
Self-Organized Data-Energy-Aware Clustering and
Routing for Wireless Sensor Networks

Ehssan Sakhaee, Naoki Wakamiya, Masayuki Murata
Graduate School of Information Science and Technology

Osaka University, Osaka, Japan
Email: {sakhaee, wakamiya, murata}@ist.osaka-u.ac.jp

Abstract—In this paper we propose a clustering and routing
scheme for wireless sensor networks based on a self-organizing
approach. The aim of this approach is for nodes to perform
an integrated emergent task (data gathering and reporting to
the sink) by simply following rules based on their individual
local environment. Clusterhead election is also performed in a
distributed manner and is based on sensorfs relative residual
energy and the relative amount of information that they need to
send to the sink. Hence nodes are assumed to possess variable
data sizes across the network. In the scheme clusters are formed,
and decide on their roles in the data gathering and routing
procedure. Clusters at the edge of the network identify themselves
and become in charge of initiating the routing of data, whilst
intermediate clusters await data from higher clusters from the
edge of the network for further aggregation and forwarding
towards the sink. Simulation results show that the clustering
scheme is able to reduce the total amount of energy used up by
the network and efficiently route data back to the sink.

I. INTRODUCTION

Clustering in ad hoc and sensor networks develops a suitable
platform for efficient data gathering from nodes for reporting
back to a sink. This involves grouping a set of nodes together,
where a clusterhead (CH) is chosen for the management of
other nodes within the cluster, referred to as clustermembers
(CM) and the collection of sensor data from its CMs. Further-
more, it is possible for a node to belong to more than one
cluster and hence assist in intercluster communication and
routing of data to the sink. Such nodes are termed gateway
(GW) nodes. Clustering also has the advantages of better
addressing than flat routing protocols such as ad hoc on-
demand distance vector (AODV) [1] and the dynamic source
routing (DSR) [2] as it provides a heirarchical structure to the
network.

Some of the well known clustering schemes are the Low-
Energy Adaptive Clustering Hierarchy (LEACH) [3] and the
Hybrid-Energy-Efficient Distributed (HEED) clustering ap-
proach is proposed in [4]. both of which are self-organizing,
and distributed protocols. More recent work aiming at an
energy-efficient solutions to clustering in WSNs include [5],
[6], [7], [8], [9], [10], [11]. In particular, [12] proposes a
clustering scheme which is based on data correlation. In
this approach, nodes are grouped into clusters based on the
similarity of data of the nodes. However the clustering scheme
does not take into account energy as a metric in clustering,
which is a significant metric in a WSN. In [13], a routing
protocol is used which switches transmission power based on

the volume of data to be sent. This approach considers flat
routing in oppose to hierarchical routing offered by clustering.

It is important to develop a complete protocol which en-
compasses both efficient clustering of nodes for data gathering
and aggregation, and efficiently routing the data to the sink. A
complete solution should integrate a sequence of distributed
mechanisms for cluster formation and data gathering, that fos-
ters low energy consumption for the limited-energy-resourced
sensors, and allows the aggregation of data in a synchronized
and distributed manner. This provides a suitable approach to
large-scale deployment of sensor nodes with little reliance on
centralized control.

In this paper we propose to develop a self-organized
cluster formation and routing protocol for wireless sensor
networks (WSNs) with variable data sizes for the purpose
of efficient data dissemination. In a self-organized system,
also a characteristic of biological systems [14], has a simple
characteristic where all entities follow the same rules and
react and determine their states and future behavior based on
information obtained from their local environment. As a result
an emergent property appears which meets the total system’s
objective, whether it is to build a nest, or to simply preserve the
survival of the colony. Furthermore the total system’s objective
does not depend on any single individual member. Hence such
a simple concept is adopted into the proposed protocol, where
all nodes follow simple common rules purely based on their
local environment and determine their roles in the network.
As a result the desired function of efficient data dissemination
emerges at a global network level, via a distributed manner
without centralized control.

The application of the proposed clustering and routing
protocol is for quasi-concurrent data reporting of all sensors
back to the sink. This means that nodes are required to report
their data to the sink periodically at almost the same time.
Hence the protocol is suitable for time-driven rather than
event-driven sensor applications. Furthermore, we consider
sensors having variable data sizes to send to the sink.

