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Abstract—Self-organized control has received significant atten-
tion in the area of networking, and one of the main factors for
this attention is its robustness. However, it should be stressed that
deciding whether self-organized control is robust or not is not a
trivial task. Even if it is in fact robust, the factors underlying
its robustness have not yet been explored in sufficient detail.
In this paper, we provide the first quantitative demonstration
of the superior robustness of self-organized control through
comparison with centralized control in a sensor network scenario.
Through simulation experiments, we show that self-organized
control maintains the functionality of its data collection even
in a variety of perturbations. In addition, we point out that
the difference in the robustness of the abovementioned control
schemes stems from the degree to which the comprehension of a
given node about the state of the network depends on information
obtained from other nodes.

Keywords—sensor network; self-organized control; centralized
control; robustness; simulation

I. INTRODUCTION

As networks are becoming increasingly larger and more
complex, a critical issue in today’s dynamically changing
and uncertain environments is to maintain the functionality
of networks in a manner which allows them to adapt to
environmental changes. A control scheme which maintains
the performance even when the network state changes dra-
matically or unforeseeable circumstances occur is preferable
for present and future networks, even if the basic network
performance in such cases is inferior to that of networks
operating with other control schemes. The property which
allows a system to maintain its functionality despite external
and internal perturbations is called “robustness” [15]. In this
age when networks play an essential role in our everyday lives,
the robustness of networks is becoming increasingly important.

Distributed control has been said to be superior to central-
ized control with respect to robustness. Currently, a type of
distributed control scheme which is beginning to attract con-
siderable attention is one of self-organized control [10][20].
The communication networks based on such a self-organized
control are considered to be suitable as the network which
consists of movable nodes like many persons or cars, and a
network used in the situation where environmental variation

is remarkable, like disaster sites. In this control scheme, each
component autonomously decides the following action on
the basis of local information, and the simple microscopic
actions of the components collectively provide structure and
functionality at macroscopic level without any centralized co-
ordination [19]. Such behavior is distinct from plain distributed
control, where individual components act autonomously but
depend on global information. Although scalability, adaptabil-
ity, and fault tolerance, which are included in the concept of
robustness in a broad sense, are “known” as properties inherent
to self-organized control, we stress that this knowledge is cer-
tainly not trivial. Even assuming that the notion of robustness
is true, to the best of our knowledge the reasons why self-
organized control is robust and the factors which determine
the superiority of its robustness as compared to other control
schemes have not been examined with sufficient rigor.

In our previous work [13][14], we provided quantitative
evidence of the robustness of self-organized control with
respect to transmission errors and node failures, and concluded
that the robustness of the self-organized control scheme is
superior to that of other control schemes. However, since
sensor networks face a wider range of perturbations, the
purpose of this paper is to demonstrate the advantages of self-
organized control against perturbations different from those in
our previous work. Furthermore, based on the results of the
evaluation, we also pose interesting questions such as why and
how self-organized control is robust. In [21], from the results
of the comparison, we pointed out that the difference in the
robustness is derived from the degree to which the comprehen-
sion of a given node about the state of the network depends on
information from other nodes. This is the key to differentiating
the degrees of robustness of those two control schemes. In
this paper, we describe the details of each method which were
not able to be described in [21]. Furthermore, we show the
characteristic of self-organized control by distribution of the
number of hop of routes, and present the difference in the
robustness of each control method against bit error.

The remainder of the paper is organized as follows. In
Section II, earlier approaches to self-organized control are
reviewed. Sections III describes the mechanisms of centralized



control and self-organized control, respectively. Section IV
presents the simulation results so as to compare the robustness
of both control approaches. In Section V, we discusses what
brings robustness to self-organized control on the basis of these
results. The paper is concluded in Section VI and discusses
the generalization of our conclusions.

II. RELATED WORK

The principle of self-organization is developed in nature [8],
and we can find it everywhere. Each component autonomously
decides its next action on the basis of local information, and
the microscopic simple actions of the components collectively
provide structure and functionality at the macroscopic level
without any centralized coordination [19]. Such self-organized
behavior is disparate from the distributed paradigm where
individual components act autonomously while sharing global
information, and many researchers have tried to derive the
advantageous properties of the self-organizing system in ef-
forts to solve scalability, reliability, availability, and robustness
problems. For example, Directed Diffusion [12] is a well-
known self-organization paradigm for certain novel features,
including reinforcement-based adaptation of the gradient to the
empirically best path. It is also known to be robust against
node failures. [9] is proposed to achieve good adaptability
and scalability by endowing mobile agents with simple intelli-
gence. Some researchers further this approach and incorporate
the behavior of social insects into the agents. BiSNET [4],
which was shown to have strong self-healing capability for
false positive data in data gathering, are examples that were
inspired by the foraging principles of honey bees, while
[16][5][25] are inspired by the Ant colony metaheuristic and
said to be robust against node mobility. ACE [6] is an emergent
algorithm that forms clusters through three rounds of feedback
between nodes. Using local information alone, it efficiently
covers the network with only a small amount of overhead.
Ant-based clustering [11][24][22] is also a clustering method,
drawing its inspiration from the behavior of ant colonies, but
it is applied for data analysis. In addition, the task allocation
method proposed in [17] uses the concepts of the “division of
labor” of ants to achieve higher coverage in sensor network.

