,k , b
PC

k,i (j))), (4)

where

b
PC

k,i (j) = max(q|t + dPC
k,i (t)

+ max(
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤T i(j)).

(5)

In the above equations, s indicates the server from which
the proxy is receiving block j. qSP

s,k (t) is the quality

Server

Proxy

Client

Requests were sent just before t
and the first request is for prefetching

Time

WmW3W2W1p Wm-1 Ww... ...

s

k

i

t

aP (qp)

rSP
s,k (t)

P
aWn

rSP
s,k (t)

aj(qw)

rSP
s,k(t)

2dSP
s,k (t) dPC

k,i (t) aj(q)

rPC
k,i (t)

Figure 3. Worst-case delay due to waiting for the preceding request

of block being received at t. aSP
s,k (t) stands for the

amount that has already been received. dSP
s,k (t) and rSP

s,k (t)
correspond to estimates of one-way propagation delay and
available bandwidth from server s to proxy k at t.

3) Estimation of offerable quality in case of cache miss
with waiting for pending block: The third case is that
the block j is not available in the cache at proxy k, but
it already submitted a request for j to another server
s. A proxy keeps track of requests that it sent out for
block retrieval. WSP

s,k (t) = {W1, W2, . . . , Ww} is a list of
requests that had been sent from proxy k to server s before
t. The quality qw

s,k(n) of block Wn is also maintained in
a list. A pair of the block number and the quality is added
to the lists when the proxy sends a request for block
retrieval and is removed from the lists when the proxy
begins receiving the block. The offerable quality w PC

k,i (j)
for the m-th request, which is block j, i.e. Wm = j, can
be estimated as

wPC
k,i (j) = max

∀s,s�=k
(min(qw

s,k(m), wPC
k,i (j))), (6)

where

wPC
k,i = max(q|t + 2dSP

s,k (t) + dPC
k,i (t)

+

∑m−1
n=1 aWn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t))

rSP
s,k (t)

+ max(
aj(qw

s,k(m))

rSP
s,k (t)

) ≤ Ti(j)). (7)

ps,k(t) indicates the block number to be prefetched from
server s and qp

s,k(t) is its quality. If no prefetching request
is waiting for server s, both ps,k(t) and qp

s,k(t) are zero. In
our system, only one prefetching request is permitted by a
server per proxy and prefetching is preempted by normal
block retrievals. Details of the prefetching mechanism
will be given in Section III-C. Equation (7) considers the
worst case when no block is under transmission and the
preceding requests from 1 to m − 1 and the prefetching
request will be served prior to block Wm, as illustrated
in Fig. 3. If the proxy is receiving a block at t, wPC

k,i is

derived using the following equations.

wPC
k,i = max(q|t

+ max(2dSP
s,k (t),

aj(qSP
s,k (t)) − aSP

s,k (t)
rSP
s,k (t)

)

+ dPC
k,i (t) +

SSP
s,k (t)

rSP
s,k (t)

+ max(
aj(qw

s,k(m))

rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤ Ti(j)), (8)

where

SSP
s,k (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
n=1

awn(qw
s,k(n)) + aps,k(t)(q

p
s,k(t)),

if 2dSP
s,k (t) >

aj(qSP
s,k (t)) − aSP

s,k (t)
rSP
s,k (t)

m−1∑
n=1

awn(qw
s,k(n)), otherwise

. (9)

4) Estimation of offerable quality in case of cache miss
with new block request: The final case is that the block j
is not available in the cache at proxy k and a new request
must be sent to anther server s. The offerable quality
sPC

k,i (j) is derived by the following equations when there
is no block under transmission,

sPC
k,i = max

∀s,s�=k
(min(qr

s(j), sPC
k,i (j))), (10)

where

sPC
k,i = max(q|t + 2dSP

s,k (t) + dPC
k,i (t)

+

∑w
n=1 awn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t))

rSP
s,k (t)

+
aj(q)

min(rSP
s,k (t), rPC

k,i (t))
≤ Ti(j)). (11)

Here, qr
s(j) corresponds to the quality of block j cached

at server s. On the contrary, if proxy k is receiving a
block from server s,

sPC
k,i = max(q|t + max(2dSP

s,k (t),
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

)

+ dPC
k,i (t) +

USP
s,k (t)

rSP
s,k (t)

+
aj(q)

min(rSP
s,k (t), rPC

k,i (t))
≤ Ti(j)), (12)

where

USP
s,k (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w∑
n=1

awn(qw
s,k(n)) + aps,k(t)(q

p
s,k(t)),

if 2dSP
s,k (t) >

aj(qSP
s,k (t)) − aSP

s,k (t)

rSP
s,k (t)

w∑
n=1

awn(qw
s,k(n)), otherwise

. (13)

5) Selection of provisioning way among the four: The
fastest and best way is chosen among the four as far as
the offerable quality is above qi(j) and below Qi(j). If
none of cPC

k,i (j), bPC
k,i (j), wPC

k,i (j), and sPC
k,i (j) can satisfy

request qi(j), the proxy chooses the fastest way.

