
Architectural Design of Unified Multiplex
Communications for One-Time Use of IP Addresses

Shingo Ata∗, Hiroshi Kitamura†, and Masayuki Murata‡
∗Graduate School of Engineering Osaka City University, Japan

Email: ata@info.eng.osaka-cu.ac.jp
†NEC Corporation / University of Electro-Communications, Japan

‡Graduate School of Information Science and Technology, Osaka University, Japan

In the conventional IP network, all servers have a
risk against any implicit/explicit attacks from unknown
devices because the IP address of the server is fixed
during the server is active. In this paper, we try to
solve the problem by proposing a new communication
architecture where a node has multiple IP addresses.
Each IP address is used “one-time,” and valid only
for a single session (e.g., TCP connection). We first
analyze the architecture by itself from the technical
viewpoint, and describe the detailed design including
new concepts needed to realize. We then describe the
technical descriptions of kernel/userland behavior in the
proposed architecture.

I. INTRODUCTION

We reconsider fundamentally the current communica-
tion architecture of “IP address + port number” used for
the identification of the endpoint widely, and propose the
Unified Multiplex Communication Architecture which we
utilize the wide IPv6 addressing to discontinue the notion
of port numbers [1].

The main thing we have to emphasize is that, even if
the address of the server has been known to a third party,
the address cannot be used anymore to connect the server
in future because the address is only valid for a single
session. We call it as One-time use of IP addresses.

The motivation behind the use of one-time IP address
is to let end users be enable to run (deploy) their private
servers (i.e., for internal/private use) easier. The main
problem under such a personalized communication is
how to stand by communication requests from other
nodes. In the conventional IP network, all servers have a
risk against any implicit/explicit attacks from unknown
devices because the IP address of the server is fixed

This work is partally supported by the Strategic Information and
Communications R&D Promotion Programme (SCOPE) by Ministry
of Internal Affairs and Communications of Japan.

during the server is active, though the end user intends
to access to the server remotely only for him/herself.

In this paper, we design the basic technologies to be
necessary to realize IP addresses for the exclusive use
of each session in Unified Multiplex Communication
Architecture. In particular, we focus on TCP (Trans-
mission Control Protocol) which is used widely, and
consider what kind of technologies are necessary from
the difference of the communication procedure in the
current and Unified architectures.

The rest of this paper is organized following. We first
describe briefly the architecture of Unified Multiplex
in Section II. We then describe the new technologies
needed for Unified Multiplex in Section III. We next
explain about implementation in Section IV. Summary
and future topics are presented in Section V.

II. OVERVIEW OF UNIFIED MULTIPLEX

ARCHITECTURE

We explain briefly about the Unified Multiplex com-
munication architecture, Here, we refer the existing
communication architecture as Legacy Architecture to
distinguish from Unified Architecture.

A. Type of Addresses in Unified Multiplex

We define two kinds of following addresses to realize
an address for exclusive use of the service in Unified
Multiplex.

Ephemeral Address (EA) [2] is an address including
the equivalent information of the ephemeral port number.
EA is assigned at initiating a session (e.g., before TCP
connection establishment), and is used throughout the
session. The assigned address is ONLY used to the
associate session. After the session expires, it is released
and disposed (not used anymore) at the termination of
the session.

A!

A!

A!

B!

B!

B!
!"#$"#%&! '()"*+%,!

(a) Legacy Communication

S1!

S2!

S3!

E1!

E2!

E3!
!"#$"#%&! '()"*+%,!

(b) Unified
Communication

Fig. 1. Legacy/Unified Communication

Specific Service Address (SSA) is a kind of one-time
addresses and only valid for a single session assigned
to server-side. Before the communication, an SSA is
generated for a client to communicate with the server
and notified to the client. The client establishes the
connection to the server by using the notified SSA.
After the session expires the address is also released
and no longer used in future. The main issue on SSA
is how to tell the generated SSA to the client prior to
establishing the communication. There are several ways
to tell the SSA, one is to handle a DNS query and embed
the generated SSA in the DNS reply message. How to
solve this problem is not the scope of this paper (See
DNSO [3] for detail).