Although generally it is presumed that sensor nodes initially
have the same size of data to send across the network, it
is possible (and more efficient) to consider scenarios where
the sensor nodes posses different data sizes for reporting and
can benefit from this property to more efficiently disseminate
appropriate and necessary data back to the sink. This can be
described in the following scenario. A number of sensors are

deployed across a field where each sensor monitors and peri-
odically reports the change in value of a number of observed
parameters. For instance, a sensor may periodically report
the change in temperature, pressure, and humidity from the
previously reported value. A sensor node whose observation
have remained the same as the previously reported value(s)
would then have a smaller data size to report back to the
sink. The largest amount of data is when all parameters have
changed, and the smallest amount of data is when no changes
have occurred in any of the parameters. The effect of node data
size would also become more apparent with nested parameters,
where a change in one parameter would require reading of
several other parameters. The data size may further increase
depending on the nature of data and reporting interval. Such
a scenario is an example of live reporting. A sensor may also
monitor and store several readings of changed values at various
intervals and report them in the future. In this case, nodes for
which their relative environmental condition is changing more
rapidly than other nodes would have more data to report at
the instance of reporting.

The basic mechanism of the proposed protocol dubbed
Data-Energy-Clustering and Routing (DECRO) is to initially
establish the relative distance of nodes to the sink, followed
by a self-organized clustering of nodes, self-determination of
relative cluster positions and cluster roles in the network and
finally data gathering and routing of aggregated data towards
the sink in an emergent systematic manner. The described
mechanisms occur subsequently in four phases which will be
described throughout this paper.

Though data aggregation is assumed in this paper to reduce
the data size at the CH, the paper does not directly treat with
data aggregation techniques and the interested reader is kindly
referred to [15]. A more recent data aggregation technique is
presented in [16], which claims to achieve high compression
ratios whilst using lower memory and computational costs. In
our simulations we simulate data aggregation as percentage
reduction of data and investigate its effect on the proposed
protocol.

The paper is structured as follows. Section II takes an
overview of related work on related clustering schemes. Sec-
tion III introduces the proposed clustering and routing scheme,
and describes in detail the four phases of the protocol. Section
IV shows simulations of the proposed protocol followed by
conclusions and future work in Section V.

II. PROPOSED CLUSTERING AND ROUTING PROTOCOL

A. Overview of Protocol and Assumptions

The proposed DECRO protocol is purely distributed and
all nodes simply use their one-hop local information obtained
from their one-hop neighbors to determine their function in
the network. The network assumptions are as follows: Nodes
are quasi-stationary, i.e. are generally static. All nodes have
the same transmission capability and transmit at the same
power and hence, range. All nodes have unique identifiers
(IDs). All nodes have the same capabilities in hardware and
software alike. Nodes are uniformly distributed. Each node

may have different energy levels and different data sizes to
send. All nodes are capable of CH status and able to perform
data aggregation for data size reduction prior to transmission.
Nodes may perform aggregation once they become CHs. All
nodes need to report their data in a quasi-concurrent manner
back to the sink. No CH is within communication range of
any other CH. Intercluster routing is done by mediation of
GW nodes. The required data reporting interval to the sink is
long enough for the proposed protocol to perform the required
four phases, which will be explained in the following sections.
Joining clusters is performed in a passive manner. All non-CH
nodes will join all clusters within range.

Similar to previous sensor network routing and clustering
protocols, the primary aim of this protocol is maximizing the
sensor network lifetime by avoiding node energy exhaustion,
through careful design of the proposed multi-phased protocol
mechanisms. There are four phases in the proposed integrated
clustering and routing protocol. These phases ensure that the
cluster formation, data gathering and routing are performed in
a coherent manner, without conflicting each other. The four
phases are: 1) Hopcount-to-sink initialization and neighbor
information discovery, 2) Cluster formation and cluster role
determination, 3) Data gathering within a cluster, and 4)
Routing of aggregated data from CHs to sink.

The first phase initiates the hopcount-to-sink (hops) of
nodes and exchanges node energies and data sizes in order to
calculate the relative cost of becoming CHs. Phase 1 triggers
phase 2, where cluster formation takes place. At the end of
phase 2, clusters identify their roles in the network. There are
two main roles for clusters: wait for data from higher cluster,
or initiator of routing data, which are the role of the clusters
furthest away from the sink, termed highest clusters (HCs).
Following phase 2, the data gathering phase (phase 3) begins,
whereby the CH collects data from its CMs. Finally the routing
phase (phase 4) begins by the initiation of routing by the HCs
in the network, followed by intermediate clusters towards the
sink. During this phase, the relative position of clusters plays
a vital role on how routing is performed.