C. Block Prefetching

While supplying client i with block j, a proxy inves-
tigates its cache table for blocks j + 1 to j + P to find
a potential cache miss. The parameter P determines the
size of the prefetching window. When the proxy finds the
block with quality lower than qi(j) and there is no request
waiting to be served, it attempts to prefetch the block of
higher quality from another server. If there are two or
more unsatisfactory blocks, the one closest to block j is
chosen.

Prefetch requests are treated at a server in a different
way from requests for retrieving cache-missed blocks. The
video server and proxies maintain a pair of prioritized
queues per video session. The queue for usual block
retrieval is given a higher priority and requests are handled
in a first-come-first-served discipline. On the other hand,
the queue for prefetching has a limited length of 1 and
a waiting request is always overwritten by a new one. A
prefetch request in the queue is served only when there is
no request in the high-priority queue. A prefetch request is
considered obsolete and removed when a server receives
a request for the same block with higher quality.

A proxy decides to prefetch a block if reception of the
block is expected to be completed in time. The expected
time tps,k(t) when the proxy finishes prefetching is derived
as

tps,k(t) = t + 2dSP
s,k (t) +

aps,k(t)(q
p
s,k(t))

rSP
s,k

, (14)

where ps,k(t) and qp
s,k(t) stand for the block number and

the requested quality, respectively. This means that the
proxy tries prefetching only when no preceding request
is waiting to be served. If the derived time tp

s,k(t) is earlier
than

T p
i (ps,k(t)) = Ti + Δi + (ps,k(t) − 1)

B

F
− δi

+ Di(j − 1) − dPC
k,i (t), (15)

the proxy sends a request to server s.
Quality qp

s,k(t) is determined on the basis of the QoS
requirement as βQi(j) where 0 < β ≤ 1. If we set
β to a small value, we can expect to prefetch a large
number of blocks, but their quality becomes low. On
the other hand, with a large β, there is little chance to
successfully prefetch blocks in time, but a high-quality
video stream can be provided with prefetched blocks.
Information about a prefetching request is kept at a
requesting proxy as a pair of block number p s,k(t) and
quality qp

s,k(t) and is overwritten by a new prefetch and
canceled when a block reception begins or a normal block
retrieval is requested for the same block of higher quality.

Client A

9 6 3 8 5 2 1 7 4

Client B

B
eg
in
n
in
g

E
n
d

Prefetching window P=3

Figure 4. Sample order of block replacement

ProxyServer

10 Mbps200 msec

20
 M

bp
s

50
 m

sec

8 Mbps

10 msec

LAN
ISPThe Internet Client

Figure 5. Configuration of simulation

D. Cache Replacement

When the available space of a cache buffer becomes
insufficient to deposit a newly received block, a proxy
first makes a list of blocks to be discarded. Those blocks
which are located in prefetching windows are likely to be
used earlier, and thus they will not be discarded. The first
P blocks of a video stream are also considered important
to suppress the initial delay. The rest of blocks are all
candidates for replacement. The block m closest to the
end of the longest run, i.e. a succession of non-prioritized
blocks, becomes the first candidate. If the m-th block is
cached, a proxy first tries degrading its quality to shrink
the block size. The quality of the candidate should be
larger than max1≤j≤m−1 maxi∈Sm−1 Qi(j) to prepare for
future requests. Here, Sm−1 is a set of clients which is
watching any of blocks 1 through m − 1. If the quality
degradation is still insufficient, the proxy discards the
candidate and moves to the next candidate at the end of
the longest run. When all candidates, i.e. non-prioritized
blocks, are dropped, but there is not enough room yet, the
proxy gives up storing the new block. Figure 4 illustrates
an example of an order of candidates.

There have been many proposals of cache replacement
mechanisms. On the contrary of [2, 3], our mechainsm set
priority not only initial block but also blocks succeeding
requested blocks for preparing future reference. Other
cache replacement strategies may also be applied to our
system with no or small modifications.

IV. SIMULATION EXPERIMENTS

In this section, we discuss the performance of our
proposal with results we obtained through simulation
experiments.

