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Problem Statement

 Major differences and limitations between Optical packet-switched 
(OPS) networks and electronic packet-switched (EPS) networks. 

 In EPS networks, contention is resolved by
 Storing the contended packets in a random access memory (RAM) 

 Limitations in optical domain,
 Optical to electronic domain in order to use electronic RAM is not a feasible 

solution, because of the processing limitations of EPS.
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solution, because of the processing limitations of EPS.  
 Processing and switching in the optical domain is necessary.

 Buffering in the optical domain
 Fiber Delay Lines (FDL) 

» FDLs require very long fiber lines, which cause signal attenuation, inside the 
routers. 

» There can be a very limited number of FDLs in a router due to space 
considerations, so they can provide a small amount of buffering 

 Optical RAM
» Still under research
» Not expected to have a large capacity, soon 

 TCP has low throughput due to burstiness, when buffer is very small

Objective

 Designing an all-optical OPS network architecture that 
can achieve high utilization and low packet drop ratio 
by using very small Optical RAM buffers

 Show and compare the buffer requirements
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Advantages

 Decreasing the buffer requirements in the core

 Realizing all-optical high-speed OPS networks

TCP Pacing

 Evenly spacing transmission of a window of TCP packets 
over a round-trip time (RTT)
 Packets are injected into the network at the desired rate of 

W/RTT when W is congestion window size.
 Smoothing the traffic

 It is shown that O(logW) router output buffer size is enough
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 It is shown that O(logW) router output buffer size is enough 
for high utilization when Paced TCP is used
 Aggregate paced TCP traffic converges to poisson

 Requires changing the TCP senders

M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden, “Part III: Routers with very 
small buffers,” ACM SIGCOMM Computer Communication Review, vol. 35, pp. 83–90, 2005.
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 Preventing wavelength over-utilization
 Apply XCP-based congestion control

» XCP is a new congestion control algorithm specifically designed 
for high-bandwidth and large-delay networks.

» Network layer control
» Nodes exchange probe packets in order to learn link information
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» Uses an efficiency controller for high link utilization and fairness 
controller for high fairness among flows

 Carefully select XCP parameters
 Control maximum wavelength utilization ratio by XCP 

D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-delay product,” in 
Proceedings of ACM SIGCOMM, 2002, pp. 42-49.
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 Burstiness
 Establish macro flows between edge nodes 
 Assign incoming TCP, UDP traffic to macro flows (similar to XCP-

CSFQ, TeXCP)
 Apply leaky bucket pacing to macro flows according to XCP flow rate at 

edge node 
 Possible to use LSPs for controlling macro flows if GMPLS is available

TCP, UDP Traffic XCP Macro Flow (LSP)

OPS Domain

Buffer and Switch Architectures

 Shared Buffering
 Total buffer size in a node increases linearly with the number of links
 For example, when buffer size per link is 1KByte, a node with 4 links has 4Kbytes Shared Buffer
 Total buffer size inside the switch is the same as OB and IB. Only buffer 
 placement is different

 Worst Case Shared Buffering
 Total buffer size is constant (equal to buffer capacity of a single OB or IB link)
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NSFNET Simulations
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 28 nodes (14 edge + 14 core) and 35 links (21 core + 14 edge)
 Wavelength speed 1Gbit/s
 40 seconds simulation (use last 5 seconds for results)
 1587 TCP Reno flows (Poisson flow arrival)
 TCP maximum congestion window size is 20 packets
 Data packet size (MSS) is 1500 Bytes
 Optical RAM
 Cut-through optical packet switching and buffering
 Evaluate average goodput of TCP flows

XCP Pacing (separate ACK macro wavelength)

 More than 3 times 
higher goodput 
with SB

 IB has higher 
goodput than OB

 WCSB goodput is 
close to OB with a 
much smaller
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much smaller 
buffer

 IB, OB, WCSB 
have the same 
goodput when 
buffer size is less 
than MSS
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TCP Pacing

 Similar to XCP 
Paced TCP

 When buffer is 
large, IB has the 
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due to head of 
line blocking
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Standard TCP

 Lowest goodput

 OB, IB and WCSB 
give almost the 
same throughtput 
when buffer is  600000
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small

 When buffer is 
large, IB has the 
lowest goodput 
due to head of 
line blocking
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Goodput Comparison of Pacing Methods
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 XCP Pacing gives 
the highest 
goodput when 
buffer size is very 
small (less than 
MSS)
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 XCP Pacing has a 
better fairness, 
so maximum 
average goodput 
is lower

Packet Drop Rate inside Core Network

 XCP Pacing has a 
much lower 
packet drop rate
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Conclusions

 When buffers are very small, XCP-based paced standard 
TCP flows can achieve higher goodput and lower packet 
drop rate than TCP pacing

 When the total buffer capacity in a node is the same, the 
shared buffering with XCP pacing has much better
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shared buffering with XCP pacing has much better 
performance than the input and output buffering

 The performance of worst case shared buffering is close 
to the output buffering even though worst case shared 
buffering uses much less buffer per node

Future Work

 NSFNET nodes mostly have a small nodal 
degree of 3 to 4, so worst case buffering shows 
good performance
 Simulate topologies with a higher nodal degree like 

Abilene topology
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Abilene topology

 More realistic traffic models

 Buffer requirements of WDM
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