Figure 1 illustrates an example of clusters formed in a
WSN using the proposed DECRO scheme. The figure also
shows the roles of clusters. The HCs are typically formed at
the edge of the network and are in charge of initiating the
routing procedure. These clusters have the highest hops CHs
in their region. The nature of such clusters is that downstream
data from such clusters would traverse intermediate clusters
throughout the network subsequently, resulting in an energy-
efficient mechanism that allows clusters to aggregate data
from higher clusters and forward this to the sink. CHs which
have neighboring clusters having CH hops greater than them,
termed higher neighboring clusters (HNCs), will wait for data
from these HNCs before aggregating and sending data towards
the sink. Such clusters having one or more HNCs are called
lower neighboring clusters (LNCs). A CH of a LNC realizes
the existence of a HNC when one or more of its GWs belong
to another cluster with a CH of a higher hops than itself. HNC
is purely relative. An HNC of an LNC itself becomes a LNC

Fig. 1. DECRO cluster formation.

of its own HNC i.e., a CH with a hops of k belongs to a HNC
of a cluster hops of k − 1, however a LNC with CH hops of
k + 1.

In Fig. 1, there are two HCs in the network with hops of
5 and 6 respectively. The initiation of the routing phase by
the HC is essential for the purpose of intercluster aggregation.
Furthermore, the waiting period of LNCs for data from HNCs
mitigates the funneling effect [17] that causes clusters and
nodes closer to the sink to lose more energy due to the excess
forwarding of data from nodes and clusters further away from
the sink. A LNC which does not have an appointed GW,
i.e. a GW which will forward data from a HNC also initiates
routing, as shown in Fig. 1.

We note that the first two phases, occur either once or
when needed e.g. due to topological changes and node fail-
ure/replacement, whereas phase 3 and 4 are repeated periodi-
cally for consecutive data gathering and routing to the sink.

B. Hops Initialization and Neighbor Information Discovery
Phase

Initially the sink broadcasts a hops information message
(HOPIM) to the entire network. The HOPIM format as <
NID, hops, energy, dataSize, reporting interval >. The
first field is the ID of the node (N) broadcasting the message.
The second field is used by the nodes to initialize their relative
distance in terms of number of hops from the sink. The energy
field specifies the current residual energy of the node, and
the dataSize field the current volume of data that needs to be
transmitted.

C. Cluster Formation Phase

1) Cluster Formation Algorithm: Clustering is triggered by
the first phase. Nodes proceed with the self-organized cluster
formation algorithm as follows:

1) After a fixed period tw for collection of HOPIMs, each
node calculates its own cost, as given in (1).

Costi = emax − ei + (ui + ut)d−1
aggET + utER, (1)

where emax is the maximum possible node energy,
ei is the residual energy of node i, ui is the current
data size of node i which needs to be transmitted,
ut is the total amount of data in bits that would be
received by node i from its neighbors upon becoming
a CH, calculated by summing the dataSize fields of all
collected HOPIMs from neighbors, dagg is the aggre-
gation factor, ET and ER are the energy per bit for
transmitting and receiving respectively. It is assumed
that all values have been appropriately normalized. We
note that if ei < (ui + ut)d−1

aggET + utER, then the
node would not be able to successfully receive and
transmit all the necessary data at the current time. The
smallest cost node is a good candidate as a CH. Once
the cost is calculated, the node sets off backoff timer tc

proportional to its cost, given in (2), and backoff timer
tc(max), which expires at a predefined maximum waiting
period that determines a node’s status, i.e. CH, GW,
or CM. The main purpose of the tc(max) timer is for
allowing the reception of multiple claims from different
CHs for nodes to obtain possible GW status. The two
timers are set off simultaneously.

tc(i) = tc(max)
Costi

Cost(max)
+ η, (2)

where tc(i) is the waiting time of node i before it
attempts at electing itself as a CH, tc(max) is the
maximum waiting period for node status determination,
and Cost(max) is the maximum possible cost of any
node, η is a random jitter introduced to minimize
collision probability when nodes have the same energy
and data sizes, by reducing the probability of the nodes
transmitting at the same time when their cost is very
close to each other. The maximum cost can be derived
in various ways, including statistically, however a simple
way is by setting parameters in 1 as follows. ut is the
total sum of data from all nodes in the network, dagg is
set to one, and ui is set to the maximum size of data a
node can possess at any time for transmission.