 0.01

 0.1

 1

 10

 10 100 1000 10000

av
er

ag
e

fr
ee

ze
 ti

m
e

[s
ec

]

average inter-arrival time [sec]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(a) Average freeze time

 0.01

 0.1

 1

 10 100 1000 10000

av
er

ag
e

fr
ee

ze
 r

at
io

average inter-arrival time [sec]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(b) Average freeze ratio

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 10 100 1000 10000

av
er

ag
e

qu
al

ity
 r

at
io

average inter-arrival time [sec]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(c) Average quality ratio

 0

 5

 10

 15

 20

 10 100 1000 10000

av
er

ag
e

tr
af

fi
c

[G
bi

ts
]

average inter-arrival time [sec]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(d) Average traffic among servers

Figure 6. Simulation evaluations against average inter-arrival time τ

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7

av
er

ag
e

fr
ee

ze
 ti

m
e

[s
ec

]

cache buffer size [GB]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(a) Average freeze time

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7

av
er

ag
e

fr
ee

ze
 r

at
io

cache buffer size [GB]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(b) Average freeze ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

av
er

ag
e

qu
al

ity
 r

at
io

cache buffer size [GB]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(c) Average quality ratio

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

av
er

ag
e

tr
af

fi
c

[G
bi

ts
]

cache buffer size [GB]

proposal w/ prefetch
proposal w/o prefetch

independent w/ prefetch
independent w/o prefetch

(d) Average traffic among servers

Figure 7. Simulation evaluations against cache buffer size

A. Simulation Configurations

The network we employed in the simulation is shown in
Fig. 5. A video server is behind a wide-area network or
the Internet. It communicates with five proxies through
10 Mbps sessions which are established over long-haul
links with propagation delays 200 msec. Proxies are
located at the boundary of an ISP network and are
connected with each other via 20 Mbps sessions which are
established over intra-network broadband links of 50 msec
delay. A proxy establishes a 8 Mbps fixed-bandwidth
session with each of its clients. The one-way propagation
delay of each session is 10 msec. Although the available
bandwidth and one-way delay fluctuate greatly under
realistic conditions, we have employed static values so
that we can clearly observe the basic behavior of our
mechanism. A client starts requesting video blocks at
randomly determined times. The inter-arrival time of the
video requests issued by clients in each LAN follows an
exponential distribution with average τ sec.

The video stream has a duration of 5400 sec and is
played back at F = 30 fps. The stream is divided into
1 sec CBR blocks, that is, L = 5400 and B = 30. There
are ten levels of quality from qmin = 1 to qmax = 10,
and they are mapped to block sizes from amin = 1 to
amax = 10 Mbits. The relationship between quality and
block size is usually described as convex downward [23].
In this paper, we use ∀j aj(q) = amaxqmin

qmax+qmin−q
B
F Mbits.

Thus, the whole video stream amounts to 675 MB to 6.75
GB depending on the quality. A proxy can adjust quality
of cached or retrieved blocks to lower quality. Each proxy
is equipped with a limited cache buffer. Initially, all cache
buffers are empty and only the video server has all blocks
of the highest quality. The prefetching window size P is
set at 10 blocks.

On client side, the buffering times and time to absorb
delay jitters and prediction errors are set at Δi = 4 and

δi = 2 sec, respectively. The tolerable video quality q i(j)
is fixed at 1. However, the preferable quality Q i(j) varies
from 1 to 10, is initially set to 5, i.e. Qi(1) = 5. Then,
a client randomly determines the quality requirement on
a block-by-block basis. In our experiments, the quality
level Qi(j) is increased or decreased with a probability
of 5% after each block is sent. This is introduced as a way
of imitating the dynamic changes in quality requirements
according to system conditions and the user preferences.
The ratio of the quality of prefetched blocks to that of
requests is determined as β = 1.0.

For comparison purposes, we conduct simulations of
a system with four different schemes. One is referred
as “independent w/o prefetch”. In this approach prox-
ies always retrieve the missing or unsatisfactory block
from the originating video server without prefetching.
“independent w/ prefetch” corresponds to the case where
independent proxies are coupled with the prefetching
mechanism. The schemes “proposal w/o prefetch” and
“proposal w/ prefetch” indicate the corresponding cases
where the proxies cooperate.

We compare the performance in terms of the average
freeze time, the average freeze ratio, the average quality
ratio, and the average traffic among servers per user. The
average freeze time is derived as

∑n
i=1

∑L
j=1 fi(j)/Ln

where n is the number of clients. The average freeze ratio
is defined as the ratio of number of freezes to the number
of all blocks L per user. The quality ratio is defined as
the ratio of quality of provided block to the requested
preferable quality Qi(j). Simulations finish after 100τ
sec, i.e. approximately 500 clients arrive in the system.
All results are averaged over 5 simulation runs.