Figure 1 compares communication styles in both Uni-
fied and Legacy architectures. In the Legacy architecture,
three TCP connections use the same IP addresses (A
and B), while the port numbers at Client B are different.
These connections are distinguished at both nodes by
the port numbers of connections. On the other hand, in
the Unified architecture, different ephemeral addresses
(E1, E2, and E3) for Client B are assigned to every
connection, and different specific service addresses for
Server A are also assigned.

B. Requirements of Unified Multiplex Communication

1) Communication Procedure in Unified Architecture:
The procedure of the communication is almost the same
in the Unified architecture, however, the time when the
address is associated to the socket is clearly different.
In the Legacy architecture, the IP address has already
been assigned when the network interface is active,
and therefore for network applications the IP address
is already known at the phase of socket creation (i.e.,
socket() API). However in the Unified architecture,
EA or SSA is not clearly allocated at the time when the
socket is being created or the socket is ready to accept
connections.

Figure 2 shows the address/port setting to socket
in Legacy and Unified environments. In the Legacy
architecture, both Server A and Client B have IP ad-
dresses (A and B) prior to running the program. That

!"#$%&'(!

A:P!

)*+,'-./(!

A:P!

A:P!

A:P!

0##%1&'(!

!"#$"#%&!

!"#$%&'(!

#"++%#&'(!

'()"*+%,!

B:P1!

!"#$%&'(!

#"++%#&'(!

B:P2!

!"#$%&'(!

#"++%#&'(!

B:P3!

(a) Legacy

!"#$%&'(!

)*+,'-./(!

S1:-!

S2:-!

S3:-!

0##%1&'(!

!"#$"#%&!

!"#$%&'(!

#"++%#&'(!

'()"*+%,!

E1:-!

!"#$%&'(!

#"++%#&'(!

E2:-!

!"#$%&'(!

#"++%#&'(!

E3:-!

(b) Unified

Fig. 2. Socket State and Address Assignment

is, the server program easily binds the IP address and
port number to the socket by calling bind() with
parameters (A:P) 1. After accept() is called, a new
socket is created for every established connection but
address/port information are preserved from the original
socket. As the result, sockets for three connections have
same property (A:P). For the client program, at the time
of calling connect(), IP address is already known
and ephemeral port number is assigned. After calling
connect() three sockets in this figure are assigned
(B:P1), (B:P2), and (B:P3) respectively.

On the other hand, in the Unified architecture, the
SSA is not necessary to be assigned when bind() is
called, but in the latest case the SSA may be assigned
when the new socket has been created for the established
connection (S1, S2, S3 in this figure). At the client the
EA (E1, E2, E3) is automatically assigned to the socket
when connect() is called. In both cases, port number
is no longer necessary to be assigned to the socket
because the EA and SSA already include the equivalent
information about port numbers.

Because we assign different IP address to every con-
nection from the client, the IP address for the socket is
not determined yet when listen() is called to wait
connection requests from clients. IP address is actually
settled to the socket after accept() has been called
and a new socket has been created. Also, to accept
multiple connections from different clients, different IP
address should be set to different newly created sockets
for every accept() call.

2) Connection Identification in Unified Architecture:
In the Legacy architecture, the end node distinguishes the
session by using a transmit and receive port numbers
as well as transmit and receive IP addresses. These
information for the socket are stored into PCB (Protocol
Control Block) [4] in the kernel. Because we do not
refer to a port number in the transmit and receive of the
packet in the Unified architecture, a process to ignore the

1A:P means that IP address is A and port number is P

port number when it processes transmitted and received
packets is necessary.

3) Address Disposal at Termination of Communica-
tion in Unified Architecture: In the Unified architecture,
the lifetime of address (EA or SSA) is completely
the same as the duration of the session. Therefore,
the assigned address should be released and disposed
immediately at the end of the session. To achieve it the
process to inactivate the IP address when the session has
been finalized is necessary.

4) Requirements for Unified Communication: Based
on above, requirements to realize TCP in the Unified
architecture are as follows.