III. CENTRALIZED AND SELF-ORGANIZED CONTROL

SCHEMES IN SENSOR NETWORKS

We provide detailed explanation of our centralized and
self-organized control schemes, which are the subjects of
robustness evaluation in the present study. The operations of
both control schemes are based on the premise that multiple
sinks are deployed in their respective monitoring regions.
Using this multi-sink configuration, both control schemes take
a cluster-based approach, in which the same number of node
clusters and sinks is formed, and individual sensor nodes
transmit their sensed data to the sink located in their cluster
(Figure 1).

A. Centralized control

Younis et al. [23] proposed a data-gathering scheme
for sensor networks that assumes the existence of multiple
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Fig. 1. Network model.

sinks (for consistency with the terminology used in our self-
organized control [13], we use “sinks” here instead of the
“gateway nodes” used in [23]). Sinks are significantly less
energy-constrained than sensor nodes and the sensed data is
gathered first in them. Sensor nodes are divided into the cluster
which each sink manages, and the sinks calculate the route
from each sensor node to themselves based on the residual
power, state, etc. of a sensor node. They then tell their cluster
members their previous- and next-hop nodes and the state they
should stay in next (e.g., active or sleep state). In this data-
gathering scheme the role of the clusters is almost same as
that of the clusters in the scheme described in [13] — in both
the cluster determines the eventual destination to which data
packets are sent — so these two schemes are well-suited to
be compared. Younis et al. [23], however, describe only the
routing and node-state management and do not specify how the
sensor nodes should be apportioned into clusters. In addition,
some of its assumptions, for example, that each sink is located
within the one-hop of all the sensor nodes in its cluster, are
not appropriate for large-scale sensor networks. So we made
some modifications to the proposed mechanism in order to
make a convincing comparison.

We assume the existence of a control station, which is wired
to all sinks. The station knows the initial power and locations
of all nodes and sinks, and manages the overall network. Up-
to-date residual power is reported periodically from sensor
nodes, but the reporting packet is forwarded to the sink in a
multi-hop fashion instead of direct communication. The station
first divides the sensor nodes into as many clusters as there
are sinks. The role of a cluster is to determine the destination
sink for each sensor node, and we say that “sensor node ni

belongs to cluster Sj” if ni transmits their sensing data to the
destination sink Sj . The clustering method used is same as
Voronoi tessellations using locations of sinks as basing points.



In other words, the central station splits the sensor nodes into
clusters in such a way that each sensor node transmits packets
to the nearest sink.

After clusters are determined, the station constructs routes
for packets. As described in [23], the routes are determined
by using Dijkstra’s algorithm to minimize the total link cost.
Link cost is assigned by the station beforehand to all the links
between all node-and-node, node-and-sink pairs. Calculation
of link cost is modified from [23] due to difference of
assumptions, and the cost Cij of the link between node ni and
nj is defined by residual power of the node and the distance
between them:

Cij =

⎧⎪⎪⎨
⎪⎪⎩

EIj

ERj

(4π)2d(ni,nj)
2

λ if d(ni,nj)≤δ
EIj

ERj

d(ni,nj)
4

h4 if δ<d(ni,nj)≤rmax

∞ if rmax <d(ni, nj)

(1)

where EIj and ERj are respectively the initial and residual
powers of node nj , λ is the radio wavelength, h is the height
of the antenna, and d(ni, nj) is the distance between nodes
ni and nj . The threshold value δ is a constant defined as
δ = 4πh2

λ , and rmax is the communication range of a sensor
node.

After route construction is finished, the central station
transmits the route information to sinks. For the sake of
simplicity, packets which includes the route information are
called “command packets” hereafter. The sink uses minimal
transmission power when transmitting the command packet
so that all the sensor nodes in its cluster can receive them.
Command packet provides following information to sensor
node ni.

• Cluster to which ni belongs.
• The previous-hop node from which ni receives a packet

and the next-hop node to which ni should transmit a
packet.