B. Simulation Results

First, we evaluate the effects of the inter-arrival time
τ . The cache buffer size is fixed at 2 GB. Figure 6

shows the average freeze time, the average freeze ratio,
the average quality ratio, and average amount of traffic
among servers against the average inter-arrival time of
clients. As shown in Fig. 6, our proposed mechanism can
provide users with video distribution of lower delay and
fewer freezes, achieving the same or higher quality ratio
at the cost of a slight increase in traffic due to inter-proxy
communication. Furthermore, the prefetching mechanism
contributes to achieving low-delay and high-quality video
distribution.

For all schemes, if the inter-arrival time is less than
200 sec, the average freeze time and the average freeze
ratio increase with the inter-arrival time and the quality
ratio decreases. This is because shorter inter-arrival times
can achieve a higher probability of utilizing cached blocks
and lower probability of retrieving new blocks from other
servers. On the other hand, if the inter-arrival time is
larger than 200 sec, as the inter-arrival time increases, the
average freeze time and the average freeze ratio decrease
and the quality ratio increases. This is because a proxy
can use more bandwidth for each client, if the number of
clients is small as shown in Fig. 6 (d).

Next, we evaluate the effects of the cache buffer size.
The average inter-arrival time τ is fixed at 200 sec.
Figure 7 shows the average freeze time, the average freeze
ratio, the average quality ratio, and the average amount of
traffic among servers against cache buffer size. As shown
in the figures, our proposed mechanism can provide users
with video distribution of lower delay and fewer freezes,
achieving higher quality ratio.

For all schemes, the average freeze time and the
average freeze ratio decrease, the average quality ratio
increases, and the average traffic among servers decreases
with the cache buffer size as shown in Fig. 7. This is
because a larger cache buffer size can achieve higher
probability of cache hit and that of finding blocks in
other proxies’ cache buffers. However, in this experiment,
increasing the cache buffer size more than 6 GB has no
impact on the average freeze time, the average freeze ratio
and the average quality ratio.

V. IMPLEMENTATION AND EVALUATION OF

PROPOSED MECHANISM

In this section, we describe our implementation of
proposed mechanism on a real system, and evaluate our
mechanism through practical experiments. The system we
implemented is based on our previous work [20] and
video streaming is controlled through RTSP/TCP ses-
sions. Each of the video and audio streams is transferred
over a dedicated RTP/UDP session and the condition of
streaming is monitored over RTCP/UDP sessions. A video
stream is coded using MPEG-4, and it is compliant with
ISMA 1.0 [24]. In this paper, we use the Darwin Stream-
ing Server as a server application, and RealOne Player
and QuickTime Player as client applications. However,
other server or client applications being compliant with
the standard can be incorporated with no or only small
modification.

Video Server

Proxy

Client

Cooperation

Module

Cooperation

Module
Cooperation

Module

Cooperation

Module

Cooperation

Module
Cooperation

Module

CacheTable

CacheTable

Client

Frame dropVideo quality adjustment

TFRCBandwidth estimation

RTCP/UDPFeedback

RTP/UDPVideo transfer

RTSP/TCPVideo streaming control

MPEG-4Video format

Frame dropVideo quality adjustment

TFRCBandwidth estimation

RTCP/UDPFeedback

RTP/UDPVideo transfer

RTSP/TCPVideo streaming control

MPEG-4Video format

Proxy

Module

Proxy

Module

Signal

Video Data

CacheTable

Proxy Proxy

Darwin

Streaming

Server

RealOne

Player

QuickTime

Player

Module

Figure 8. Overview of the implemented system

A. Overview of the Implemented System

Figure 8 illustrates the modules that constitute our
video streaming system. Each dotted arrow and solid
arrow corresponds to signal and data flow, respectively. A
Proxy Module is generated for each client and provides a
client with video blocks. A proxy has a Cache to deposit
video data, and maintains the cache table and the remote
table in the Table. We introduce a Cooperation Module
for each proxy to communicate with neighboring proxies.

For its simplicity and speed, these modules have a
frame dropping filter to adapt the quality of video. It
adjusts the video quality to the desired level by discarding
frames in a well-balanced way. To know the available
bandwidths, i.e. rSP and rPC , among the server, the
proxies, and clients, they have the capability to estimate
TCP-friendly [25] rates. Proxies estimate the throughput
of a TCP session sharing the same path using control
information obtained by exchanging RTCP messages.
One-way propagation delays, i.e. dSP and dPC , among
ther server, the proxies, and clients are also estimated by
exchanging RTCP messages.