2) Since the backoff timer tc of the smallest cost node in
the vicinity is more likely to expire first, the smallest cost
node will elect itself as CH and send a CH claim (CHC)
message to its neighbors, preventing the neighbors from
obtaining CH status. The CHC message has the format
of < CHID, hops(CHID) >, containing the ID of the
CH and its corresponding hops value.

3) If two nodes within range produce a CHC simultane-
ously, the node with the lower ID will give up its CH
status by broadcasting a CH Declaim (CHD) to its one-
hop neighbors in order to dissociate neighbors that have
associated with it.

4) The neighbor nodes receiving the CHC message will
cancel their tc timer, and allow tc(max) to expire for

collecting other possible CHC messages from neighbor-
ing clusters, prior to the initiation of reporting their data
(phase 3). When a member receives CHC from more
than one CH, it becomes a GW candidate for intercluster
routing of data to the sink. Furthermore, from the hops
field of the CHC messages, the candidate GW discovers
its lowest hops CH which it will unicast its data to at
the time of data reporting in phase 3.

D. Data Gathering Phase (Intra-Cluster)

In parallel to the clustering phase, the data gathering (phase
3) is initiated. This phase is triggered upon a node’s timer
reaching tc(max). CMs, including GW nodes report their
data to the CH by unicasting their data to their CH in a
Cluster Member Data message (CMD) with the format of
< NID, CHID, hops(CHi...n), data >, where NID is the
ID of the source CM, CHID is the ID of the target CH the
message is being unicasted to, and the hops(CH) field include
the hops of all the CHs a GW (CM belonging to multiple CHs)
belongs to. This information is used by the overhearing HNC
CHs for discovering the GWs to LNCs. Hence although the
HNCs ignore the data of the CMD, they extract and store the
NID and hops of CHs in the CMD message. If a node is a
GW, it will unicast to its lowest hops CH as shown in Fig.
1 (dotted arrows). If the GW node belongs to CHs of equal
hops, it will choose the one with the higher residual energy,
else chooses one randomly. This mechanism is predominantly
used to avoid identical data being sent to two or more clusters.
This not only reduces redundant data, but also other energy-
wasting overhead performed by the additional and unnecessary
CH(s). The CHs wait for some time for data to be received
by the CMs. This waiting time depends on the total amount
of data in the cluster, number of nodes in the cluster, and
other MAC protocol-related influences, which is beyond the
scope of this paper. However for the sake of simplicity, we
can assume that initially the waiting time of the CH is the
total size of data from all members of a CH which will be
sent to the CH, obtained from HOPIM messages, divided by
the effective bandwidth. CHs gather the data from their CMs
and aggregate this data for reporting to the sink.

E. Routing Phase

Once the data gathering is complete by each CH, intercluster
routing of data to the sink can begin. If a CH does not have
a HNC, i.e. it is a local HC, it will immediately unicast it’s
aggregated data message to its highest energy GW which leads
to the lowest-hops LNC. It is important to choose the highest
energy GW among the lowest hops GWs, i.e. hops precedes
energy for selection, as otherwise a higher energy GW of a
higher hops takes a longer path, which will consume more
network energy, in addition to further data accumulation by
additional clusters being traversed as a result of the longer
path. If a CH CHi does have a HNC, in the first round of
routing, it will wait for a period thnc(CHi) to receive data
from higher clusters before further aggregating and routing
towards the sink. In such a case, the appointed GW will also

wait for thnc to obtain HNC’s data from CHi. thnc must be
sufficiently long enough to ensure the lower clusters towards
the sink will receive the aggregated data from higher clusters in
the first round of routing. Hence thnc should take into account
MAC protocol-related delays as well as propagational and
processing delays. We assume the time take to cross clusters
in a typical large network is lower than the reporting interval,
hence an appropriate value for the initial thnc is to set it to the
reporting interval. Once this timer expires, the CH will forward
its own aggregated data towards the sink. Furthermore, thnc

is reduced after receiving the first data packet, allowing nodes
to sleep during the waiting period of HNC’s data. The process
continues until the sink receives all the data.

