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Abstract: Taking into account requirements of sensor networks, we need fully-distributed and self-
organising control mechanisms which are scalable to the size of a network, robust to failures of sensor 
nodes, and adaptive to different and dynamically changing topology and changes in wireless 
communication environment. To accomplish this goal, our research group focuses on behaviour of 
biological systems, which inherently are scalable, adaptive and robust. In this paper, we first verify the 
practicality of control mechanisms adopting a reaction-diffusion equation, which explains emergence 
of patterns on the surface of body of fishes and mammals, and then propose two methods for faster 
pattern generation to save energy consumption. Prom simulation and practical experiments on a 
prototype, it was shown that a stable pattern could be generated in a wireless sensor network in several 
minutes, even when packets were lost for collisions in wireless communication. 
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1 Introduction 

Wireless sensor network is one of the most promising and key 
technologies for safe, secure and comfortable society. By 
distributing a large number of sensor nodes and organising a 
network through wired/wireless communication, one can 
obtain detailed information about surroundings, remote region, 
entities and objects. Because of a large number of sensor nodes, 
random or unplanned deployment and dynamic topology 
changes due to addition, movement and removal of sensor 
nodes, control mechanisms for a wireless sensor network must 
be scalable, adaptive and robust. In addition, due to difficulty in 
managing a large number of nodes in a centralised fashion, 
mechanisms must be fully distributed and self-organising. 

To establish control mechanisms with the above mentioned 
features, we focus on behaviour of biological systems, which 
inherently are scalable, adaptive and robust. For example, in 
Wakamiya and Murata (2005), we applied a pulse-coupled 
oscillator model, which explains emergence of synchronised 
behaviours in a group of flashing fireflies and chirping crickets, 
to energy-efficient data gathering. Other examples of biological 
mechanisms applicable to sensor networks include foraging 
behaviour of ants (Huang et al., 2006; Selvakennedy et al., 
2006) and bees (Boonma and Suzuki, 2006), regulation of 
blood pressure (Dressier, 2006) and so on. 

A reaction-diffusion equation is also viable as a key 
algorithm for autonomous control mechanisms. It was firstly 
proposed by Alan Turing ( 1952) as a mathematical model  
for pattern generation on the surface of body of fishes and 
mammals. Autonomously generated patterns on a sensor 
network can be used for routing, clustering, scheduling and 
topology control. There are some researches adopting a 
reaction-diffusion equation to establish an autonomous and 
self-organising mechanism. In smart sensor networks for a 
forest fire application, a stripe pattern is organised from  

a robot load point to a fire control point through local  
and mutual interactions among distributed sensor nodes and 
mobile robots walk along the stripe to fight a fire (Chen and 
Henderson, 2000). RD-MAC proposed in Durvy and Thiran 
(2005) is a reaction-diffusion based MAC protocol, where 
they noticed the similarity among a scheduling pattern of 
spatial TDMA and a spot pattern of leopards. A node 
inhibits packet emission of neighbouring nodes in its range 
of radio signals while encouraging nodes out of the range  
to send packets for better spatial use of a wireless channel. 
For camera sensor networks, Yoshida et al. (2005) proposed 
a cooperative control model for a surveillance system which 
consists of plural Pan-Tilt-Zoom cameras and having no 
central control unit is proposed. Each camera adjusts their 
observation area to decrease blind spots in the whole 
surveillance area by a control model based on a reaction-
diffusion equation. 

Although these work show the potential applicability of a 
reaction-diffusion equation to a control mechanism of a 
wireless sensor network, they only evaluated the proposal 
through simulation experiments under ideal condition. In an 
actual environment, sensor nodes are sparsely distributed and 
operate asynchronously, whereas the original reaction-diffusion 
equation considers the continuous space and synchronised 
calculation of the equation. In addition, a sensor node has the 
limited computational capability, integer arithmetic is preferred 
for high-speed operation, whereas a reaction-diffusion equation 
requires real number calculation. Integer arithmetic reduces  
the accuracy of calculation and a desired pattern could not  
be generated. Furthermore, faster pattern generation is 
preferred in a wireless sensor network, since diffusion process 
which involves message exchanges among sensor nodes and 
consumes energy. Therefore, in this paper, we conduct both of 
simulation and practical experiments to verify the practicality 
of reaction-diffusion based pattern generation in an actual 
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environment. In addition, to have an energy-efficient control, 
we propose two methods to accelerate pattern generation.  
We further evaluate the influence of packet loss considering  
a practical scenario. 

