Packet Switch Architectures for Very Small Optical RAM

Onur Alparslan, Shin'ichi Arawaka, Masayuki Murata

Advanced Network Architecture Laboratory Graduate School of Information Science and Technology Osaka University

26 August 2009

Outline

- **Problem Statement**
- Objective
- **Proposed Solutions**
- Switch Architecture
- Simulations
- Conclusions
- **Future Research**

Problem Statement

- Major differences and limitations between Optical packet-switched (OPS) networks and electronic packet-switched (EPS) networks.
- In EPS networks, contention is resolved by Storing the contended packets in a random access memory (RAM)
- Limitations in optical domain
- Optical to electronic domain in order to use electronic RAM is not a feasible solution, because of the processing limitations of EPS. Processing and switching in the optical domain is necessary.
- Buffering in the optical domain
 Fiber Delay Lines (FDL)
 Fiber Delay Lines (FD

 - » Still under research
- Not expected to have a large capacity, soon
- TCP has low throughput due to burstiness, when buffer is very small

Objective

- Designing an all-optical OPS network architecture that can achieve high utilization and low packet drop ratio by using very small Optical RAM buffers
- Show and compare the buffer requirements

Advantages

- Decreasing the buffer requirements in the core
- Realizing all-optical high-speed OPS networks

TCP Pacing

- Evenly spacing transmission of a window of TCP packets over a round-trip time (RTT)
- Packets are injected into the network at the desired rate of W/RTT when W is congestion window size.
 - Smoothing the traffic
- It is shown that O(logW) router output buffer size is enough for high utilization when Paced TCP is used Aggregate paced TCP traffic converges to poisson
- Requires changing the TCP senders
- M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden, "Part III: Routers with very small buffers," ACM SIGCOMM Computer Communication Review, vol. 35, pp. 83–90, 2005.

5

XCP-Based Proposed Solutions 1/2

Preventing wavelength over-utilization

- Apply XCP-based congestion control
 - XCP is a new congestion control algorithm specifically designed for high-bandwidth and large-delay networks.

4

6

- » Network layer control
- » Nodes exchange probe packets in order to learn link information » Uses an efficiency controller for high link utilization and fairness controller for high fairness among flows
- Carefully select XCP parameters
- Control maximum wavelength utilization ratio by XCP
- D. Katabi, M. Handley, and C. Rohrs, "Congestion control for high bandwidth-delay product," in Proceedings of ACM SIGCOMM, 2002, pp. 42-49.

Conclusions

- When buffers are very small, XCP-based paced standard TCP flows can achieve higher goodput and lower packet drop rate than TCP pacing
- When the total buffer capacity in a node is the same, the shared buffering with XCP pacing has much better performance than the input and output buffering
- The performance of worst case shared buffering is close to the output buffering even though worst case shared buffering uses much less buffer per node

Future Work

15

- NSFNET nodes mostly have a small nodal degree of 3 to 4, so worst case buffering shows good performance
 - Simulate topologies with a higher nodal degree like Abilene topology

16

- More realistic traffic models
- Buffer requirements of WDM