1) Delay Address Setting at session establishment
• Assignment of SSA at creating socket
• SSA assignment at session initiation
• EA assignment at session initiation

2) Ignoring port numbers
• At searching PCB
• In port number fields of sending packets

3) Address release at end of session
• Client: EA release at closing session
• Server: SSA release at closing session

III. NEW TECHNOLOGIES FOR UNIFIED MULTIPLEX

COMMUNICATION

In this section, we describe new functions/capabilities
needed to realize the Unified architecture separately.
Functions can be divided into three categories: address
settings, state transition of TCP, and interoperability.

A. Address Settings

1) DAS (Delayed Address Setting): DAS is a process
to set an address in socket after bind() is called at
the server. This is commonly used to assign a Specific
Service Address when accept() is called. The detailed
procedure of DAS is described in [1].

2) Uncertain State of Addresses: The current DAD
(Duplicated Address Detection) [5] is not compatible
with Unified architecture. Therefore we define the new
state of the address in addition to states defined in
RFC 4862 called UNCERTAIN. Detailed description
about the UNCERTAIN state is presented in [6].

3) AUTO SET (Auto Address Setting): In the Unified
architecture, SSA/EA must be assigned to every con-
nection when the connection has been established. To
get connected to the server with the SSA, the explicit
value of SSA should be determined and notified to the
client which is used to call connect(). The server

A!

A! A! A! A!

(a) Legacy

!! !! !! !!

S3!!!

S1! S2! S3!

Auto Set!
DAS

Required!

LISTEN!

DAS!

ACCEPT!

(b) Unified

Fig. 3. Addresses assigned to socket in Legacy/Unified architectures

then waits the connection from the client for the notified
SSA. To resolve this situation, we modify the procedure
of listen() in following. We set explicit value of SSA
for every element of the backlog queue of connection
requests, whose length is specified in listen(). Each
socket in the backlog can set two following attribute as
principle of the address assignment.

• Auto Set: Address is automatically set by the
kernel after listen() has completed. The address
that the client will use is obtained from the set of
addresses assigned by AUTO_SET.

• DAS Required: Kernel does not assign any ad-
dresses to sockets. Address should be assigned
manually by DAS before accept() is called.

Figure 3 compares addresses assigned to sockets be-
tween the Legacy and Unified architectures. Red circles
are original sockets and blue and green sockets are
sockets derived (newly created) sockets. In the Legacy
architecture all sockets in the backlog queue have the
same IP address A, which is also the same as the
address of the original socket. On the other hand, when
listen() has been called, addresses of sockets are
not determined in both “Auto Set” and “DAS required”
cases.

4) Address Generation Methods: The procedure of
the address generation is also an important role in the
Unified architecture. As simple approaches, sequential,
or random value generation can be applied. However,
well-considered address generation would be able to add
a new capability or feature in the communication. For
example, random address generation can improve the
privacy that a third-party cannot identify the node easily
by capturing communication packets. A discussion on
the address generation is presented in [7].

B. State Transition of TCP

As described before, in the Unified architecture the
SSA is assigned to the socket after bind() is called.

TABLE I
INTEROPERABILITY WITH LEGACY ARCHITECTURE NODES

Mode

Level Use of port number

for distinguishing
sessions Destination port

number in
packets Available

Communication Style
Server(Addr, Port) –

Client (Addr, Port) Server Client
Port ignore

L0 No No Any U(SSA, *) ー U(EA, *)
Port ignore

L1 No No Source port

number of
received packet U(SSA, *) ー U(EA, *)

U(SSA, *) ー L(LA, EP)
Port ignore

L2 No Yes Source port

number of
received packet U(SSA, *) ー U(EA, *)

U(*, *) ー L(LA, EP)
Port aware Yes Yes Source port

number of
received packet U(*, WP) ー L(LA, EP)

U(*, RP) ー L(LA, EP)
U(*, WP) ー L(LA, RP)
U(*, RP) ー L(LA, RP) Node U: Unified, L: Legacy Address SSA: Service Specific Address, EA: Ephemeral Address, LA: Legacy Address Port EP: Ephemeral Port, RP: Reduced Port (LEGACY_COMPAT), WP: Well-known Port

There is a problem that the node cannot accept a connec-
tion request immediately after bind() has been called,
because there is no valid SSA prepared for the socket.
To solve this problem, we re-define the state transition
of TCP slightly. Specifically, we subdivide the state
LISTEN into two sub-states LISTEN0 and LISTEN.
LISTEN0 indicates that the socket is ready for waiting
to accept connections, but not ready to actually accept the
connection due to lack of SSA. To transit LISTEN0 to
LISTEN the address assignment to the socket is required
by DAS. Note that if the attribute of the socket is “Auto
Set”, the address is assigned automatically and the state
is changed from LISTEN0 to LISTEN immediately.