The rest of the paper is organised as follows. In Section 2, 
we introduce a reaction-diffusion equation that our paper is based 
on. Next in Section 3, we describe our reaction-diffusion based 
control mechanism for a wireless sensor network. In Section 4, 
we then show and discuss results of simulation and practical 
experiments. Finally, we conclude the paper in Section 5. 

2 Reaction-diffusion equation 

A reaction-diffusion equation of two morphogens, i.e. 
activator and inhibitor, can be written as 
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where u and v are the concentrations of activator and 
inhibitor, respectively. The first term of the right-hand side 
is a reaction team and the second term is a diffusion term. F 
and G are nonlinear functions for chemical reactions. Du and 
Dv are the diffusion rate of activator and inhibitor, 
respectively. 2∇  is the Laplacian operator. 

In a reaction-diffusion mechanism, the following 
conditions must be satisfied to generate patterns; (1) The 
activator activates itself and the inhibitor, whereas the 
inhibitor restraints the activator and (2) The inhibitor  
 

diffuses faster than the activator (Dv > Du). A mechanism of 
pattern generation can be explained as follows. In Figure 1, 
those hypothetical chemicals are arranged in a line on the  
x-axis. The y-axis corresponds to the concentrations of 
activator and inhibitor. Now, consider that the concentration 
of activator has a peak at the centre by a slight perturbation. 
The concentrations of activator and inhibitor are increased 
around the peak by self-activation. The generated inhibitor 
diffuses faster than the activator and restrains generation of 
activator at further regions. On the other hand at the peak, 
the concentration of activator is kept higher than that of 
inhibitor for different rates of diffusion. Consequently, the 
diversity in the concentration of activator emerges and a 
pattern appears. For example, when we colour a point where 
the concentration of activator exceeds a certain threshold 
with white and others with black, we can see a black-white-
black pattern shown at the bottom of Figure 1. 

In this paper, we use the equations below for F and G, 
which model pattern generation on an emperor angelfish 
Pomacanthus imperator (Kondo and Asai, 1995). 

( ) { }{ }
( ) { }{ }
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, max 0,min , ,
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⎧ = − + −⎪
⎨

= + −⎪⎩
 (2) 

where a and e correspond to the rate of activation and b is 
for that of inhibition, c and f are parameters for synthesis or 
increase of morphogens per unit time, d and g are for 
decomposition or decrease of morphogens per unit time.  
M and N are constants of limit. Figure 2 illustrates chemical 
reactions of the morphogens following the reaction-
diffusion equation. 

Figure 1 Pattern generation 

 

Figure 2 Dynamics of morphogens 

 

In order to generate patterns, the parameters must satisfy 
Turing conditions shown below. 

0,a d g− − <  (3) 

( ) 0,eb a d g− − >  (4) 

( ) 0,v uD a d D g− − >  (5) 

( )( ) ( )( )2
4 0.v u u vD a d D g D D eb a d g− − − − − >  (6) 
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As far as these conditions are satisfied, the space will have 
the spatial heterogeneity in terms of the concentration of 
morphogens and a variety of patterns can be generated as 
illustrated in Figure 3. Derivation of the Turing conditions is 
described in Appendix A. 

Figure 3 Example of generated patterns 

 
(a) spots (b) stripes (c) maze 

If the initial concentrations of activator and inhibitor are both 
larger than zero, u and v have the upper limit umax = r/d and  
vmax = s/g, respectively. The lower limits are umin = vmin = 0. By 
regarding F(u, v) as (a – d)u – bv + c and G(u, v) as eu – gv + f, 
wavelength l of a generated pattern can be derived as, 

( )
42 .u vD D

l
eb a d g

π=
− −

 (7) 

Derivation of the wavelength is described in Appendix B. 

3 Reaction-diffusion based control mechanism 

To verify the practicality of a reaction-diffusion based 
mechanism, we consider a simple and general mechanism 
described as follows. 

Nodes are arranged in a grid network topology, where a 
node can communicate with four direct neighbours in up, down, 
left and right directions. Nodes at a corner have two neighbours 
and nodes at an edge have three neighbours. At regular intervals, 
a node calculates the reaction-diffusion equation by using 
information about morphogen concentrations of neighbours, 
which it has received after the previous control timing. Then,  
it broadcasts information about its morphogen concentrations 
to the neighbours. If a node did not receive concentration 
information from a neighbour in this interval, it uses the latest 
information it received instead. Nodes behave in an asynchronous 
manner. It means that timing of message emission and 
reaction-diffusion calculation are different among nodes. 