Before routing of data can begin, HNCs need to be deter-
mined, and best GW for each cluster needs to be identified.

1) Highest Cluster Determination: When CH1 hears a
GW’s CMD message containing a CH hops greater than itself,
it knows that a neighboring higher cluster (HNC) exists and
so itself cannot be a HC. If CH1 does not receive a GW CMD
message containing a CH hops greater than itself, it assumes
it is a local HC, and so in charge of initiating the routing
phase. All non-HCs will proceed with further aggregation and
rebroadcasting upon receiving the aggregated data from their
HNCs and forwarding the aggregated data towards the sink
via their LNCs.

2) Best Gateway Determination: For the purpose of routing
(phase 4), energy becomes the primary factor. Hence, out of
the smallest hops GWs, the GWs that have the highest amount
of residual energy after forwarding the data are chosen to route
the data back to the sink. A CH calculates the residual energy
of its individual GWs after the GWs have transmitted their
data to their CH, and uses this prediction to determine the
highest energy GW for routing, using the following:

Eic = ei − eCMD − uiET , (3)

Eic is the current energy of GW i, ei is the energy of GW
i as obtained from the HOPIM exchanged during phase 1,
eCMD is the energy used up to transmit the CMD message,
and ui is the size of the data that was transmitted by GW
i obtained through the HOPIM. If GW i is chosen by the
CH to forward its data, ei stored at the CH is replaced with
Eic for the next routing phase. Once the CH discovers the
best GW, it will send a GW appointment (GWA) message,
in the format of < CHID, GWID > denoting the ID of
the GW to be appointed by CHID . This forces the GW to
become an Appointed GW (AGW) and hence stay awake in
order to receive the aggregated data from the CH and forward
it to the LNC. Other candidate GWs simply act as normal
CMs and go to sleep upon sending their data to the CH in
phase 3. The routing is initiated by the CH of the HC, where
the CH unicasts its aggregated data to its best GW using a
Node Aggregated Data message (NAD), with the format of
< SID, DID, aggregatedData >, where SID is the ID of
the source node, in this case the CH, and DID is the ID of
the destination node, in this case the GW in which the CH

Fig. 2. Flowchart of DECRO mechanisms.

is unicasting its aggregated data to, to be forwarded to the
next LNC. The GW is identified by the CH from the CMD
messages received by the CH during the data gathering phase.
A GW that receives the aggregated data from one of its CHs
will unicast it to the appropriate next CH towards the sink in a
new NAD message destined for the next CH. The aggregated
data is not modified in any way by the GW, and is identical
to that obtained from the NAD message of the previous CH.
The next CH of the LNC, will continue this process by further
aggregating the data and forwarding it accordingly in a new
NAD message. This process continues until the sink receives
the final NAD initiated from the HC.

F. Integrated Protocol Mechanisms

The basics of the multi-phase DECRO protocol mechanisms
are illustrated in the flowchart of Fig. 2. Some of the extended
mechanisms and features of the protocol, such as reclustering
have been left out for simplicity. Fig. 3 describes the timeline
of the four consecutive phases. The protocol contains six
timers in total which include four predefined timers, namely
tw, tr, tc(max), and tN , and two variable timers tc and thnc,
which are adjusted after the first round of reporting. In the
figure, periods, i.e. non-timers, are expressed in brackets.
These include transmission period (tT), sleep period (tS),
reception period (tR), and data aggregation period (tagg).
Timer tN is used by CHs and appointed GWs for the routing
phase. It is a timer used to check whether the data gathering
phase is complete for the current round. During tN , a node is
in the state of idle listening. tN reinitiates after each segment
of data is received, and once expired the node assumes that
all the data for the current instance of reporting has been
obtained, and hence begins the next task, e.g. aggregation or
transmission of data.

There are four primary nodes in the figure which take part
in the basic functionality of the DECRO protocol. Initially all
nodes are normal nodes without any status. The protocol is
initiated when the sink broadcasts a HOPIM. After a time tw

of waiting for the reception of HOPIM from neighbors, nodes
calculate their costs and setoff the two backoff timers tc and
tc(max). In the figure, nodes j and l have tc(j) and tc(l) which
expire first in their respective neighborhoods, hence becoming
CHs and broadcasting CHCs to their neighbors, and then going
to sleep. Upon receiving the first CHC from node j, nodes i
and k cancel their tc timers. At the time of the expiration of
tc(max), node k has also received a CHC from node l, and
so obtaining a GW status, and node i becomes a normal CM.
Upon expiration of tc(max), all nodes setoff their backoff timer
tr. The two CHs wake up to listen for data from the CMs.
The CMs sense data, and unicast the information in a CMD
message to their appropriate CH. All GW nodes except the
GW nodes which received a GWA message from their CH, will
go to sleep shortly after transmitting their CMD messages. The
appointed GW will remain awake and wait to receive NAD
messages from the HNC, in order to forward this to the LNC.

