
A transport-layer approach for achieving predictable
throughput for Internet applications

Go Hasegawa, Kana Yamanegi and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

1-3, Yamadaoka, Suita, Osaka 560-0871, JAPAN
Email: hasegawa@cmc.osaka-u.ac.jp

Abstract—We propose a transport-layer approach to provide
predictable throughput for applications requiring stable band-
width resource, such as video streaming and VoIP. The proposed
mechanism deploys an end-to-end approach: it dynamically
sets the increase degree of the congestion window size of a
TCP connection according to the measurement results of the
available bandwidth of the network path, which is obtained by
inline network measurement technique developed in our research
group. In the present paper, we briefly introduce the proposed
mechanism and show the performance evaluation results in the
experimental network and in the commercial Internet environ-
ment. We exhibit that the proposed mechanism can achieve the
required throughput with high probability without any support
from intermediate network nodes.

Index Terms—TCP, predictable throughput, end-to-end, band-
width measurement

I. INTRODUCTION

The Internet users’ demands for network quality has in-
creased due to services becoming progressively diversified
and sophisticated because of the remarkable degree to which
the Internet has grown, which is due in part to access and
backbone network technologies. Applications involving real-
time media delivery services, such as VoIP, video streaming
and TV meeting systems, all of which have experienced a dra-
matic level of development, require large and stable amounts
of network resources in order to maintain the Quality of
Service (QoS). For example, the quality of real-time streaming
delivery applications is highly dependent on propagation delay
and delay jitter. The available bandwidth on the end-to-end
network path is also an important factor in order to smoothly
provide rich contents, including voice and video.

Most of such video streaming applications use User Data-
gram Protocol (UDP) as a transport-layer protocol, and the
upper-layer application controls the data transmission rate
according to the network condition [1]. However, these mech-
anisms have a large cost when modifying the application
program for achieving application-specific QoS requirements,
and the parameter settings are very sensitive to various network
factors. Furthermore, when such applications co-exist in the
network and share the network bottleneck resources, we cannot
estimate the performance of the network or that of the applica-
tions, because the control mechanisms of such applications are
designed and implemented independently, without considering
the effect of interactions with other applications.

Against the above problem, we propose a transport-layer
approach for achieving predictable throughput. By predictable
throughput, we mean the throughput required by an upper-
layer application, which can be provided with high probability
when the network congestion level is not extremely high. We
modify the degree of the increase of the congestion window

size of a TCP connection in the congestion avoidance phase by
using the information on the available bandwidth of the net-
work path obtained by Inline Measurement TCP (ImTCP) [2],
which has been previously proposed by our research group.
The application examples of the proposed mechanism include
TCP-based video or voice delivery services, such as Windows
Media Player [3], RealOne Player [4], and Skype [5]. In [6],
we have investigated the fundamental characteristics of the
proposed mechanism through simulation experiments, and
confirmed that the proposed mechanism can achieve a TCP
throughput of 10-20% of the bottleneck link capacity, even
when the link is highly congested and there is little residual
bandwidth for the TCP connection.

In this paper, we briefly summarize the proposed mechanism
and discuss implementation issues of the proposed mechanism.
Furthermore, we show the performance evaluation results
through the implementation experiments on the experimen-
tal networks, and on the commercial Internet environment
between Tokyo and Osaka in Japan. From these results, we
confirm that the proposed mechanism can achieve the required
throughput with high probability in an actual network, as
in the simulation results. We also evaluate the importance
of bandwidth measurement for the proposed mechanism to
confirm the effectiveness of the network resource monitoring
for providing higher-level QoS.

II. PROPOSED MECHANISMS

Figure 1 shows an overview of the proposed mechanism. We
assume that an upper-layer application sends bw (packets/sec)
and t (sec) to the proposed mechanism, which is located
at transport layer. This means that the application requires
average throughput bw at every interval of t sec in TCP data
transmission, and the proposed mechanism tries to achieve this
demand. Note that by implementing the proposed mechanism,
we also need to modify the socket interface to pass the
value of required throughput from the upper-layer application
to TCP. Here, bw is the required throughput and the time
interval is referred to as the evaluation slot, as shown in
Figure 1. We change the degree of increase of the congestion
window size of a TCP connection to achieve a throughput
of bw every t sec. Note that in the slow start phase, we
use a mechanism that is identical to the original TCP Reno,
i.e., the proposed mechanism changes the behavior of TCP
only in the congestion avoidance phase. By minimizing the
degree of modification of TCP source code, we expect that
the original property of the congestion control mechanism
can be preserved. We can also reduce the introduction of
implementation bugs by basing on the existing TCP source
code.