Since the arrangement of nodes and exchange of 
information are discrete in space and time, we first discretise 
equation (1) as follows: 
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At the t-th control timing, a node calculates the reaction-
diffusion equation to obtain its morphogen concentrations 
ut+1 and vt+1, based on which a node decides its behaviour, 
e.g. colour, in the next control interval. A set of , ,u d l

t t tu u u  
and r

tu  and a set of , ,u d l
t t tv v v  and r

tv  correspond to 
neighbouring nodes’ concentrations of activator and 
inhibitor that a node uses for calculation at the t-th control 
timing, respectively. Δh and Δt correspond to the distance 
between nodes and the discrete step interval of time, 
respectively. There is the range of Δt for the equation 
reaches convergence, 
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As far as the degree of temporal discretisation is within this 
range, the same pattern is generated for the same set of 
parameters. 

Since a sensor node has the limited computational 
capability, integer arithmetic is preferred for high-speed 
operation. However, integer arithmetic introduces several 
problems such as truncation error, cancellation error, loss of 
trailing digit and overflow. When the number of significant 
digits is insufficient, a generated pattern becomes different 
from that obtained by real number computation or a pattern 
does not converge. In this paper, we set the number of 
significant digits as four. Since concentrations of activator 
and inhibitor range from 0 to M and N and they are set at 0.2 
and 0.5, respectively, we multiply the concentrations by 103 
to have four-significant-digit numbers. We confirmed this 
was sufficient from simulation experiments. 

When we consider to generate a pattern under random 
node layout, we should further discretise ( )2 ,X X u v∇ =  as 
follows: 
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where, Xi and Xj are the concentration of morphogens in 
node i and j and di,j is the distance between the two nodes.  
R is the maximum transmission range. We confirm the pattern 
generation of this equation by simulation experiments. An 
example of a generated pattern is shown in Figure 4. In the 
figure, squares show nodes and the brighter colour indicates 
lower concentration of activator. From this Figure, we can 
see that the spot patterns appear in random node layout.  
For simple analysis, we use the grid node layout in 
following simulations. 
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Figure 4 Simulation result of random node layout (see online 
version for colours) 

 

4 Simulation and practical experiments 

In this section, we show results of simulation and practical 
experiments and discuss the practicality and applicability of 
the reaction-diffusion based mechanism. 

4.1 Simulation experiments 

First, we verify the appropriateness of our spatial discretisation 
of the reaction-diffusion equation. Nodes are arranged in a  
100 × 100 grid network. At the beginning of a simulation run, 
the concentrations of activator and inhibitor of the node at (50, 
50) are set at 5000 and 3000, respectively. The concentrations 
at the other nodes are all set at 3000. Some results of 
comparison among simulation and analysis are illustrated in 
Figure 5 for the wavelength of generated patterns. Parameters 
are summarised in Table 1, which satisfy the Turing conditions. 
The wavelength of a pattern generated by simulation is 
obtained by averaging the sum of widths of black and white 
stripes over stripes. As shown in the figures, the results match 
among simulation and analysis. With the finer spatial 
discretisation with a smaller Δh, results become closer. We also 
evaluated the upper limit of temporal discretisation ΔT and 
simulation and analysis had good matches, but results are not 
shown in the paper due to the space limitation. 

Figure 5 Comparison of simulation and analysis: wavelength 

 
(a) 60 110, 50′ ′< < =vb D  (b) 80,30 90′ ′= < <vb D  

Table 1 Parameters used for wavelength comparisons 

Parameter Value Parameter Value 

a′ 80 uD′  2 

b′ 60−110 vD′  30−90 

c′ 20 M' 200000 

d′ 30 N' 500000 

e′ 100 ΔT 1 

f′ −150 Δh 0.2 

g′ 60   

Next, we evaluate the mathematical upper limit of temporal 
discretisation ΔT. Nodes are arranged in a 5 × 5 grid network. 
Parameters are summarised in Table 2. In Figure 6, 
comparisons among simulation and analysis are shown. We 
conducted simulation experiments by changing ΔT from 1 by 1 

to obtain the upper limit of generating a stable pattern. We can 
see that the results are similar among simulation and analysis, 
but the limit of simulation is always larger than that of analysis. 
The reason for this is that non-linear clauses of equation (2)  
are not taken into account in derivation of equation (9). 