In our implemented system, each block corresponds to
a sequence of VOPs (Video Object Planes) of an MPEG-
4 stream. A block consists of a video block and an audio
block, and they are separately stored in the Cache. We
empirically use B = 300 VOPs as the block size in our
implementation. Since our MPEG-4 video stream is coded
at F = 30 frames per second, a single block corresponds
to 10 sec. We use the video coding rate to indicate its
quality, and the Range and Bandwidth field of an RTSP
PLAY message to specify the block and its quality.

The basic behavior of our system is as follows. First, a
client establishes connections for audio and video streams
with a proxy by sending a series of RTSP OPTIONS,
DESCRIBE, and SETUP messages. These RTSP mes-
sages are received by the Proxy Module and relayed to
the video server. Thus, connections between the video
server and the proxy are also established at this stage. On
receiving a SETUP REPLY message, the client requests
delivery of the video stream by sending an RTSP PLAY
message. Here, since the used client applications cannot
declare an acceptable range of video quality levels, they
are considered ready to receive and perceive a video

stream at any quality, i.e. q = 0, Q = ∞.
The Proxy Module adopts the fastest way so that it

can provide a client with a block of higher level of
quality. When the Proxy Module provides a cached block,
it reads it from Cache and sends it to the client. The
quality of the video block is adjusted if necessary. When
the Proxy Module retrieves a block from a neighboring
proxy, it sends a request to the Cooperation Module.
The Cooperation Module sends an RTSP PLAY message
to the proxy, retrieves the block, and relays the block
to the Proxy Module. When the reception is completed,
the Proxy Module deposits the block in the Cache. If
there is not enough room to store the newly retrieved
block, the Proxy Module replaces the new block with
less important blocks in the cache buffer. When the Proxy
Module retrieves the block from the video server, it sends
an RTSP PLAY message to the video server.

A client receives blocks from a proxy and first deposits
them in the so-called play-out buffer. Then, it gradually
reads blocks out from the buffer and plays them. When
a proxy receives an RTSP TEARDOWN message from a
client, the proxy relays the message to the video server,
and closes the sessions.

B. Information Sharing Among Proxies

In order to maintain a remote table, a proxy issues
an RTSP GET PARAMETER message to other proxies
when the end of the prefetching window of any client
reaches an entry which is zero, i.e. an uncached block.
An RTSP GET PARAMETER message includes a list
of blocks required in the near future. Blocks in the list
are those which are currently requested by clients and its
subsequent I blocks. These I blocks from the beginning
of the stream are also listed in the message to prepare for
new clients that will request the stream in the future. In
addition, we also introduce a timer to force a refreshing of
the remote table. The timer expires every (I−P −1)B/F
and a proxy sends an RTSP GET PARAMETER message
to other proxies.

On receiving an RTSP GET PARAMETER message, a
proxy first examines its cache table about blocks listed
in the message. It then returns an RTSP REPLY message
which contains the list of pairs of a cached block and its
quality.

C. Cooperative Proxy Caching

In order to run an implementation of our cooperative
proxy caching mechanism as described in Section III on
an actual system, we made the following small modifica-
tions.

1) Block Provisioning: A proxy adopts the fastest way
that can provide a client with a block of higher quality in
time. Since a server sends a video block frame-by-frame
at the frame rate of a video stream in our implemented
system, the value aj(q)/rSP

s,k′ (t) in the equations in Sec-
tion III-B is replaced with B/F for the originating video
server k′.

2) Block Prefetching: In our implemented system, a
proxy sends an RTSP PLAY message with an additional
field to prefetch a block from another proxy, that is the
Prefetch field. Since the video server cannot process this
new field, a proxy only sends a prefetching request to
other proxies and not to the video server.

3) Cache Replacement: Since the client application
does not declare its desired level of quality, a proxy only
discards a cached block once it is chosen as a candidate.

D. Experimental Configuration

We already evaluated our whole caching mechanism in
previous simulation section. Furthermore, the effective-
ness of the caching mechanism such as block prefetching
and cache replacement as well as the scalability against
the number of clients in our implemented system have
been already verified in the case of a single proxy in [20].
In this paper, we evaluate the block provisioning mecha-
nism when proxies cooperate with each other, to evaluate
feasibility and effectiveness of cooperation among proxies
on a real current system.

Figure 9 (a) illustrates the configuration of our experi-
mental system. For the sake of clarity, we limit the exper-
imental settings to only two proxies and a video server
connected through a router. There are two video clients in
the system and each is connected to a neighboring proxy
through a router. In order to control the delay and link
capacity, NISTNet is used at the routers. The one-way
propagation delay and link capacity are set as shown in
Fig. 9 (a). In the experiments, we use an MPEG-4 video
stream of 200 sec encoded at a rate of 1 Mbps and a
frame rate of 30 fps. A block corresponds to 300 VOPs,
i.e. 10 sec. Thus, the stream consists of L = 20 blocks,
b1, b2, · · · , b20. Initially, proxies already have some blocks
as shown in Fig. 9 (b). The window of inquiry is set to
I = 5.