Since the proposed mechanism changes its behavior in units
of the Round Trip Time (RTT) of the connection, we introduce

Seventh International Conference on Networking

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.30

186

Seventh International Conference on Networking

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.30

186

APP

bw , t

TCP

Sender host Receiver host

bw [packets/sec] throughput

at every t sec

in TCP data transmission

with proposed mechanism

0

bw

Evaluation slot

t
Time

Throughput

CWND

0

2t 3t0

bw

Evaluation slot

t
Time

Throughput

CWND

0

2t 3t

Fig. 1. Overview of the proposed mechanism

a variable e as t = e · rtt, where rtt is the RTT value of the
TCP connection.

In what follows, we first introduce the calculation method
of target throughput in each evaluation slot in Subsection II-A
and propose an algorithm to achieve the required throughput
in Subsection II-B.

A. Calculating target throughput

We split an evaluation slot into multiple sub-slots, called
control slots, to control the TCP behavior in a finer-grained
time period. The length of the control slot is s (RTT), where s
is 2 ≤ s ≤ e. We set the throughput value we intend to achieve
in a control slot, which is referred to as the target throughput
of the control slot. We change the target throughput in every
control slot and regulate the packet transmission speed in order
to achieve the target throughput. The final goal is to make the
average throughput in the evaluation slot larger than or equal
to bw, the required throughput.

We use the smoothed RTT (sRTT) value of the TCP
connection to determine the lengths of the evaluation slot and
the control slot. That is, we set the length of the i-th control
slot to s ·srtti, where srtti is the sRTT value at the beginning
of the i-th control slot. At the end of each control slot, we
calculate the achieved throughput of the TCP connection by
dividing the number of successfully transmitted packets in the
control slot by the length of the control slot. We then set the
target throughput of the i-th control slot, gi (packets/sec), as
follows: {

gi = bw + (gi−1 − tputi−1)
g0 = bw

where tputi (packets/sec) is the average throughput of the i-th
control slot. This equation means that the target throughput of
the i-th control slot is determined according to the difference
between the target throughput and the achieved throughput in
the (i− 1)-th control slot.

B. Achieving the target throughput by changing the congestion
window size

Although it may seem that one simple method by which
to achieve the target throughput by TCP would be to fix the
congestion window size to the product of the target throughput
and RTT and to keep the window size even when packet losses
occur in the network, such a straightforward method would
introduce several problems in the network congestion that
could not be resolved. In addition, such a method would result
in severe unfairness with respect to co-existing connections
using the original TCP Reno. Therefore, in the proposed
mechanism, the degree of modification of the TCP congestion
control mechanism is minimal in order to maintain the original

properties of TCP. This means that the degree of the congestion
window size is increased only in the congestion avoidance
phase of a TCP connection. This does not modify the TCP
behavior in the slow start phase or when a TCP connection
experiences packet loss(es).

In the proposed mechanism, the sender TCP updates its
congestion window size cwnd in the congestion avoidance
phase according to the following equation when it receives an
ACK packet from the receiver TCP:

cwnd← cwnd +
k

cwnd
(1)

where k is the control parameter. From the above equation, we
expect that the congestion window size increases by k packets
in every RTT. The main function of the proposed mechanism is
to regulate k dynamically and adaptively, whereas the original
TCP Reno uses a fixed value of k = 1. In the rest of this
subsection, we explain how to change k according to the
network condition and the current throughput of the TCP
connection.

1) Increasing the degree of the congestion window size:
Here, we derive kbw

j , which is an ideal value for the degree
of increase of the congestion window size when the j-th
ACK packet is received from the beginning of the i-th control
slot, so that the TCP connection achieves gi of the average
throughput. For achieving the average throughput gi in the i-
th control slot, we need to transmit (gi · srtti · s) packets in
(s · srtti) sec. However, since it takes one RTT to receive the
ACK packet corresponding to the transmitted packet, and since
it takes at least one RTT to detect packet loss and retransmit
the lost packet, we intend to transmit (gi · s · srtti) packets in
((s− 2) · srtti) sec.