Table 2 Parameters used for ΔT comparisons 

Parameter Value Parameter Value 
a′ 80 uD′  2 

b′ 80 vD′  50−200 

c′ 20 M′ 200000 
d′ 20−40 N' 500000 
e′ 100 ΔT 1–100 
f′ −150 Δh 1 
g′ 50−110   
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Figure 6 Comparison of simulation and analysis: limit on ΔT 

 
(a) 20 40, 60, 50′ ′ ′< < = =vd g D  (b) 30,50 110, 50′ ′ ′= < < =vd g D  (c) 30, 60,50 200′ ′ ′= = < <vd g D  

Figure 7 illustrates a stable pattern generated on a 5 × 5 grid 
network with a set of parameters in Table 3. A white square 
corresponds to a node with the concentration of activator 
higher than 3000. A black square is for a node with the 
concentration of activator smaller than 3000. Since we set  
a peak of the concentration of activator at the centre,  
a generated pattern forms concentric circles. 

Figure 7 Generated pattern by simulation 

 

Table 3 Parameter setting 

Parameter Value Parameter Value 
a′ 80 uD′  2 

b′ 80 vD′  50 

c′ 20 M' 200000 
d′ 30 N' 500000 
e′ 100 ΔT 1 
f′ −150 Δh 1 
g′ 60   

Pattern generation normally takes time and requires a 
considerable number of calculations. It further corresponds to 
the number of communication and the energy consumption. 
Therefore, we need to accelerate pattern generation for energy-
efficient and adaptive controls. We propose two methods:  
(a) to have a larger discrete step ΔT and (b) to calculate the 
reaction-diffusion equation for K times at each control timing. 

Figure 8 show results of changing ΔT to 1, 10 and 40 by 
using the method (a). The other parameters are set based on 
Table 3. The theoretical upper limit of ΔT is 43.5. Generated 
patterns are the same among all. Figure 8(a) illustrates the 
transition of concentration of activator at the node at the upper 
left corner against the number of communication and  
 
 

calculations. The number of communication corresponds to the 
number of messages that a node emits and it is equivalent to  
the number of control intervals. Since a node calculates  
the reaction-diffusion equation once per control interval, the 
number of communication and the number of calculations are 
identical for the method (a). As shown in Figure 8(a), the 
number of communication and calculations required for the 
convergence of concentration of activator can be decreased by 
increasing ΔT. However, the faster convergence is achieved at 
the sacrifice of the accuracy of calculation. Figure 8(b) shows 
the transition of concentration of activator against the elapsed 
time in reaction-diffusion calculation. The elapsed time is 
derived by multiplying ΔT by the number of communication or 
calculations. We can see that a larger ΔT leads to larger 
fluctuation, because the accuracy of calculation becomes lower 
with a larger ΔT for discretisation. However, in our simulation 
experiments, all ΔT within the range of equation (9) result in 
the same stable pattern illustrated in Figure 7. 

Next, we evaluate the method (b). Figure 9 shows results of 
changing K as 1, 10 and 40. The other parameters are set as 
Table 3. Generated patterns are the same among all 
independently of K. In the case of the method (b), at regular 
control timing, a node calculates the reaction-diffusion 
equation for K times by using the same concentration values 
for neighbouring nodes, and then broadcasts the result. 
Therefore, the number of calculations is K times larger than the 
number of communication. In Figure 9(a), the transition of 
concentration of activator is depicted against the number of 
communication for different setting of K. As shown, a larger  
K decreases the number of communication required for 
convergence. Since a larger K spoils the accuracy of reaction-
diffusion calculation as a larger ΔT does, the transitions of 
concentration of activator are similar among Figure 8(b) and 
Figure 9(b). K also has the limitation on the effective range  
to generate a pattern. When K is greater than 130, the 
concentration of activator does not converge and a pattern 
becomes unstable. In the range of 40 < K < 130, the number of 
communication required to reach a stable pattern does not 
change. Therefore, the effective range of K is from 0 to 40. 
Figure 10 illustrates comparison among the methods, where  
K = 1 and ΔT = 10 for the method (a) and K = 10 and ΔT = 1 
for the method (b). As shown in the Figure, those methods 
show quite similar behaviour. 
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Figure 8 Simulation result of method (a) 