The detection of node failure is based on a soft state
model. Each sensor node transmits a hello message at a
regular interval thello. On receiving the hello message from
a neighboring sensor node ni, sensor node nj registers entry
of ni to its neighboring node table and interprets the reception
as a sign that ni is working properly. Every time nj receives a
hello message from ni, expiry-time field in the entry is updated
to the sum of texpire and the value of nj’s internal timer. Only if
nj’s timer exceeds the value of expiry-time field, ni is deemed
to have failed, and nj sends a failure-indication packet to its
sink. This packet passes through the same route which the
station calculated for data packets, and it reaches the sink. The
sink passes the failure-indication packet to the station, which
then recalculates new routes that circumvent the failed node.
New routes are packed in a command packet and transmitted
from the sink to sensor nodes.

Even when ni works normally, hello packets from ni might
not arrive within the expiry time because of interference
or transmission error. This possibility must be allowed for,
because the accumulation of such false positives would cause

a virtual connectivity problem limiting network performance.
Preparing for such a false detection, node nj memorizes an
ID of the failed node when detecting the failure. And if nj

could receive a hello packet from ni, it deems the detection
of ni’s failure to have been false positive, and transmits a
failure-recovery packet to inform the station about that. The
sink relays it to the station, and the station recomputes new
routes and distributes them to sensor nodes.

In this centralized control, sink-failure can be easily detected
because of the assumption that sinks and the central station
are linked with wire. By keeping track of sinks’ status, the
station can recompute clusters and routes just after the sink
failure. It does not need to take explicit measures, and all it
has to do is to transmit a command packet containing new
cluster organization and route information as usual. Reliable
communication can be readily provided in wired networks. So
we ignore the possibility of false detection of sink failure.

B. Self-organized control

We have proposed a bio-inspired control which shows a self-
organized property [13]. Our self-organized control approach
is based on pheromone-mediated ant-swarm behaviors called
ant colony optimization (ACO) [3] and ant-based clustering
[11][24][22]. Sensor nodes are divided into as many clusters
as there are sinks by using ant-based clustering with a virtual
“cluster pheromone,” and routing is performed in each cluster
by using “routing pheromone.” The detailed operation for our
proposal is given in the following.

ACO is a probabilistic approach inspired by ants in their
foraging activity to combinatorial optimization problems like
the traveling salesman problem [7]. Ants follow efficient routes
to their food by being attracted to higher concentrations of
pheromones left by other ants. An ant will leave a volatile
pheromone trail while carrying food back to the nest. If an-
other ant finds the trail before it dissipates, that ant will follow
it to the food and it too will leave pheromone on the way
back, reinforcing the trail. If there is enough food that several
workers can bring food back to the nest, a high pheromone
concentration will be maintained and even more ants will be
attracted. As the food supply becomes smaller, fewer ants
will be attracted and the trail will gradually disappear as the
pheromone evaporates. This positive-feedback trail building is
the basic idea behind the ACO approach, and ACO has been
applied to some of the routing problems.

We have also applied the principle of ACO to hop-by-
hop routing in our proposed scheme. Each sensor node has
a pheromone table, and the advantages of neighbors as a
next-hop node are stored in the form of routing pheromones.
When a sensor node transmits a packet to notify the sink of
obtained data, it refers to its pheromone table, and stochas-
tically selects the next-hop node leading to the sink based
on the routing-pheromone value. Thus, each sensor nodes
selects a next-hop node with greater probability of having
more routing pheromones (sensor node with more routing
pheromones means preferable next-hop node). Furthermore,
if some neighboring nodes have almost the same routing-



pheromone value, they are selected as next-hop nodes with
almost the same frequency, and the number of packets that
must be relayed is distributed among them.

An important problem of applying ACO to routing is how to
determine which route should have higher routing-pheromone
value, in other words, how to define what are the “preferable
routes” in a given network. We define good routes in sensor
networks as follows:

• routes with a small hop count on the way to a sink.
• routes that go through sensor nodes with high residual

power.
It is not necessary for each node to send packets (ants) in

order to find good paths to the destination as some ant-based
routing employed [5][25][2]. Such strategies could cause un-
necessary power consumption and needlessly occupy wireless
channels, because of ants traveling back and forth over the
network. Thus, we chose sinks to flood the ants, which we call
backward ants. Backward ants do not go back into the sink.
As we previously pointed out, the required next-hop node is
a sensor node located nearer to the sink, which has enough
residual power. With that in mind, the role of backward ants
is to establish a routing-pheromone distribution in which the
required next-hop node has a higher routing-pheromone value.
Let us introduce following terms to simplify our explanation
of routing.

ni: ID of sensor node.
Sk: ID of sink. At the same time, Sk also

represents ID of cluster to which sink
Sk is dedicated.

Sni : ID of sink that ni belongs to.
PbSk

(ni): Routing-pheromone value that ni as-
signs to backward ant, which is trans-
mitted by Sk.

Pni(ni) Routing-pheromone value for ni to de-
clare as its own pheromone.