We assume that the sender TCP receives the j-th ACK
packet at the nj-th RTT from the beginning of the control
slot, and the congestion window size at that time is cwndnj .
Since the congestion window size increases by k packets every
RTT, we can calculate psnd, the number of packets that would
be transmitted if we use kbw

j for k in Equation (1) in the rest
of the control slot, the length of which is (s− 2− nj) · srtti
sec:

psnd = (s− nj − 1)cwndnj +
kbw

j

2
(s− nj − 1)(s− nj)

On the other hand, pneed, i.e., the number of packets that
should be transmitted in order to obtain gi, is calculated as
follows:

pneed = gi · srtti · s− aj

where aj is the number of transmitted packets from the
beginning of the control slot to when j-th ACK packet is
received. Then, we can calculate kbw

j by solving the equation
psnd = pneed for kbw

j ;

kbw
j =

2{gi · srtti · s− aj − (s− nj − 1)cwndnj}
(s− nj − 1)(s− nj)

(2)

In the proposed mechanism, we use the above equation to
update k for Equation (1) when the sender TCP receives a
new ACK packet.

2) Limitation of the increasing degree based on the avail-
able bandwidth: By using Equation (2) for determining k, the
degree of increase of the congestion window size becomes too
large when the current throughput of a TCP connection is far
below the target throughput. Values of k that are too large
would cause bursty packet losses in the network, resulting

187187

in a performance degradation due to retransmission timeouts.
On the other hand, when the network has sufficient residual
bandwidth, the degree of increase of the congestion window
size in Equation (2) becomes smaller than 1. This results in a
lower throughput increase than TCP Reno. Therefore, we limit
the maximum and minimum values for k, which are denoted
by kmax and kmin, respectively. We simply set kmin = 1
to preserve the basic characteristics of TCP Reno. However,
some applications, including transferring sensing observation
data and monitoring log on a system, generate data at a
constant rate and does not require higher throughput than the
designated one even when the network has enough bandwidth.
For such applications we do not set kmin, meaning that the
proposed mechanism does not achieve more than the required
throughput even if the residual bandwidth is more than the
required throughput.

kmax, on the other hand, should be set such that bursty
packet losses are not invoked, whereas the target throughput
should be obtained. Thus, we decide kmax according to the
following considerations. First, when the proposed mechanism
has obtained the target throughput in all of the control slots
in the present evaluation slot, we determine that the available
bandwidth of the network path would be sufficient to obtain
the target throughput of the next control slot. Therefore, we
calculate kmax so as to avoid packet losses by using the infor-
mation of the available bandwidth of the network path. Here,
the information about the available bandwidth of the network
path is estimated by ImTCP [7], which is the mechanism of
inline network measurement. ImTCP measures the available
bandwidth of the network path between sender and receiver
hosts. In TCP data transfer, the sender host transfers a data
packet and the receiver host replies to the data packet with an
ACK packet. ImTCP measures the available bandwidth using
this mechanism, that is, ImTCP adjusts the sending interval of
data packets according to the measurement algorithm and then
calculates the available bandwidth by observing the change of
ACK arrival intervals. Because ImTCP estimates the available
bandwidth of the network path from data and ACK packets
transmitted by an active TCP connection in an inline fashion,
ImTCP does not inject extra traffic into the network. ImTCP
is described in detail in [7].

Next, when the proposed mechanism has not obtained the
target throughput in the previous control slot, the proposed
mechanism will not obtain the target throughput in the fol-
lowing control slots. We then set kmax so as to obtain a
larger throughput than the available bandwidth of the network
path. This means that the proposed mechanism would steal
bandwidth from competing flows in the network in order to
achieve the required bandwidth by the upper-layer application.

In summary, the proposed mechanism updates kmax by
using the following equation when the sender TCP receives
a new ACK packet:

kmax =

A · srtti − cwnd
(∀x{(1 ≤ x < i) ∨ (tputx < gx)}) (3)

min(A + (gi − tputi−1), P) · srtti − cwnd
(∃x{(1 ≤ x < i) ∧ (tputx < gx)}) (4)

where A and P (packets/sec) are the current values for the
available bandwidth and physical capacity as measured by
ImTCP. In Equation (3), A · srtti indicates the maximum
number of packets that the proposed mechanism can occupy
within the network capacity without occurring packet losses.
In Equation (4), (gi− tputi−1) · srtti indicates the number of
packets required in order to obtain the target throughput when

Application

TCP Layer

IP Layer

data parameters (bw, e)

tcp_output ()
cwnd proposed

mechanism

tcp_input ()

ImTCPavailable
bandwidth

Fig. 2. Outline of implementation architecture

the network has insufficient available bandwidth.

