
On Attractor Perturbation through System-inherent Fluctuations and its
Response

Kenji Leibnitz†, Chikara Furusawa† and Masayuki Murata†

†Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka, 565-0871 Japan

Email: {leibnitz,furusawa,murata}@ist.osaka-u.ac.jp

Abstract—The recent trends in communication technol-
ogy toward an ambient information network society will
inevitably lead to an increased diversity and heterogeneity
of devices, as well as network traffic. Efficient coopera-
tion and interaction among connected devices and proto-
cols must be able to cope with a large degree of fluctua-
tions. In this paper we discuss the application of the attrac-
tor perturbation concept from biological systems for uti-
lizing inherent traffic fluctuations to smoothly control the
access rate at a gateway node injecting traffic into the core
network. This adaptive control scheme is performed only
by using instantaneous observations of the local buffer oc-
cupancy and its variance.

1. Introduction

One of the main purposes of ambient networking [1] is to
provide a seamless method for cooperation and interaction
among different types of access networks (e.g., wireless
mesh networks or cognitive radio) connecting to a back-
bone core network and offering the user custom-made ser-
vices. However, due to the large heterogeneity among pos-
sibly connected devices and protocols, it is expected that
a large traffic volume subject to a high level of fluctuations
will be traversing through these gateway nodes. Since gate-
way nodes separate the local traffic from global traffic, a
careful and moderate control must be performed regarding
their access. While not too much traffic should be injected
into the core network, the control should not be made in a
strict way, which would lead to timeouts and packet drops,
but rather by subtle and small influence utilizing the inher-
ent fluctuations in the local traffic pattern.

In order to accomplish this, the concept of attractor per-
turbation can be utilized, which provides a mathematical
relationship between the inherent fluctuations of a system
and its response. The principle of attractor perturbation
states that a “force”, which is input to a fluctuating sys-
tem, will result in a linear relationship in the system’s re-
sponse depending on the degree of its fluctuations, given
by its variance. Our study proposes the control of the traffic
rate at a gateway node’s input buffer in an ambient network
infrastructure without explicitly knowing the traffic charac-
teristics. This is done by only using measurements of the
time series of a fluctuating observable quantity, in this case
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Figure 1: Buffer at access node in an ambient network

the buffer occupancy (see Fig. 1). Through the concept of
attractor perturbation, the rate of the local traffic can be
controlled by applying a subtle force in such a way that the
end-users in the local network do not become aware of it
and that it is most beneficial for the whole system.

2. The Attractor Perturbation Concept

It is evident that in biological organisms and cells there
are always some inevitable fluctuations in quantity or be-
havior [2]. In fact, the existence and exploitation of fluctua-
tions is one of the key features of self-organizating systems
[3]. Our approach is based on the work of Sato et al. [4],
where a general relationship between fluctuation and re-
sponse in biological systems is provided. It was also dis-
cussed later in [5].

We can summarize the general concept as follows. Con-
sider a measurable variable x (e.g. concentration of a pro-
tein), which is subject to fluctuations, and which exists
within a biological system (e.g. cell or organism). Fur-
thermore, let us denote a parameter a, which influences
the system and can be externally controlled (e.g. DNA
sequence of a gene). Since the variable x(t) is a time-
dependent quantity, we can observe its time series and ob-
tain its distribution without explicitly knowing the influ-
ence of the parameter a on x. Especially, the average µa
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Figure 2: Basic principle of attractor perturbation

and variance σ2
a under the condition of parameter a can be

obtained. It is shown in [4] that for a change in parameter
from a → a + ∆a the resulting perturbation in the average
value of x is linearly proportional to the variance prior to
the force σ2

a with b being a constant as shown in Eqn. (1).

µa+∆a − µa = b ∆aσ2
a (1)

The relationship in Eqn. (1) is theoretically derived for
a unimodal Gaussian-like distribution and verified experi-
mentally by observing the distribution of fluorescence pro-
teins after genetic evolutions of a bacteria in [4]. The basic
principle of this concept is illustrated in Fig. 2. By ap-
plying the same force through the control parameter a, the
variable x that has a larger variance can be perturbed more
easily than when its variance is small. Note that this rela-
tionship does in no way assume any explicit knowledge on
how a and x are related and, thus, provides a good control
method in systems with unknown dynamics.

2.1. The Relationship between Attractors and Proba-
bility Distributions

Equation (1) actually only describes the stochastic prop-
erties of the variable x. In this section, we discuss more
clearly how this is related to the concept of attractors and
dynamic systems in order to show why this feature can be
considered as stable mechanism.

Let us consider the simple case of a one-dimensional dy-
namic system given in Eqn. (2).

d
dt

x(t) = −ρ (x(t) − x0) + η(t) (2)

The term η(t) represents the background noise, whereas ρ
defines the softness of internal control within the system.
Here, we have an attractor at x0. The total noise in the
system is, thus, given by two factors η(t) together with ρ,
which are in general unknown quantities. Defining this to-
tal variance as σ2 = D/ρ, where D is half of the variance
of η and assuming that the resulting probability distribu-
tion can be expressed by a normal distribution, we have the
probability density function as in Eqn. (3),

p(x) = p(x0) exp
(
−

(x − x0)2

2σ2

)
(3)
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Figure 3: Fluctuating system with loose control (ρ = 0.1)
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Figure 4: Fluctuating system with tight control (ρ = 1.0)

where
p(x0) =

1
√

2 πσ2
. (4)

By taking the negative of the logarithm on both sides of
Eqn. (3), we obtain the following equation.