Pni(nj , Sk): Routing-pheromone value stored in ni’s
pheromone table that represents bene-
fits of nj as next-hop node to transmit
packet to Sk.

Cni(Sk): Cluster pheromone of Sk estimated by
ni.

A sink Sa broadcasts backward ant B with maximum
routing-pheromone value PbSa(Sa) = Pmax. On receiving
B, sensor node ni stores routing pheromone carried by the
backward ant (PbSa(Sa)), its source node (Sa), and sensor
node which relays B immediately before (Sa) as an entry, in
its own pheromone table. Thus, ni memorizes that the benefit
of selecting Sa as a next-hop node for transmitting packets to
Sa is Pmax. After that, ni relays B, making B carry a new
routing-pheromone value. This new routing-pheromone value
Pbni(Sa) is calculated according to:

Pbni(Sa)=α

(
1−exp

(
−β

ERi

EIi

))
PbSa(Sa)

0 < α < 1, β > 0 (2)

After receiving B, which is relayed by ni, nj creates a
new entry (ni, Sa, Pbni(Sa)) as in the case of ni. Then,
nj calculates a new routing-pheromone value according to
Eq. (2), and forwards B with a new routing-pheromone again.
A good pheromone distribution emerges through frequent
repetitions of these behaviors.

Sensor nodes periodically communicate using a hello mes-
sage like that in the centralized control described in Sect. III-A.
But the purpose of this hello message is not only to provide
a countermeasure to node failures but also to comprehend the
situation of surrounding area. The hello message transmitted
from ni conveys routing-pheromone value of ni itself (pni),
cluster ID to which ni belongs to (Sni), and cluster pheromone
of Sni evaluated by ni (Cni(Sni)), which is described in detail
later in this section. pni is the mean routing-pheromone value
for all entries in ni’s routing table. After receiving the hello
message, nj updates the routing-pheromone value for the ni’s
entry in nj’s routing table following Eq. (3) with γ ∈ [0, 1].

Pnj (ni, Snj ) = γPnj (ni, Sni) + (1 − γ)pni (3)

A sensor node chooses its next-hop node stochastically
using the routing-pheromone distribution, and relays packets to
it. Assuming Nni is a set of neighboring nodes for ni, which is
equivalent to candidate set of next-hop nodes, the probability
of ni selecting nj as its next-hop node is represented as:

pni(nj) =
Pni(nj , Sni)

2

∑
k∈Nni

Pni(k, Sni)
2 (4)

This form of equation is used in some propositions using the
ACO approach, e.g., [5]. Routing loop can be constructed due
to the probabilistic approach, but discarding the looped packets
made the data collection unreliable in our simulations. So now
we avoid routing loops by appending node IDs the packet went
through to the header. Sensor nodes listed in the header are
excluded from the set of candidate for next-hop node. This
requires only a small amount of communications overhead.

How to select a destination sink still remains a question in
multi-sink sensor networks. Our clustering method, ant-based
clustering, is also inspired by a swarm behavior of ants. Ant-
based clustering was originally a method of swarm intelligence
by ants grouping eggs or larvae according to their size. Ants
repeatedly pick up and drop larvae based on their degree
of similarity with neighbor eggs while wandering around. In
such a behavior, larvae which differ substantially from their
neighbors in size move toward similar-sized ones, and clusters
of different-sized larvae emerge in a self-organized way. We
substitute similarity with the advantage of belonging to a
cluster, and do clustering to suit the network situation.

Each node calculates a cluster-pheromone value based on
the routing-pheromone values, and uses them to determine
which cluster it should belong to. Cluster Sni’s cluster
pheromone evaluated by ni is defined as:

Cni(Sni) =

∑
k∈blngni

(Sni
) Ck(Sni) + avg phni

(Sni)

|blngni
(Sni)| + 1

(5)



where blngni
(Sni) represents a set of neighboring nodes of

ni that participate in cluster Sni . This information can be
recognized via hello messages, which has the cluster ID of
the sender. The term avg phni

(Sni) is the mean of routing-
pheromone values in entries having destination sink Sni :

avg phni
(Sni)=

∑
k∈blngni

(Sni
) Pni(k, Sni)

|blngni
(Sni)|

(6)

Cluster-pheromone value is conveyed in hello packets, so
each sensor node can acquire the cluster-pheromone values
of neighboring clusters. Sensor nodes regard a cluster with a
higher cluster-pheromone value as a good cluster to join, and
stochastically switch to it. The probability of ni changing its
cluster from Sj to Sk is

Pni(Sj → Sk) =
(

fni(Sj , Sk)
kth + fni(Sj , Sk)

)2

(7)

where kth is a constant value used to control the probability
and where fni(Sj , Sk) is calculated as follows:

fni(Sj , Sk)=max
(

0,
|blngni

(Sk)|
Nni

Cni(Sk)−Cni(Sj)
Cni(Sk)

)
(8)

The detection of node failures is exactly equivalent to that
of centralized control described in Sect. III-A. After texpire

passes without receiving hello packets from sensor node nj ,
neighboring node ni detects that nj has failed. By deleting the
entry for nj in its pheromone table, ni selects appropriate next-
hop nodes according to Eq. (4) without any special handling.