III. IMPLEMENTATION

Figure 2 shows the architecture of the proposed mechanism
implemented in Linux 2.6.16.21 kernel system. When new
data is generated at the application, the data is passed to
the TCP layer through the socket interface [8]. The data is
passed to the IP layer after TCP protocol processing by the
tcp_output() function and the resulting IP packets are
injected into the network. On the other hand, an ACK packet
that arrives at the IP layer of the sender host is passed to the
tcp_input() function for TCP protocol processing. The
congestion window size of a TCP connection is updated when
an ACK packet is passed to the tcp_input() function.
Therefore, the control program for congestion window size
for the proposed mechanism should be implemented in the
tcp_input() function. Linux 2.6.16 kernel system unifies
the interfaces for congestion control mechanisms, and enables
to implement congestion control algorithm as a module. In this
paper, we implement the proposed mechanism as a module in
Linux 2.6.16.21 kernel system.

The tcp_input() function calls the cong_avoid()
function and updates the congestion window size when an
ACK packet arrives. The module for the proposed mecha-
nism determines the congestion window size according to
its algorithm described in Section 2, and splits time into
evaluation/control slot in the cong_avoid() function. On
the other hand, ImTCP, which we utilize to obtain the avail-
able bandwidth of the network path, calculates the available
bandwidth in the tcp_input() function [9]. The proposed
mechanism inquires ImTCP for the available bandwidth in the
cong_avoid() function, and changes the degree of increase
of the congestion window size based on the value.

Figure 3 shows the flow chart of the cong_avoid() func-
tion of the proposed mechanism. First, the cong_avoid()
function compares the congestion window size (cwnd) and
the slow start threshold (ssthresh). When cwnd is smaller
than ssthresh, the congestion window size is updated by
the slow start algorithm as TCP Reno. On the other hand,
when cwnd is larger than ssthresh, the congestion window
size is determined based on the algorithm of the proposed
mechanism. In the congestion avoidance phase, the proposed
mechanism checks the passed time from the beginning of
the present evaluation/control slots and judges the end of the
slots. When the passed time is longer than the length of the
evaluation/control slots, the proposed mechanism calculates
the average throughput in the slot and initializes the variables
for the next slots. Next, the increase degree of the congestion
window size is the determined on consideration of kmax,

188188

cwnd > ssthresh ?

calculate kbw

kbw < 1 || kmax < 1 ?

k=kmaxk=kbwk=1

kbw < kmax ?

set evaluation/control slot

cwnd← cwnd + k/cwnd

slow start

yes

no

yes

no

no

yes

cong_avoid ()

finish

Fig. 3. Flow chart of the cong_avoid() function

sender1

traffic_generator1

receiver1

100 Mbps
Ethernet

TCP Reno
Proposed mechanism

100 Mbps
Ethernet
30 msec

PC Router
Buffer: 100packet

Fig. 4. Experimental network environment

kmin and kbw
j , which is calculated according to Equation (2).

Finally, cwnd is updated by Equation (1).

IV. EXPERIMENTAL RESULTS

A. Performance evaluations using an experimental network
We first evaluate the proposed mechanism in an experi-

mental network. Figure 4 shows the experimental network
environment. This network environment consists of a PC
router in which Dummynet [10] is installed, an endhost that
generates cross traffic (traffic generator1), an endhost that
uses the proposed mechanism (sender1), and an endhost that
receives packets from each endhost (receiver1). All endhosts
and the PC router are connected by a 100-Mbps Ethernet
networks. We configured the Dummynet setting so that the
minimum RTT between the sender1 and the receiver1 becomes
30 msec. Table I shows the specifications of the endhosts of
the experimental network environment.

In this experiment, we set e = 32 for the length of
evaluation slot, and s, the length of control slot, is initialized
to 16. The cross traffic is generated by traffic generator1, and
sends the packets to receiver1. We set the size of TCP socket
buffer on traffic generator1 to limit the maximum throughput
of each TCP Reno connection to approximately 4 Mbps, and
the amount of the cross traffic is changed by the number of
the TCP Reno connections. The value of HZ at the sender host
(sender) is set to 20,000.