The experimental scenario is as follows. Client 1 first
issues an RTSP OPTIONS message at time 0, and client 2
issues it at 200 sec. Both clients watch the same video
stream from the beginning to the end without interactions
such as rewinding, pausing, and fast-forwarding. After
260 sec, the link capacity between proxy 1 and proxy 2 is
reduced from 2 Mbps to 700 kbps. Using this configura-
tion, we evaluate the capability of the block provisioning
mechanism against changes in network conditions and
cached blocks on the neighboring proxy. For this purpose,
we do not consider other mechanisms such as block
prefetching and cache replacement in this experiment. We
set the cache buffer capacity to 30 MB, i.e. larger than
the size of the whole video stream, and the prefetching
window to P = 0.

E. Experimental Results

Figures 9 (c) and (d) illustrate variations in reception
rates observed at proxy 1 and client 1 with tcpdump,
respectively. First, proxy 1 provides client 1 with cached
blocks b1 to b3, since they are available fastest and have

Proxy 1

Proxy 2

Server

Client 1

Client 2

Router

redhat 7.2

Pen3 550MHz

redhat 7.2

Pen4 2GHz

redhat 7.2

Xeon 2.2GHz

Dual

redhat 7.2

Xeon 2.2GHz

Dual

Router

Router

redhat 7.2

Pen3 700MHz

redhat 7.2

Pen3 700MHz
Windows

Pen4 2.4GHz

Windows

Pen3 800MHz

1 Mbps

100 msec

1 Mbps

100 msec

1.5 Mbps, 10msec

1.5 Mbps, 10msec

2 Mbps

50 msec

(a) Configuration of experimental system

1000b1-b20

bit rate [kbps]block

1000b1-b20

bit rate [kbps]block

Cache table on proxy 1 (t=200)

1000b1-b19

276b20

bit rate [kbps]block

1000b1-b19

276b20

bit rate [kbps]block

Cache table on proxy 2 (t=400)

0b7-b10

1000b1-b3

700b4-b6

1000b11-b20

bit rate [kbps]block

0b7-b10

1000b1-b3

700b4-b6

1000b11-b20

bit rate [kbps]block

Cache table on proxy 1 (t=0)

1000b1-b6

0b7-b20

bit rate [kbps]block

1000b1-b6

0b7-b20

bit rate [kbps]block

Cache table on proxy 2 (t=0)

(b) Cache tables

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

re
ce

pt
io

n
ra

te
 [

kb
ps

]

time [sec]

4 5 6

7 8 9 10

from proxy2
from server

(c) Reception rate at proxy 1

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

re
ce

pt
io

n
ra

te
 [

kb
ps

]

time [sec]

1 2 3 4 5 6 7 8 9 10 11121314151617181920

arrival
play-out

(d) Reception rate at client 1

 0

 500

 1000

 1500

 2000

 2500

 200 250 300 350 400

re
ce

pt
io

n
ra

te
 [

kb
ps

]

time [sec]

78 9

10 11 12 13 14 15 16 17 18 1920

from proxy1
from server

(e) Reception rate at proxy 2

 0

 500

 1000

 1500

 2000

 2500

 200 250 300 350 400

re
ce

pt
io

n
ra

te
 [

kb
ps

]

time [sec]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

arrival
play-out

(f) Reception rate at client 2

Figure 9. Experimental evaluation of block provisioning mechanism

the highest quality. While sending cached blocks, the
proxy can afford to retrieve blocks of higher quality from
proxy 2 for blocks b4 to b6. Then, proxy 1 retrieves
b7 to b10 from the video server. For these 40 sec of
blocks, it takes 50 sec of transmission time, because the
link capacity between the video server and proxy 2 is
smaller than the video rate. Furthermore, the video server
sends additional VOPs beginning with the preceding I-
VOP, if the specified range starts with a P or B-VOP.
This increases the block size and introduces additional
delay. However, owing to those cached blocks, proxy 1
has enough time to retrieve them and provide all blocks
to client 1 for smooth playback.

In the bottom part of Fig. 9 (d), instants of block
arrivals and those of play-out at client 1 are indicated.
In these experiments, the client application first caches a
received video block and defers its play-out by 3 sec. As
Fig. 9 (d) illustrates, a user can watch the video without
freezes. As a result of block retrieval, the cache table of
proxy 1 changes as shown in Fig. 9 (b).