It is important to note that the first round of routing, the CH
and appointed GW of an LNC wait for a period of thnc, and
this waiting time is adjusted after the first NAD message is
received from the HNC. Upon the reception of the first NAD
message, the CH and appointed GW of an LNC can determine
the time it takes for the next NAD message to arrive. Hence,
for consecutive rounds of phase 4, the CH will sleep after
receiving CMD messages from its neighbors, and awakes just
before the expected arrival of the next NAD message from the
HNC. Nodes always awaken at the time their tr expires, and
reset this timer upon waking.

G. Reclustering

During the lifetime of the WSN, reclustering is necessary.
Reclustering may be triggered via several methods, such as
the sudden death of a CH. An imbalance of energy/data may
also cause reclustering, however, this may require constant
exchange of HOPIM between neighboring nodes, and pro-
cessing of overheard data messages. Hence, actual reclustering
frequency depends on several factors, including battery power,
data size, and the reporting interval to the sink. Reclustering
can be triggered by an appointed GW when it does not
receive or overhear a NAD messages for a predefined number
of rounds of reporting (a counter is incremented each time
a round is complete, determined by the cycle of waking
and sleep). The GW will trigger a local reclustering by
broadcasting a HOPIM message with a hops value of −1,
which limits the broadcast locally, in oppose to the HOPIM
message broadcasted by the sink with a hops value of 0 which
is broadcasted to and causes reclustering of the entire network.
The sink is able to perform reclustering of the entire network
at any time by broadcasting a HOPIM message with a hops
value of 0. The sink may generally do this after several rounds
of data gathering and reporting.

Fig. 3. Complete DECRO timing mechanisms.

III. SIMULATION

Simulations are performed by implementing the protocol in
the Java programming language. To first investigate a typical
emerging network that results from the DECRO approach,
500 nodes are uniformly simulated with a range of 90 m
across a 500 m by 500 m region. Fig. 4 shows the emerging
network that results. The dark clusters represent the HCs,
and light clusters are intermediate clusters. In this case a
HC is produced at the center of the network as no GWs
exist to any adjacent HNCs. This unpredictability is expected
in self-organizing systems as nodes are only aware of local
information, and have no global knowledge of the network.
This is at the expense of robustness and decentralized control.
The HCs initiate routing as shown and traverse intermediate
LNCs towards the sink. Although most intermediate clusters
are traversed via the HNCs as initiated by the HCs, some
clusters remain untraversed, in which case their thnc expires
and their data is sent towards the sink independently. In the
figure, the arrows show the general direction of routing of data
and intermediate clusters being traversed.

Using the sensor node energy consumption model used in
[3] we take 500 nJ/bit for the transmitter and receiver circuitry,
and 100 pJ/bit/m2 for the transmitter amplifier. Transmission
range starts at 50 m, with 10,000 nodes are arranged uniformly
across a rectangular area of 500 m by 500 m. Each node has
variable data sizes of up to 8000 bits. Nodes initially have
variable energy. In the simulations we assume the dissipated
energy is caused by the post-clustering phases (phase 3 and
phase 4).

Fig. 5 shows the results for the total energy used up by
the network when varying the data aggregation efficiency
(defined by the percentage of data reduction for both intra-
cluster and inter-cluster aggregation) for different transmis-

sion ranges. From the figure, the higher transmission ranges
results in higher energy consumption in comparison to that
of lower transmission ranges. This is due to the fact that by
choosing higher transmission ranges, individual nodes use up
more energy to transmit at a higher power. However, data
aggregation can significantly reduce the energy consumption
of the network as shown in the figure.