1) Changes in congestion window size and throughput:
In this section, we evaluate the behavior of the proposed
mechanism against the changes in the amount of cross traffic.
In this experiment, we use one connection using the proposed
mechanism, and set bw to 20 (Mbps), which is equal to 20%

TABLE I
PC SPECIFICATIONS OF THE EXPERIMENTAL NETWORK ENVIRONMENT

sender1 traffic generator1 receiver1
CPU Pentium 4 1.90GHz Pentium 4 1.7GHz Xeon 2.80GHz

Memory 1024 MB 2048 MB 2048 MB
Kernel Linux 2.6.16.21 Linux 2.6.16.21 Linux 2.6.16.21

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

2
4
8

16

32

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
[p

ac
ke

ts
]

Le
ng

th
 o

f s
lo

t [
R

T
T

]

Time [sec]

cwnd
length of control slot

(a) Changes in window size and control slot
length

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

bw= 20Mbps
av-throughput

(b) Changes in throughput

Fig. 5. Changes in cwnd, control slot length and throughput in the
experimental network

of the bottleneck link capacity. To change the congestion
level of the network, we change the number of TCP Reno
connections between traffic generator1 and receiver1 to 5, 25
and 40 in every 20 seconds. Figure 5(a) shows the changes
in the congestion window size and the length of control slot,
and Figure 5(b) shows the changes in the average throughput
in each evaluation slot.

The results for 0-20 seconds shown in Figures 5(a) and
5(b) show that when five TCP Reno connections co-exist with
a TCP connection of the proposed mechanism, the proposed
mechanism can obtain the required throughput by keeping
the same behavior as the normal TCP connection (k = 1
in Equation (1)). In this period, the available bandwidth is
sufficiently large to obtain the required throughput, because
there are only five connections, each of whose maximum
throughput is limited to 4 Mbps, in the network that have 100
Mbps capacity. Thus, the proposed mechanism sets k = kmin

(=1).
The results for 20-40 seconds, in which case there are

25 TCP Reno connections, we observe that the proposed
mechanism has a faster increase in the congestion window
size than that in 0-20 seconds. This is because it is impossible
to obtain the required throughput with the identical behavior
to TCP Reno, due to the increase of the amount of competing
traffic. Consequently, the proposed mechanism changes the
degree of increase of the congestion window size in order
to achieve the required throughput.

Furthermore, the results after 40 seconds with competing
40 TCP Reno connections show that the congestion window
size of the proposed mechanism increases faster than that
of previous cases, and that the length of control slot, s, is
changed to a smaller value. This result indicates that the pro-

189189

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

[%
]

Number of co-existing TCP Reno connections

bw: 10Mbps
bw: 20Mbps

Fig. 6. Ratio of evaluation slot required throughput achieved

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Throughput [Mbps]

(10, 30)
(10, 50)
(20, 30)
(20, 50)

Fig. 7. Cumulative distribution function of throughput

posed mechanism controls its congestion window size with a
smaller length of the control slot to obtain required throughput
because sufficient throughput cannot be achieved by merely
changing the degree of increase of the congestion window
size. As a result, the proposed mechanism can obtain the
required throughput even when there are 40 competing TCP
Reno connections. Thus, we have confirmed that the proposed
mechanism can effectively obtain the required throughput by
changing the degree of increase of the congestion window size
and the length of the control slot according to the network
congestion level in the experimental network environment.

2) Probabilities of obtaining required throughput: We next
show the relationship between the performance of the pro-
posed mechanism and the number of co-existing TCP Reno
connections in more detail. We set bw = 10, 20 (Mbps),
and use one connection for the proposed mechanism in the
network. Figure 6 shows the ratio of the number of evaluation
slots in which the proposed mechanism obtains the required
throughput to the total number of evaluation slots.