Detecting sink failure was also based on the same soft-
state model. That is, the sink periodically broadcast hello
message as well as sensor nodes. Sensor nodes around the
sink determine that the sink has failed if they had not received
hello message from the sink for 3× texpire. The cluster in sink
failure is no longer preferable. Thus, sensor nodes set cluster-
pheromone values of all the entries stored in their neighbors
table to 0 and abandon their membership. As hello messages
indicating the sink failure propagated over the network after
that, sensor nodes participating in the failed sink’s cluster also
abandoned their membership, and joined other clusters.

IV. EVALUATION AND DISCUSSION

We try comparison of our self-organized and centralized
controls by simulation experiments. First, we explain the
simulation model which experimented, then we evaluate the
robustness against various perturbations.

A. Simulation Environment

We implemented our self-organized and centralized controls
on ns-2 network simulator [1]. In the following experiments,
we randomly placed 300 sensor nodes over a region moni-
toring a square, 100 m per side, unless otherwise stated. We
assumed there were four sinks at (25, 25), (75, 25), (25, 75),
(75, 75), respectively. We tested other sink positions, and
obtained almost the same results.

TABLE I
SENSOR NODE PARAMETERS

Transmission power 0 dB
Communication range 10 m

Frequency 2,450 MHz
Bit rate 250 kbps

Height of antenna 20 cm
Initial power 25 J

Power consumption in transmission state 40.95 mW
Power consumption in receiving state 45.78 mW

TABLE II
SIMULATION PARAMETERS

thello 1 s
texpire 5 s
Pmax 10

α 0.7
β 7
γ 0.875
kth 0.5

Size of a hello packet 10 bytes
Size of a failure detection packet 10 bytes
Size of a failure recovery packet 10 bytes

Size of a data packet 64 bytes

We used the two-ray ground reflection model [1] as the
radio propagation model, and the MAC and PHY layers
follow the IEEE 802.15.4 specification. In the simulation
of the centralized control, the size of command packet can
easily exceeded the value specified in IEEE 802.15.4. We
therefore virtually set aMaxPHYPacketSize, which determines
the maximum length of a packet, to infinity. The size of the
command packet transmitted from sink Sj is calculated using
the following equation:∑

i

6 · eni · numSj + 7 (9)

where eni is the number of previous- and next-hop node pairs
assigned to node ni and numSj is the number of sensor nodes
in cluster Sj . We assume that 6 bytes are enough for the
pair, and that 7 bytes are enough for a header. We set the
parameters of sensor nodes (listed in Table. I) by referring to
[18]. The simulation parameters are also listed in Table. II.
We do not consider FEC to take particular note of the effect
of transmission error, therefore the packet is discarded even if
one bit error occurs.

In the following data-collection model we used, sensor
nodes send the information they obtain to their sinks in a multi-
hop way at a predefined interval tintval = 10 s. Sensor nodes
do not synchronized with each other, and the transmission
time of it is independent of that of the others. One of the
most important metrics for sensor networks is the reliability
of which information is brought to a sink. We therefore defined
a metric we call the data-collection rate. When the number of
sensor nodes that work properly is Nact, the number of data
packets generated in tintval is of course Nact. When the number
of packets that reach one of the sinks is r, the data-collection
rate is defined as r/Nact.

In the centralized control, the parameter with the greatest
influence on the data-collection rate is command-packet trans-
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Fig. 2. Efficiency of routes generated by centralized control and of routes
generated by self-organized control.

mission interval. If this interval is too long, sensor nodes will
only slowly find out what it should do next, especially when
the command packets are frequently lost. And if the interval is
too short, command packets coming one after another result in
severe interference problems. We conducted simulation experi-
ments to find out whether 1 s, 10 s, 100 s, or 500 s would be the
best interval and chose 10 s as the one yielding the best balance
between data-collection rate and power consumption. Not only
in centralized control, transmission interval of backward ants
in our self-organized control also has great influence. Too
short an interval causes repeated interference and too long an
interval does not construct pheromone distribution enough for
data gathering. We simulated transmission intervals of 10 s,
100 s, and 500 s and selected 100 s.

In the simulation experiments, each sink transmits command
packets or backward ants until at least 100 s pass over. So we
consider the network is in the transient state for 100 s from
the start, and do not plot a graph in the time window.