Figures 9 (e) and (f) illustrate variations in reception
rates observed at proxy 2 and client 2, respectively.
Proxy 2 first provides client 2 with cached blocks b1 to
b6. For uncached blocks b7 to b20, proxy 2 tries retrieving
high-quality blocks from proxy 1. At 260 sec, the capacity
of the link between proxy 1 and proxy 2 is reduced to
700 kbps. Consequently, proxy 2 contacts the video server
from b9, since the video server can provide the highest
quality blocks in the fastest way. However, delays are
gradually introduced in retrieving blocks from the video
server due to the insufficient link capacity.

At 392 sec, proxy 2 again contacts proxy 1 to retrieve
the block b20. Taking into account the time needed in
block transmission from proxy 1 to proxy 2 and that to

client 2, the quality of block b20 to request to proxy 1
is intentionally reduced to 276 kbps. On receiving the
request, proxy 1 applies the video quality adjustment to
block b20 and transfers the modified block to proxy 2.
Proxy 2 caches the block and provides it to client 2. As
Fig. 9 (f) illustrates, all blocks are successfully provided
to client 2 through the above mentioned control. Finally,
the cache table of proxy 2 becomes as in Fig. 9 (b).

In this experiment, not only a single proxy could
successfully provide its client with a video stream in
time, but also two proxies cooperated to accomplish a
continuous video-play out by offering a cached block and
the capability of video quality adjustment

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an effective video streaming
mechanism where proxies cooperate with each other.
Simulation results show that our proposed mechanism
can provide users with low-delay and high-quality video
streaming services in heterogeneous environments. In
addition, we designed and implemented our proxy caching
mechanism on a real system for an MPEG-4 video
streaming service employing off-the-shelf and common
applications. Through evaluations, it was shown that our
proxy caching system can provide users with a continu-
ous video streaming service under dynamically changing
network conditions.

As future research work, it is necessary to conduct
additional experiments, e.g., in a larger network envi-
ronment, with other filtering mechanisms, and with other
server and client applications. We also intend to take into
account user interactions such as pauses, fast forwarding,
and rewinding.

ACKNOWLEDGMENTS

The authors would like to thank Kenji Leibnitz and
anonymous reviewers for their help, suggestions, and
helpful comments for this work.

REFERENCES

[1] J. Liu and J. Xu, “Proxy caching for media steaming over
the Internet,” IEEE Communication Magazine, pp. 88–94,
Aug. 2004.

[2] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching
for multimedia streams,” in Proceedings of IEEE INFO-
COM 1999, Mar. 1999, pp. 1310–1319.

[3] K. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy
caching of multimedia streams,” in Proceedings of WWW
2001, May 2001, pp. 36–44.

[4] J. Song, “Segment-based proxy caching for distributed co-
operative media content servers,” ACM SIGOPS Operating
Systems Review, vol. 39, no. 1, pp. 22–33, Jan. 2005.

[5] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “DISC: dynamic
interleaved segment caching for interactive streaming ac-
cesses,” in Proceedings of ICDCS 2005, June 2005, pp.
763–772.

[6] C.-L. Chan, S.-Y. Huang, and J.-S. Wang, “Performance
analysis of proxy caching for VOD services with hetero-
geneous clients,” IEEE Transactions on Communications,
vol. 55, no. 11, pp. 2142–2151, Nov. 2007.

[7] M. H. Kabir, G. C. Shoja, and E. G. Manning, “On-demand
segmentation and proxy buffer provisioning for scalable
and interactive video streaming scheme,” in Proceedings of
the 8th IEEE Workshop on Multimedia Signal Processing,
2006, pp. 65–70.

[8] R. Rejaie and J. Kangasharju, “Mocha: a quality adaptive
multimedia proxy cache for Internet streaming,” in Pro-
ceedings of NOSSDAV 2001, June 2001.

[9] K.-C. Chang and T.-F. Chen, “Efficient segment-based
video transcoding proxy for mobile multimedia services,”
Journal of Systems Architecture, vol. 53, no. 11, Nov. 2007.

[10] J. Liu, J. Xu, and X. Chu, “Fine-grained scalable video
caching for heterogeneous clients,” IEEE Transactions on
Multimedia, vol. 8, no. 5, pp. 1011–1020, Oct. 2006.

[11] W. hsiu Ma and D. H. C. Du, “Design a progressive video
caching policy for video proxy servers,” IEEE Transactions
on Multimedia, vol. 6, no. 4, pp. 599–610, Aug. 2004.