Figure 6 indicates that the proposed mechanism can obtain
the required throughput with high probability even when the
connections co-exist in the network. This result is quite similar
to the simulation result described in Subsection 3.1. However,
the ratio in which the proposed mechanism can achieve the
required throughput decreases when bw is 20 Mbps and the
number of TCP Reno connection is 25. In this case, the
proposed mechanism cannot set the length of control slot to its
appropriate value according to the congestion level, because
the length of control slot drastically changes by doubled
or halved, as described in Subsection 2.2.3. Thus, the ratio
in which the proposed mechanism can achieve the required
throughput decreases due to the frequent changes in the length
of control slot. Against this problem, we plan to improve the
control algorithm of the length of control slot as a future work.

We next show the cumulative distribution function of the
average throughput in each evaluation slot (Figure 7), when
we set bw to 10 and 20 Mbps and the number of the TCP
Reno connections to 30 and 50. We observe from Figure 7
that when the number of co-existing TCP Reno connections
is 30, approximately 80 % of the evaluation slots can achieve

receiver2

TCP Reno
Proposed mechanism

sender2 traffic_generator2

OSAKA, JAPAN TOKYO, JAPAN

Internet
17 msec

100 Mbps
Ethernet

100 Mbps
Ethernet

optical network
service

Fig. 8. Experimental system with the Internet environment

TABLE II
PC SPECIFICATIONS OF THE INTERNET ENVIRONMENT

sender2 traffic generator2 receiver2
CPU Pentium 4 3.40GHz Xeon 3.60GHz Xeon 2.66GHz

Memory 1024 MB 2048 MB 1024 MB
Kernel Linux 2.6.16.21 Linux 2.6.17 Linux 2.4.21

more than the required throughput, and the rest of them can
achieve the throughput close to the required throughput. On
the other hand, the ratio becomes degraded when there are
50 competing TCP Reno connections. However, most of the
evaluation slots which cannot achieve the required throughput
can achieve the throughput close to the required throughput.

B. Experiments in an actual Internet environment

We finally confirm the performance of the proposed mecha-
nism in the commercial Internet environment. Figure 8 shows
the network environment, which consists of two local area
networks in Osaka, Japan and Tokyo, Japan, which are con-
nected to the Internet. The network environment consists of
an endhost that generates cross traffic (traffic generator2), an
endhost that uses the proposed mechanism (sender2), and an
endhost that receives packets from both endhosts (receiver2)
across the Internet. The path of the commercial Internet
network between Osaka and Tokyo passes 100-Mbps optical
fiber services, and the local area networks in Osaka and Tokyo
is constructed by a 100-Mbps Ethernet networks. Table II
shows the specifications of the endhosts of the experimental
system. Through preliminary investigations, we confirmed the
following characteristics regarding the network between Osaka
and Tokyo:

• Seventeen hops exist in the network path from Osaka to
Tokyo.

• The minimum value of RTTs is 17 msec.
• The upper limit of the bandwidth between Osaka and

Tokyo is 70 Mbps.
In this experiment, we set e = 32 for the length of

evaluation slot, and s, the length of control slot, is initialized
to 16. The cross traffic is generated by traffic generator2, and
sends the packets to receiver2. We set the size of TCP socket
buffer on traffic generator2 to limit the maximum throughput
of each TCP Reno connection to approximately 3 Mbps, and
the amount of the cross traffic is changed by the number of the
TCP Reno connections. On the other hand, the size of TCP
socket buffer on sender2 and receiver2 is enough large.

We first evaluate the behavior of the proposed mechanism
against the change in the amount of cross traffic. In this experi-
ment, we use one connection for the proposed mechanism, and
set bw to 14 (Mbps), which is equal to 20% of the bottleneck

190190

 0

 100

 200

 300

 0 10 20 30 40 50 60 70 80

2
4
8

16

32

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
[p

ac
ke

ts
]

Le
ng

th
 o

f s
lo

t [
R

T
T

]

Time [sec]

cwnd
length of control slot

(a) Changes in window size and control slot
length

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

bw= 14Mbps
av-throughput

(b) Changes in throughput

Fig. 9. Changes in cwnd, control slot length and throughput in the Internet
experiment

link capacity. To change the congestion level of the network,
we change the number of TCP Reno connections between
traffic generator2 and receiver2 to 0, 5, 25, and 40 in every
20 seconds. Figure 9(a) shows the changes in the congestion
window size and the length of control slot, and Figure 9(b)
shows the changes in the average throughput in each evaluation
slot.