B. Instability of Generated Routes

We first compared the efficiency, in terms of hop counts
and delay, of the routes generated using centralized control
and self-organized control. The hop counts reported here are
mean values of all routes between each sensor node and its
sink. Delay is the mean time from transmitting a packet to
the packet being received by the sink. The distribution of hop
count is shown in Figure 2 with 95% confidence intervals.
This graph is for the idealized scenario in which no node
failures occur, and bit error rate is set to 10−5. Changing
BER did not generate significant influence. Actually, there
is only a little difference in their distribution as shown in
Figure 2, and the same is true for their mean values as
shown in Table. III, where statistics values of the routes are
listed. However, variance of both control approaches differs
substantially. These interesting results suggest that quality of
generated routes can fluctuate widely, i.e., low predictability
and controllability, in self-organized control. A sensor node
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in self-organized control decides its own action on the basis
of limited, local information. Their lack of global viewpoint
leads to difficulty in finding global optimum, and results in
wide fluctuation.

C. Measures against Transmission Error

We conducted simulation experiments to study the robust-
ness of both control approaches against transmission error
under the assumption that no node failures occur. In Figure 3,
both kinds of control show about the same data-collection rate
with BER = 10−5, but that of centralized control becomes
slow to rise up along with the increase in BER.

In the centralized control, the tremendous amount of infor-
mation is gathered to the central station to decide a course
of actions for each sensor node, and the station issues the
instructions to sensor nodes. Sensor nodes completely rely
on the control information from the station, and the station
believes sensor nodes follow the order. With this strong
dependency, what will happen when the information is beyond
some sensors’ reach? This situation just arises due to trans-
mission error in this simulation experiment. In the case where
some sensors can receive the instruction and others cannot,
inconsistent views of the routes can be introduced among
them. Such inconsistency makes sensor nodes lose their next-
hop node for a received packet, and the network gets stuck in
the pathological state until their views get consistent. Actually,
data-collection rate increases with time in Figure 3, but this is
because frequently transmitted command packets (i.e., with an
interval of only 10 s) compensate discarded ones. This slow
ascent means that the network does not adapt well when the
route changes for any reason.

In the self-organized control, sensor nodes are not able to
know global information of the network, leading to easily have
inconsistent information among them. But the adverse effects
of their inconsistency are localized around them, because they
have its own knowledge base based on their limited view,
instead of sharing global information. That results in the good
robustness against transmission error as shown in Figure 3.



TABLE III
STATISTICS OF ROUTES GENERATED IN CENTRALIZED CONTROL AND SELF-ORGANIZED CONTROL. 95% CONFIDENCE INTERVALS ARE ALSO SHOWN.

Centralized control Self-organized control
Average hop count 7.47 ± 0.36 9.08 ± 0.34

Average delay 0.156 ± 8.62 × 10−3 0.226 ± 1.56 × 10−2
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Fig. 4. Data-collection rate versus BER.
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Fig. 5. Features of the process of recovery from sink failure.

Differences in the behaviors of the two kinds of control also
appear in Figure 4, where mean of the data-collection rate
are plotted against BER. Logarithmic approximation lines for
their decays are also shown. Self-organized control keeps data-
collection rate above 80% about 3 times longer. In addition,
the gradient of the self-organized control is only 58% of the
centralized control. When the gradient is steep, the network
function might deteriorate markedly in response to even a
small change of BER. When the gradient is gentle, however,
data collection is not affected significantly if the BER changes.
For that reason, self-organized control is more robust against
transmission error.

D. Measures against sink failure

Figure 5 presents the results for the case in which a sink
located at (25, 25) fails at 400 s. After the sink failure, the data
collection rate drops sharply to about 75%, except in the case
of centralized control with 10−5 BER (Bit Error Rate), where
the rate drops to only 90%. A rate of 75% means that one
cluster suffered catastrophic damage (the ratio of data packets
gathered within a cluster is about 25%). Not only is the drop
in the data collection rate in the case of centralized control and
low BER small, but also the recovery is almost immediate. The
control station which is wired to the sinks becomes aware of
the failure within a short amount of time (in our simulations,
it is set to 0 s), after which the clusters are reconstructed
and the routes are recomputed upon receiving the command
packet, in order to adapt the whole network to the failure.
Sensor nodes immediately modify their cluster membership
and routing table according to the instructions contained in
the command packet, and the data collection rate is restored
soon after that. Indeed, in cases where the channel quality
is poor, the data collection rate in the centralized control
scheme is unable to recover within the simulation time shown
in Figure 5, since centralized control is weak with respect to
transmission errors, as indicated in [14].