Fig. 6 shows the average number of GWs and non-GWs
produced per cluster as the transmission range is increased.
From the figure, as the transmission range of nodes increases,
the number of GWs significantly increases, and although the
number of member nodes increases, it does not increase
as sharply in comparison to the number of GWs. Although
increasing the transmission range results in increased number
of GWs, the advantage of this increased number of GW nodes
gives CHs more choice for GW selection for both choosing
the highest energy GW for routing data towards the sink, and
also for alternating between several GWs at each round of data
gathering and routing. We also note that the whether a node is
a GW or a non-GW member does not deteriorate performance
in any way as GW nodes also send their data to only one CH.

Fig. 7 shows the relative energy consumed by all CHs, GWs,
and non-GWs, after 30 data gathering and reportings to the
sink. All nodes in this scenario have a data size of 4000 bits.
From the figure, energy consumed by non-GW members is
negligible in comparison to that of the energy used up by
the CH and GW nodes. Furthermore the energy of non-GW
nodes is not affected by data aggregation, as they simply send
their own data and not affected by any data aggregation. We
also note that although using no data aggregation causes the
CH to use up more energy than GWs, as the data aggregation
ratio increases, the GW energy usage increases. There are two
reasons for this. GWs first send their own data then forward

Fig. 4. Emerging network.

the aggregated data of their CH to the next cluster, whereas
CHs withhold their own data, aggregate it with the data of
their members, then forward it to the GW. Although the total
energy of GWs used through several rounds of reporting is
higher than CHs, individual GWs use up less energy than
their corresponding CHs, as the same clusterhead has to
repeatedly repeat data gathering and forwarding, whereas the
GWs alternate in forwarding data. This is because the CH
generally has several GWs (more as density of nodes and
transmission range increase) to choose from for routing its
data, and it will send it to the one with the (lowest HoTS)
highest energy GW.

DECRO is simulated against a modified version of HEED
dubbed (HEED-ER) - HEED - Enhanced Routing. This version
of HEED routes data to the sink via the highest hops, highest
energy CH, and hence has an enhanced performance over
the use of traditional routing protocols such rather than using
traditional approaches such as DSR [2] and Directed Diffusion
[18] as suggested in the original paper of HEED [4], which
are more prone to flooding the network. The reporting is
performed periodically. The simulation compares pure HEED-
ER and DECRO in regards to the total energy consumed
by the network with number of reports to the sink. In the
simulation we set the clustering range to 390 units for DECRO
and 390 units for HEED clustering range and 555 units for
intercluster communication range. Fig. 8 shows the result
for when no aggregation is used. In this figure, HEED-ER
performs better for the first four reports, however DECRO
soon surpasses in performance after the fifth report. Fig. 9
shows the results when 50% aggregation is used. In this
figure, DECRO outperforms HEED-ER even from the first
report. Fig. 10 shows the result when 90 % aggregation
is used. In this figure, DECRO outperforms HEED-ER at
even a greater extend compared to the lower aggregation
factors. The apparent significant performance of DECRO with

Fig. 5. Total network energy usage with varying data aggregation efficiency.

Fig. 6. Average number of gateways (GW) and non-gateway (non-GW)
members formed per cluster with varying transmission range.

Fig. 7. Relative energy consumption of CHs, GWs, and non-GWs.

increasing aggregation factor is due to the fact that intercluster
aggregation is possible in DECRO, whereas this is not possible
in HEED-ER.

IV. CONCLUSION AND FUTURE WORK

In this paper we introduced a self-organized clustering and
routing protocol which works in a distributive manner. Several
phases constitute the proposed clustering and routing scheme,
which effectively performs data gathering from all sensor
nodes within the network in a quasi-concurrent manner and
routes the data back to the sink in a multi-hop fashion. The
protocol works on the idea of initialization of reporting by the
highest clusters in the network, which identify themselves in
a distributive and self-organized fashion, and the subsequent

Fig. 8. Total energy consumed vs number of reports for HEED-ER and
DECRO (zero aggregation).

Fig. 9. Total energy consumed vs number of reports for HEED-ER and
DECRO (50% aggregation).

Fig. 10. Total energy consumed vs number of reports for HEED-ER and
DECRO (90% aggregation).

aggregation of data by intermediate clusters towards the sink.
Simulation results show the effectiveness of the approach in
reducing the amount of energy consumed by the network. In
this paper MAC-related issues have been left out for simplicity
and to present the main concept of the scheme, however
although the scheme is independent of the MAC protocol,
the actual performance is affected by the underlying MAC
protocol used, hence this should be studied in detail in future
work.