The results for 0-20 seconds in Figure 9, when there is only
one connection for the proposed mechanism, we can find that
the upper limit of the throughput between Osaka and Tokyo
is 70 Mbps because the proposed mechanism can obtain at
most apploximately 70 Mbps. In addition, the results after 20
seconds in Figure 9 is almost equivalent to the results on the
experimental network shown in Subsection 4.2.1. That is, the
results for 20-40 seconds show that the proposed mechanism
can obtain more than the required throughput by keeping
the same behavior as the normal TCP connection, and the
results for 40-60 seconds show that it can achieve the required
throughput by having a faster increase in the congestion
window size, The results after 60 seconds, we observe that
the length of control slot is changed to a smaller value, and
the proposed mechanism can achieve the required throughput.
Thus, we have confirmed that the proposed mechanism can
effectively obtain the required throughput by changing the
degree of increase of the congestion window size and the
length of the control slot according to the network congestion
level in the commercial Internet environment.

We next evaluate the average throughput in each evaluation
slot, when we set bw to 7 and 14 Mbps and the number of
the TCP Reno connections to 30 and 50. Figure 10 shows the
cumulative distribution function of the average throughput in
each evaluation slot. From Figure 10, we can observe that the
ratio of achieving the required throughput is slightly smaller
than that in the experimental network in Figure 7. One of
the possible reason is that there are short-lived connections,
including web-traffic, in the Internet environment, those traffic
has highly bursty nature. Since the proposed mechanism is
based on TCP, it can not adapt to shorter-term changes of
the network condition than its RTT. Another reason is that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Throughput [Mbps]

(7, 30)
(7, 50)

(14, 30)
(14, 50)

Fig. 10. CDF of throughput in the Internet experiment

the measurement accuracy of the available bandwidth of the
network path operated by ImTCP becomes slightly degraded
in the actual Internet environment. However, most of the
evaluation slots which cannot achieve the required throughput
can achieve the throughput close to the required throughput.
Thus, we conclude that the proposed mechanism works well
even in the actual Internet environment.

V. CONCLUSION

In this paper, we focused on upper-layer applications re-
quiring constant throughput, and proposed the TCP congestion
control mechanism for achieving the required throughput with
a high probability. The proposed mechanism is modified
the degree of increase of the congestion window size of a
TCP connection in the congestion avoidance phase, by using
the information on the available bandwidth of the network
path. We implemented the proposed mechanism on Linux
2.6.16.21 kernel system, and confirmed from implementation
evaluation that the proposed mechanism works well in the
actual networks.

In future studies, we will evaluate the performance of the
proposed mechanism in other actual network environments.
In addition, we would like to confirm the applicability of the
proposed mechanism to actual upper-layer applications, such
as a real-time video streaming.

REFERENCES

[1] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate
control (TFRC): Protocol specification,” RFC 3448, Jan. 2003.

[2] C. L. T. Man, G. Hasegawa, and M. Murata, “ImTCP: Tcp with an
inline measurement mechanism for available bandwidth,” Computer
Communications Journal special issue of Monitoring and Measurements
of IP Networks, vol. 29, pp. 1614–1626, June 2006.

[3] Microsoft Corporation, “Microsoft Windows Media - Your Digital Enter-
tainment Resource,” available from http://www.microsoft.com/windows/
windowsmedia/.

[4] RealNetworks Corporation, “Rhapsody & RealPlayer,” available from
http://www.real.com/.

[5] Skype Technologies Corporation, “Skype -The whole world can talk for
free.” available from http://www.skype.com/.

[6] K. Yamanegi, G. Hasegawa, and M. Murata, “Congestion control mech-
anism of TCP for achieving predicatable throughput,” in Proceedings of
ATNAC 2006, Dec. 2006, pp. 117–121.

[7] C. L. T. Man, G. Hasegawa, and M. Murata, “A simultaneous inline
measurement mechanism for capacity and available bandwidth of end-to-
end network path,” IEICE Transactions on Communications, vol. E89-B,
pp. 2469–2479, Sept. 2006.

[8] G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley, 1995.

[9] T. Tsugawa, G. Hasegawa, and M. Murata, “Implementation and evalu-
ation of an inline network measurement algorithm and its application to
TCP-based service,” in Proceedings of NOMS 2006 E2EMON Workshop
2006, Apr. 2006.

[10] L. Rizzo, “IP DUMMYNET,” available from http://info.iet.unipi.it/
∼luigi/ip dummynet/.

191191