In contrast to the centralized control scheme, the self-
organized control scheme needs more time for the distant
sensor nodes to adapt to the sink failure. In addition, since
the network has no supervisor and no explicit instructions,
some nodes might be prone to taking contradicting actions
based on the possibility of receiving inaccurate information
about the condition of the network. For these reasons, in
low BER environments, the self-organized control scheme
exhibits worse recovery than the centralized one. In high
BER environments, however, the relationship between self-
organized control and centralized control is reversed, since
the self-organized control scheme inherently does not have
critically important information whose loss can bring serious
and adverse influence to the network.

E. Measures against node failure

We already demonstrated the robustness against node failure
in our previous work [14]. Moreover, we showed that although
most of the sensor nodes other than the failed ones exhibit data
collection rates of about 100% in the self-organized control
scheme, failures in the case of the centralized control scheme
have considerable influence on the data collection rates at
the cluster level, where many sensor nodes are unable to
transmit packets to their sinks, and this influence is especially
notable when concentrated and simultaneous failures occur.
However, when we tested random failures in a 100 m ×100 m
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Fig. 6. Variances of the data collection rates among trials.

monitoring region containing 300 nodes, the difference in the
robustness of the self-organized and the centralized control
schemes was not clear due to the connectivity degradation
caused by the continual node failures. Therefore, here we
temporarily used a narrower monitoring region of 50 m ×
50 m while keeping the number of nodes and sinks, and
defined pfail as the failure rate per second for each sensor node.

The variances of the data collection rates of both control
schemes among trials are shown in Figure 6. The variance in
the self-organized control scheme is small and not as sensitive
to the failure rates. However, in the centralized control scheme,
the data collection rates in some trials experience sudden
drops, which lead to the higher variance of the data collection
rates, as shown in Figure 6. The high variance in the case
of centralized control indicates the difficulty of predicting the
data gathering capability in harsh environments, although all
of the plots are prepared using the same parameters.

F. Measures against link disconnection

As links can become disconnected intermittently in wireless
networks, in the case where the link between nodes ni and
nj is disconnected but the link between ni and nk is still
connected, there is a possibility that the status of ni as seen
from the perspective of nj and nk is inconsistent. Therefore,
in order to study the differences in the robustness of the two
schemes, we randomly disconnected a percentage of the links.
We assume that each node is linked to an arbitrary neighboring
node, and each link is disconnected with probability plink in
both directions. This disconnection process was conducted for
all nodes, and the duration of the disconnection was 400 s,
from t=300 s to t=700 s.

In the results shown in Figure 7, the data collection rate
in the self-organized control scheme immediately recovers
to the rate before the disconnection, although it experiences
a declination for a short amount of time. The centralized
control scheme, on the other hand, suffers greatly from the
disconnections, where detection of massive node failures oc-
curs since neighboring nodes regard disconnected nodes as
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Fig. 7. Influence of link disconnections on the data collection rate.

failed due to their inability to transmit hello messages. In
other words, sensor nodes cannot distinguish failures from link
disconnections in our centralized control scheme. Furthermore,
after the detection of a missing link, the neighboring nodes
transmit failure-indication packets, which are in fact false-
positive detection packets, to the control station. As a result,
the control station does not provide routes to the node which
is considered as failed, and the packets from the disconnected
node are discarded, which is the main reason for the decay of
the data detection rate in Figure 7(b).

V. DEPENDENCE ON CONTROL INFORMATION

Next, we consider the factor which affects the difference in
robustness and perform the evaluation by additional simula-
tions.
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Fig. 8. Results of injecting incorrect information.

A. Factors influencing the difference in robustness

In the evaluation presented in Section IV and in previous
works, there was a significant difference between the robust-
ness of self-organized control and centralized control. We are
inclined to explain this trend in terms of “dependence on
control information”. In this case, “dependence” has almost
the same meaning as that used in fault management. The
dependence is a relation in which an error or failure in
an object may cause an error or failure in another object.
We define control information as the information exchanged
between entities of a given network which coordinates their
joint operation.

In Sections IV-E and IV-F, even the control station itself did
not comprehend the correct state of the network. This is caused
by the fact that the control station also depends on control
information received from the nodes in the network. The

0

1

(a) From t=160 s to t=200 s

0

1

be notified of having recoverd
after its failure

(b) From t=200 s to t=1000 s

Fig. 9. State of the network after injecting false-recovery information.

control station constructs a precise view of the whole network
by integrating each piece of information about the state of the
network. In other words, the problem of the dependence is that
the control information from potentially unreliable nodes in
environments where reliable communication is not guaranteed
plays a critical role in generating the control scheme at the
control station. In Section IV-E, failure indication packets,
which notify the command node about the correct state of
the network, did not reach the control station, resulting in a
sudden drop of the data collection capability of the clusters.
In Section IV-F, one node considers a neighboring node to
be operating correctly, while another node considers the same
neighboring node as faulty, resulting in the transmission of
failure indication packets even though no nodes have failed.
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In this way, information which does not reflect the correct state
of the network brings vulnerability to the centralized control
scheme.