ACKNOWLEDGMENT

This research was supported in part by the Global COE
(Centers of Excellence) Program of the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

REFERENCES

[1] C. Perkins, E. Royer, and S. Das, “Ad hoc on-demand distance vector
(aodv) routing,” RFC 3561, 2003.

[2] D. Johnson, Y. Hu, and D. Maltz, “The dynamic source routing protocol
(dsr) for mobile ad hoc networks for ipv4,” RFC 4728, 2007.

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proc. of the 33rd Annual Hawaii International Conference on System
Sciences (HICSS’00), Hawaii, USA, Jan. 2000, pp. 3005–3014.

[4] O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed
clustering approach for ad-hoc sensor networks,” IEEE Transactions on
Mobile Computing, vol. 3(4), pp. 366–379, Oct-Dec. 2004.

[5] M. H. Tolou and J. Chitizadeh, “Lifetime prolonging of wireless sensor
networks via a recursive clustering algorithm,” in Proc. of the third IEEE
International Conference in Central Asia on internet the Next generation
of mobile,wireless and optical communications networks (IEEE/IFIP
ICI’07), Tashkent, Sep. 2007, pp. 1–6.

[6] C. H. and M. S., “Cluster sizing and head selection for efficient data
aggregation and routing in sensor networks,” in Proc. of IEEE Wireless
Communications and Networking Conference (IEEE WCNC’06), vol. 4,
Las Vegas, NV, USA, 2006, pp. 2318–2323.

[7] M. Ye, C. Li, G. Chen, and J. Wu, “Eecs: An energy efficient clustering
scheme in wireless sensor networks,” in Proc. of the 24th IEEE In-
ternational Performance, Computing, and Communications Conference
(IPCCC’05), Phoenix, Arizona, USA, Apr. 2005, pp. 535–540.

[8] Y. Zhou, M. Hart, S. Vadgama, and A. Rouz, “A hierarchical clustering
method in wireless ad hoc sensor networks,” in Proc. of the IEEE
International Conference on Communications (IEEE ICC’07), Glasgow,
Scotland, Jun. 2007, pp. 3503–3509.

[9] R. Krishnan and D. Starobinski, “Efficient clustering algorithms for self-
organizing wireless sensor networks,” Ad Hoc Networks, vol. 4, no. 1,
pp. 36–59, Jan. 2006.

[10] J. Kamimura, N. Wakamiya, and M. Murata, “Distributed clustering
method for energy-efficient data gathering in sensor networks,” Inter-
national Journal on Wireless and Mobile Computing, vol. 1, no. 2, pp.
113–120, 2006.

[11] J. Yu, W. Liu, J. Song, and B. Cao, “Eemr: An energy-efficient
multi-hop routing protocol for wireless sensor networks,” in Proc. of
the International Conference on Computer Systems and Application
(IEEE/ACS AICCSA’08), Doha, Qatar, Mar. 2008, pp. 291–298.

[12] M. H. Yeo, M. S. Lee, S. J. Lee, and J. S. Yoo, “Data correlation-based
clustering in sensor networks,” in Proc. of the International Symposium
on Computer Science and its Applications (CSA’08), Hobart, Australia,
Oct. 2008, pp. 332–337.

[13] R. Gunasekaran and Q. Hairong, “Xlrp: Cross layer routing protocol for
wireless sensor networks,” in Proc. of the IEEE Wireless Communica-
tions and Networking Conference (WCNC’08), Las Vegas, USA, Arp.
2008, pp. 2135–2140.

[14] S. Kauffman, “At home in the universe: The search for the laws of
self-organization and complexity,” AIP Press, 1995.

[15] R. Rajagopalan and P. Varshney, “Data-aggregation techniques in sensor
networks: a survey,” IEEE Communications Surveys and Tutorials,
vol. 8, no. 48–63, 4th Quarter 2006.

[16] F. Marcelloni and M. Vecchio, “A simple algorithm for data compression
in wireless sensor networks,” IEEE Communication Letters, vol. 12,
no. 6, pp. 411–413, Jun. 2008.

[17] J. Li and P. Mohapatra, “Analytical modeling and mitigation techniques
for the energy hole problem in sensor networks,” Pervasive and Mobile
Computing, vol. 3, no. 3, pp. 233–254, Jun. 2007.

[18] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
Proc. ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM’00), Boston, USA, Aug. 2000, pp. 56–67.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