[12] Z. Miao and A. Ortega, “Scalable proxy caching of video
under storage constraints,” IEEE Journal on Selected Areas
in Communications, vol. 20, no. 7, pp. 1315–1327, Sept.
2002.

[13] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross,
“Distributing layered encoded video through caches,” IEEE
Transactions on Computers, vol. 51, no. 6, pp. 622–636,
June 2002.

[14] S. H. G. Chan and F. Tobagi, “Distributed servers archi-
tecture for networked video services,” IEEE/ACM Trans-
actions on Networking, vol. 9, no. 2, pp. 125–136, Apr.
2001.

[15] M. G. Podolsky, S. McCanne, and M. Vetterli, “Soft ARQ
for layered streaming media,” Journal of VLSI Signal Pro-
cessing Systems for Signal, Image and Video Techonology,
vol. 27, no. 1–2, pp. 81–97, Feb. 2002.

[16] C.-L. Lin, H.-H. Lee, C.-L. Chan, and J.-S. Wang, “Coop-
erative proxy framework for layered video streaming,” in
Proceedings of GLOBECOM 2005, vol. 1, Nov. 2005.

[17] A. T. S. Ip, J. Liu, and J. C.-S. Lui, “COPACC: An
architecture of cooperative proxy-client caching system
for on-demand mediea streaming,” IEEE Transaction on
Parallell and Distributed Systems, vol. 18, no. 1, pp. 70–
83, Jan. 2007.

[18] E. Kusmierek, Y. Dong, and D. H. C. Du, “Loopback:
Exploiting collaborative caches for large-scale streaming,”
IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 233–
242, Apr. 2006.

[19] M. Sasabe, Y. Taniguchi, N. Wakamiya, M. Murata, and
H. Miyahara, “Proxy caching mechanisms with quality
adjustment for video streaming services,” IEICE Trans-
actions on Communications, vol. E86-B, no. 6, pp. 1849–
1858, June 2003.

[20] Y. Taniguchi, N. Wakamiya, and M. Murata, “A proxy
caching system for MPEG-4 video streaming with a quality
adaptation mechanism,” WSEAS Transactions on Commu-
nications, vol. 6, no. 10, pp. 824–832, Oct. 2007.

[21] H. Guo, G. Shen, Z. Wang, and S. Li, “Optimized stream-
ing media proxy and its applications,” Journal of Network
and Computer Applications, vol. 30, no. 1, pp. 265–281,
Jan. 2007.

[22] N. Yeadon, F. Gracı́a, D. Hutchinson, and D. Shepherd,
“Filters: QoS support mechanisms for multipeer commu-
nications,” IEEE Journal on Selected Areas in Communi-
cations, vol. 14, no. 7, pp. 1245–1262, Sept. 1996.

[23] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara,
“QoS mapping between user’s preference and bandwidth
control for video transport,” in Proceedings of IWQoS’97,
May 1997, pp. 291–302.

[24] Internet Streaming Media Alliance, “Internet streaming
media alliance implementation specification version 1.0,”
Aug. 2001.

[25] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP
friendly rate control (TFRC): Protocol specification,” In-
ternet Request for Comments 3448, Jan. 2003.

Yoshiaki Taniguchi received his B.E., M.E., and Ph.D. degrees
from Osaka University, Japan, in 2002, 2004, and 2008, respec-
tively. Since Oct. 2008, he has been an Assistant Professor at
the Cybermedia Center, Osaka University. His research interests
include wireless sensor networks, wireless mesh networks, and
video streaming systems. He is a member of IEICE and IEEE.

Naoki Wakamiya received his M.E. and Ph.D. degrees from
Osaka University, Japan, in 1994 and 1996 respectively. He was
a Research Associate from 1996 and an Assistant Professor at
the Graduate School of Engineering Science of Osaka University
from 1999 to 2002. Since 2002, he has been an Associate
Professor at the Graduate School of Information Science and
Technology, Osaka University. His research interests include
wireless sensor networks, mobile ad hoc networks, and overlay
networks. He is a member of IEICE, IPSJ, ACM, and IEEE.

Masayuki Murata received his M.E. and D.E. degrees from
Osaka University, Japan, in 1984 and 1988 respectively. In 1984,
he joined the Tokyo Research Laboratory, IBM Japan, as a
Researcher. He was an Assistant Professor from 1987 and an
Associate Professor at Osaka University from 1992 to 1999.
Since 1999, he has been a Professor at Osaka University, where
he is now with the Graduate School of Information Science and
Technology. He has more than 500 papers in international and
domestic journals and conferences. His research interests include
computer communication networks, performance modeling and
evaluation. He is a member of IEEE, ACM, and IEICE.