 
(a) Transition of concentration of  

activator against number of  
communication and calculation 

(b) Transition of concentration of  
activator against elapsed time 

Figure 9 Simulation result of method (b) 

 
(a) Transition of concentration  
of activator against number of 

communication 

(b) Transition of concentration  
of activator against number  

of calculations 

Figure 10 Comparison among methods 

 

Although the proposed methods can effectively reduce the 
number of communication, it sacrifices the robustness against 
information loss. Figure 11 shows the probability of successful 
pattern generation against the information loss rate. We assume 
that the information about concentrations is lost at random at 
the information loss rate. The probability of successful pattern 
generation is defined as the ratio of simulation runs which 
reach the same stable pattern that is generated for the case 
without loss of information to all 1000 simulation runs. As 
shown in Figure 11, our acceleration methods can generate a 
stable pattern under random information loss of 4%, whereas a 

normal mechanism without acceleration can tolerate up to 23% 
random information loss. Therefore, we need an additional 
mechanism, such as retransmission, to generate patterns under 
unstable and unreliable radio conditions. 

Figure 11 Influence of information loss 

 

4.2 Practical experiments 
We implement the reaction-diffusion based mechanism using 
off-the-shelf nodes of OKI Electric Industry (Figure 12).  
We added a board with large LEDs for better visualisation of 
pattern generation. 25 nodes are arranged in a 5 × 5 grid 
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network. All nodes use the same reaction-diffusion equation of 
the same parameter setting in Table 3 and adopt the method  
(a) with ΔT = 10. A node uses IEEE 802.15.4 non-beacon 
mode MAC protocol. 32 bit signed integer is used for 
calculation. All nodes are in the range of radio signals of each 
other. Therefore, to restrict nodes to communicate among 
direct neighbours, we introduce a MAC address-based filter. A 
node maintains a list of MAC addresses of neighbouring nodes 
to communicate with, and it only receives packets originated 
from nodes in the list. A packet broadcast by a node is of  
32 bytes including a header, the concentrations of activator and 
inhibitor, the total number of calculations it has conducted, and 
the total number of packets it has not received. The last two are 
for logging and debugging purpose. 

Figure 12 Prototype (see online version for colours) 

 

We determine the control interval to keep the average loss rate 
less than 4%. If the control interval is too short, nodes behave 
in synchrony and the loss rate becomes high for collision  
and congestion. We conducted preliminary experiments by 
changing the control interval and found that the control interval 
must be larger than about 700 msec to keep the loss rate  
below 4%. Therefore, we empirically set the control interval as 
1400 msec taking into account dynamic changes in wireless 
communication environment. 

In Figure 12, nodes with a LED on are indicated by circles. 
A node turns on its LED when the concentration of activator is 
higher than 3000. In comparison to Figure 7, it is verified that 
the prototype can generate the same pattern as in simulation. 
Figure 13 shows the detailed comparison. There is no loss of 
information in simulation, whereas the average packet loss rate 
is about 3% on the prototype. Nevertheless, transitions of 
concentration of activator are almost the same among the 
prototype and simulation. Therefore, we can conclude that the 
reaction-diffusion based pattern generation works on an actual 
wireless sensor network and the number of communication, i.e. 
the amount of energy consumption, can be reduced by our 
acceleration methods with appropriately chosen parameters. 

Figure 13 Comparison among simulation and implementation 

 

5 Conclusion 

In this paper, we verified the practicality of reaction-
diffusion based control mechanisms for wireless sensor 
networks by simulation and practical experiments. Whereas 
sensor nodes are placed in a discretised manner, they 
exchange concentration information and calculate equations 
intermittently and asynchronously, and there is loss of 
information due to packet losses, a wireless sensor network 
could successfully generate an intended pattern based on the 
reaction-diffusion model. 

We also proposed and evaluated two methods to accelerate 
pattern generation for energy-efficiency. As far as the temporal 
discretisation ΔT and the number of calculations K are kept 
within a certain limit, we can accelerate the speed of pattern 
generation in the two orders of magnitude, which further leads 
to considerable saving of energy and wireless bandwidth. 

Our proposed discretisation and acceleration methods 
are useful to make other reaction-diffusion based 
mechanisms realistic and practical. Based on the results, We 
also proposed a new self-organising and autonomous 
clustering mechanism based on a reaction-diffusion model, 
where we regarded spots in a reaction-diffusion pattern as 
clusters centred at a cluster head (Wakamiya et al,. 2008). 
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Appendix A: Turing conditions 

Turing conditions must be satisfied for a reaction-diffusion equation to 
have Turing instability. When the spatially uniform steady state which 
keeps stable against a small spatially uniform perturbation becomes 
unstable against a small spatially non-uniform perturbation, the system 
is considered to have Turing instability. 