F(x) = − log(p(x)) =
(x − x0)2

2σ2 − log(p(x0)) (5)

Thus, we can characterize an energy potential function
by the derivative over x as

E(x) =
dF
dx

= −
ρ (x − x0)

D
. (6)

Figures 3 and 4 illustrate the above derivation for 2D =

0.1, x0 = 0. In both figures, the background noise value
remains constant, but in Fig. 3 the system has a more loose
control by having a smaller ρ value. Figure 3 shows the
histogram, its logarithmic transformation, as well as the re-
sulting potential function as a dashed line. On the other
hand, Fig. 4 allows less fluctuations, which is indicated by
a steeper energy potential and can be considered as a more
stable and tightly controlled system.

2.2. Dynamics of One-Dimensional System

Let us investigate the attractor perturbation dynamics by
applying a force ∆a to perturb the state value x. In our con-
text a force is a constant term, which shifts the equilibrium
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Figure 5: Time series of fluctuating variable x(t) after ap-
plying the same force
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Figure 6: Illustration of the linearity in response to fluctua-
tions

point away from it’s initial value x0. In the experiments
shown in Fig. 5, the numerical simulations run from t = 0
to tmax = 10000. At time t = tmax/2, a “unit force” of
∆a = 1 is added, shifting the mean value of the state x. We
can see that adding the same force results in a shift of the
average for different degrees of internal fluctuation ρ. The
tightly controlled system with ρ = 1.0 shows the least in-
fluence, whereas for ρ = 0.1 we have a significant increase
in mean from µa = 0 to µa+∆a = 10. In general, applying
a constant force to the system results in a larger perturba-
tion for higher fluctuating systems and the offset is linear in
proportion to the variance of the observed variable before
applying the force. This linear relationship is illustrated in
Fig. 6.

3. Proposed Rate Control Mechanism

We now propose a rate control mechanism based on the
attractor perturbation concept for the gateway node sce-
nario in Fig. 1.

3.1. Description of the Algorithm

Let us assume that the gateway node has two buffers,
one for global traffic and another for local traffic. Each
buffer has a maximum capacity of B. Furthermore, let us

assume that the system operates in discrete time steps, so
that packet interarrivals are geometrically distributed and
depend on the packet arrival probabilities p1 (global traffic)
and p2 (local traffic). At the output port, there is a work-
conserving scheduler that multiplexes both traffic streams.
We assume that the arrivals at each queue are independent
and we can only observe the time series of the buffer oc-
cupancy at the local buffer x2(t). Our objective is to utilize
the attractor perturbation concept to control the local traf-
fic arrival probability p2(t), which can be considered as the
control parameter for the attractor perturbation method.

The basic algorithm for controlling the local arrival rate
can be outlined as follows.

1. Measure the local buffer occupancy values over a
sliding window W to obtain the time series x2(t −
W), . . . , x2(t).

2. Calculate the variance over the measured values as

v2(t) = Var[x2(t −W), . . . , x2(t)] (7)

A method for efficiently maintaing the variance for a
sliding window of a data stream is for example given
in [6].

3. Update the local arrival probability p2(t) as follows

p2(t + 1) = p2(t) + δ(t) s(t) (8)

where δ(t) = sign(B/2−x2(t)) is the direction in which
the force is applied and s(t) = f (v2(t)) is the strength
of adaptation utilizing the linear relationship given by
Eqn. (1).

3.2. Results from Numerical Experiments

The numerical results from a simulation experiment are
shown in Fig. 7. In this experiment, we randomly choose a
new arrival probability p1 for the global buffer every 1000
time steps as shown in Fig. 7(a). Based on the scheduling
discipline and the arrival probabilities, the local buffer size
will fluctuate over time as can be seen in Fig. 7(b). Note
that we also show in this figure the occupancy of the global
buffer x1(t), but we assume that this information is hid-
den from the view of our proposed buffer control scheme.
Based on the time series of x2(t), it is possible to extract the
variance v2(t) of the local buffer occupancy over a sliding
window as shown in Fig. 7(c).

We now apply the attractor perturbation concept by set-
ting the adaptation strength as s(t) = v2(t)/B2 in order to
control the local buffer arrival probability p2(t) in Fig. 7(a).
This figure also illustrates that p2(t) reacts roughly in-
versely to the arrival probability of the global buffer. Fur-
thermore, the local buffer level x2(t) fluctuates much more,
which indicates that the total flow of packets is nearly in
balance. If the inflow is less than the outflow, both buffer
levels would be low, but the system would be underutilized.
On the other hand, if the inflow is larger than the outflow,
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Figure 7: Example of time series for rate control

at least one of the buffers would be near the buffer capacity,
leading to increased blocking and packet loss.

4. Conclusion

In this paper we discussed about the relationship be-
tween system-inherent fluctuations and the response, which
we coined under the term as the attractor perturbation con-
cept. By taking this method into account, a fluctuating sys-
tem can be influenced in a controlled and subtle way. Be-
side the theoretical formulation and comparison between
attractor systems and probability distributions, we also pro-
vided an application to the rate control at the buffer of a
gateway node in an ambient network environment. Simple

numerical experiments showed that although this method
is rather simple, it is capable of adapting to changes in the
environment. In the future, we are planning to extend this
method to a higher dimension, as well as study the appli-
cability of our proposal to further network applications and
services. Our goal is to apply the benefits of attractor per-
turbation to the dynamics of the attractor selection scheme
[7, 8].
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