Of course, at the node level, self-organized control is
identical to centralized control, meaning that individual nodes
potentially have an erroneous understanding about the state
of the network. However, individual nodes affect only their
surrounding environment or neighboring nodes since all nodes
have only partial view of the network, and do not transmit or
receive explicit control information. Due to this behavior, the
influence of individual nodes on the global state of the network
is much smaller than in the centralized control scheme. In
this regard, since we have not yet clarified the influence
of erroneous information received from individual nodes, in
the next section we verify our idea by deliberately injecting
incorrect information into the network.

B. Influence of incorrect information

The purpose of this demonstration is to determine how
strong the influence of information received from individual
nodes is, as well as how potentially unreliable nodes affect
the behavior of the whole network. Therefore, in this section,
we deliberately inject spurious information in order to show
unambiguously the influence of information received from
individual nodes on the functionality of the network. At first, in
the centralized control scheme, we considered two scenarios:
1) we injected false-positive failure detection packets, which
convey the misinformation that a properly working node is
detected as failed, and 2) false-recovery packets, which inform
the surrounding nodes that a node which has failed is detected
as recovered.

Although we deliberately injected incorrect information at
t=200 s that the node nearest to the coordinate (25, 25) had
failed, there was no fluctuation or drop in the data collection
rate due to the injection, as seen from the results shown in
Figure 8(a). In fact, the node which was wrongly detected
as failed was not able to send its packets to the sink as the
control station did not consider the failed node as a member

of the data collection cluster. However, routing information
was supplied to the other sensor nodes correctly, and thus the
influence of the erroneous information was limited.

Next, we tested the scenario where incorrect information
about the recovery of a node is injected into the network.
At first, we made the node nearest to the coordinate (25, 25)
fail at t=160 s, followed by the injection of information that
the node has recovered at t=200 s. Figure 8(b) shows the
results of five trials, and it is clear that the behavior of the
data collection rates are different among them, i.e., they are
different depending on the node deployment. There is a clear
drop in two of the plotted lines just after the injection of
erroneous information at t=200 s. Given this factor, focusing
on one of those lines, in Figure 9 we visualized the data
collection rate of the individual nodes from the time when
node fails (t=160 s) until the injection of misinformation
(t=200 s), and from the injection (t=200 s) to the end of the
simulation (t=1000 s), respectively. As shown in Figure 9(a),
the influence of the node failure can be limited. However, after
the injection, data collection in the larger part of the respective
cluster becomes impossible.

Self-organized control does not have any means for explicit
indication of failure or failure recovery. Therefore, it was
impossible to compare it directly with the centralized control
in terms of the influence of erroneous information. Instead, we
used the indication of sink failure, which is a message which
explicitly conveys information about the failure of a sink to
the neighboring nodes by using a hello message. Furthermore,
we made the sensor node nearest to the coordinate (25, 25)
transmit the information about the sink failure. This indication
is spread over the respective cluster through forwarding by
nodes which receive the indication.

As a result, although spurious sink failure indication was
injected into the network at t = 200 s, there was no clear
difference in the data collection rate before and after the
injection, as seen from the data collection rates from five trials
presented in Figure 10. In our self-organized control scheme,
sensor nodes invalidate their membership to the respective
cluster upon receiving the sink failure indication, and negative
influence was expected due to the dynamic change of cluster
membership. However, contrary to our expectation, the cluster
memberships were restored to those before the injection. In
other words, correct information from other nodes naturally
adjusts the situation caused by erroneous information, and this
fact contributes to the robustness of self-organized control.

VI. CONCLUSION

In spite of growing interest, there are many points regard-
ing self-organization which remain insufficiently understood.
In this paper, we studied the robustness of self-organized
control against a wide range of perturbations by compar-
ing it with centralized control, and we attempted to answer
some important questions. One such question is whether self-
organized control is in fact robust, and we quantitatively
demonstrated the affirmative answer by examining various
scenarios. Although this result is not surprising, it was found



that self-organized control has the obvious benefit of superior
robustness, especially if applied to systems in dynamically
changing environments, although at the cost of reduced system
predictability. Furthermore, the questions about why self-
organized control is robust and what factors determine the
robustness of self-organized control were also addressed, and
based on the results obtained from the simulation experiments,
we arrived at the conclusion that the dependence on the control
information in the system plays a critical role in determining
whether or not the robustness is sufficient. In a network which
is composed of potentially unreliable nodes and is located in a
harsh environment, decreasing the dependence on the control
information received from the nodes is critical to yielding
sufficient robustness, and self-organized control inherently
possesses such properties.
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