Equations (1) and (2) have only one uniform steady state 
( , )e eu v  shown as follows. 

( ),
( ) ( )e e

bf gc a d f ecu v
eb a d g eb a d g

+ − +
= =

− − − −
 (A1) 

Linear partial differential equations can be derived by linearising 
equations (1) and (2) considering small perturbation eu uξ = −  
and ev vη = −  from the uniform steady state as, 

( ) u

v

a d b D
t

e g D
t

ξ ξ η ξ

η ξ η η

∂⎧ = − − + Δ⎪⎪ ∂
⎨∂⎪ = − + Δ
⎪ ∂⎩

 (A2) 

Since equation (A2) is linear, the solution (ξ, η) is given by the 
sum of eigenmode (ξμ, ημ) for eigenvalue μ of an operator Δ. 
Behaviour of eigenmode (ξμ, ημ) follows the following differential 
equations. 

( )
∂⎧

= − − + Δ⎪⎪ ∂
⎨∂⎪ = − + Δ⎪ ∂⎩

u

v

a d b D
t

e g D
t

μ
μ μ μ

μ
μ μ μ

ξ
ξ η μ ξ

η
ξ η μ η

 (A3) 

It can be evaluated by the root of the following quadratic 
polynomial. 

( )( ) ( ) ( )u up D a d D g ebμ λ λ μ λ μ= + − − + + +  (A4) 

If pμ (λ) has a root with one or more positive real parts, eigenmode 
(ξμ, ημ) diverges. When conditions of equations (A5) and (A6) 
below are satisfied, both roots of Po (λ) have a negative real part. 

<0a  d  g− −  (A5) 

( ) >0eb a d g− −  (A6) 

Therefore, (ξμ, ημ) converge to (0, 0) as time passes. In other 
words, (ue, ve) is stable against a spatially uniform perturbation. 

In order for the uniform steady state (ue, ve) to have Turing 
instability, it is necessary that at least one of roots of Pμ (λ) to have  
 
 
 
 
 
 
 
 
 
 
 
 
 

a positive real part for a positive eigenvalue μ. From equations (A5) 
and (A6), if μ > 0, (Du + Dv)μ –(a−d)+g > 0 holds. Therefore, the 
following equation should be satisfied for a positive real number μ. 

( )( ) ( ) ( ) 0u vh D a d D g ebμ μ μ= − − + + <  (A7) 

Since DuDv > 0 and eb – (a−d)g > 0, both roots of h (μ) must have a 
positive real number. Consequently, the following conditions must be 
satisfied. 

( ) >0Dv a d Dug− −  (A8) 

( )2( ) ) 4 ( ( ) 0v u u vD a d D g D D eb a d g− − − − − >  (A9) 

Equations (A5), (A6), (A8) and (A9) are Turing conditions for the 
reaction-diffusion equations (1) and (2). 

Appendix B: Wavelength 

A reaction-diffusion equation which satisfies Turing conditions has 
Turing instability. Turing instability cause two divergences, Hopf 
divergence and Turing divergence. Hopf divergence causes the steady 
state to periodically change, whereas Turing divergence does not. 
Here, we consider Turing divergence. When a root of pμ(λ) changes 
from a negative number to a positive number and the other root is a 
negative number, Turing divergence happens. In other words, 
discriminant of h (μ), 

( ) ( )2( ) 4 ( ) ,h v u u vD a d D g D D eb a d gΔ = − − − − −  (B1) 

changes from positive to negative, μ = μC that makes h (μ) to 0 
when Δh = 0 is shown below. 

( )
2

v u
c

u v

D a d D g
D D

μ − −
=  (B2) 

The corresponding mode becomes unstable and generates a steady 
state pattern. ( )( ) 2 ( ) ,v u u vD a d D g D D eb a d g− − = − −  because 

Δh = 0. Then, the following holds, 

( ) .c
u v

eb a d g
D D

μ − −
=  (B3) 

Finally, the wavelength of eigenmode l is given as, 

4
2 2 .

( )
u vD Dl

eb a d g
π π
μ

= =
− −

 (B4) 