C. Interoperability

When we consider about transition to the Unified Mul-
tiplex communication architecture, it is unrealistic that
all nodes cope with a Unified architecture at the same
time, and it is necessary to consider about coexistence
with the Legacy architecture nodes. For Legacy nodes,
interoperability with Unified nodes is important because
the Unified architecture particularly discontinues to use
the concept of port numbers, while the Legacy architec-
ture port numbers are used to identify the session.

According to the combination of operations, we con-
sider what kind of nodes can communicate with each
other. The summary is show in Table I.

IV. IMPLEMENTATION

Currently, the proposed Unified Multiplex Architec-
ture has been implemented in FreeBSD 6.2R which
includes:

• Modification of major socket APIs to support EAs,
SSAs and UNCERTAIN state

• Userland program for Delay Address Setting (DAS)
• sysctl parameters for interoperability
• Modification of userland commands ifconfig,
sockstat, netstat to handle EAs/SSAs

Following is an example that 2001::1 is assigned as
an uncertain pool address to be used for EA/SSA.

ifconfig lnc0 inet6 2001::1 pool
ifconfig lnc0 inet6

lnc0: flags=108843<UP,BROADCAST,RUNNING,
SIMPLEX,MULTICAST,NEEDSGIANT> mtu 1500

inet6 fe80::20c:29ff:feb8:9d7c%lnc0
prefixlen 64 scopeid 0x1

inet6 2001::1 prefixlen 64 uncertain pool

To use the pool address for SSA, simply run das
command to associate the pool address with the PID of
the server which intends to use.

sockstat -6
USER COMMAND PID FD PROTO LOCAL FOREIGN
root sshd 719 3 tcp6 *:22 *:*

das 719 lnc0 2001::1

V. CONCLUDING REMARKS

In this paper, we have described the design of the basic
technologies to be necessary to realize the Unified Mul-
tiplex communication architecture. Through the analysis
of behavior in Unified architecture, we have created
some new concepts that are applicable to conventional
architecture. We have already completed implementation
in kernel and userland command on FreeBSD 6.2R based
on this design. As future topic, we need to improve
the design based on the feedback from experimental
evaluation.

REFERENCES

[1] H. Kitamura, S. Ata, and M. Murata, “Communication archi-
tecture evolution enabled by introducing specific IP address for
each session - unified multiplex communication architecture -,”
submitted for publication, Sept. 2010.

[2] H. Kitamura, S. Ata, and M. Murata,
“IPv6 ephemeral addresses,” Internet Draft,
draft-kitamura-ipv6-ephemeral-address-01, July 2009.

[3] K. Shima and H. Kitamura, “IPv6 global communication archi-
tecture build on a mechanism for conveying service dedicated
address information (DNSO),” IEICE Technical Report (IN2008-
29), Mar. 2008.

[4] W. R. Stevens, TCP/IP Illustrated, Volume 2: The Implementa-
tion. Reading, Massachusetts: Addison-Wesley, 1995.

[5] S. Thomson, T. Narten, and T. Jinmei, “IPv6 stateless address
autoconfiguration,” RFC 4862, 2007.

[6] H. Kitamura, S. Ata, and M. Murata, “Harmless IPv6
address state extension (uncertain state),” Internet Draft,
draft-kitamura-ipv6-uncertain-address-state-01, July 2009.

[7] K. Sakakima, S. Ata, and H. Kitamura, “Anonymous but trace-
able ip address-based communication system,” Proceedings of
NetCom 2009, Dec. 2009.

