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Abstract—Per-flow unfairness of TCP throughput in the IEEE
802.11 wireless LAN environment has been reported. Although
a number of researchers have proposed various methods for
alleviating the unfairness, they evaluated the fairness of their
methods separately from the network bandwidth utilization,
meaning that they did not consider the trade-off relationships
between fairness and bandwidth utilization. In this paper, we
first propose a novel performance metric considering both per-
flow fairness and bandwidth utilization at network bottlenecks.
We then propose a transport-layer solution for alleviating TCP
unfairness. We finally evaluate the performance of the proposed
method through experiments in a real wireless LAN environment.
We demonstrate that the proposed method can achieve better a
trade-off between fairness and throughput, regardless of vendor
implementations of wireless access points and wireless interface
cards.

Index Terms—Transmission Control Protocol (TCP), wireless
LAN, fairness, performance metric, experimental evaluation

I. INTRODUCTION

With recent developments in wireless networking technolo-
gies, accessing the Internet through a wireless LAN (WLAN)
is becoming common, and WLAN-based Internet access envi-
ronments are often available at public areas, such as railway
stations and airports. As such, it is important to consider
fairness among coexisting users.

As the wireless LAN environment, IEEE 802.11 families [1]
are standardized. The current IEEE 802.11 implementations
primarily use the Distributed Coordination Function (DCF)
as a medium access control protocol. In the DCF, a medium
access mechanism is based on Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA). CSMA/CA enables
stations, including an access point (AP), to fairly access a
wireless channel. Therefore, fairness among stations in the
WLAN is ensured at the MAC layer. Here, the traffic in a
WLAN consists of the traffic flowing from client stations
to wired networks via an AP (called upstream traffic) and
vice versa (called downstream traffic). Downstream traffic is
transmitted only from an AP, whereas upstream traffic is gen-
erated from multiple client stations. Therefore, upstream traffic
obtains more access opportunities to the wireless channel

than downstream traffic. This means that the fairness among
stations realized at the MAC layer does not mean the fairness
between the two flow directions at the upper layers. In fact, it
has been reported that TCP flows experience severe unfairness
in WLANs [2]–[4]. When TCP is used as a transport-layer
protocol, the unfairness among upstream flows is caused by
its congestion control mechanisms, i.e., TCP activates the
congestion control against data packet losses, but not against
ACK packet losses.

Various solutions have been proposed to alleviate unfair-
ness [2]–[5]. These solutions diminish TCP throughput un-
fairness by modifying the MAC protocol parameters or queue
management mechanisms in APs. However, the MAC proto-
cols of APs are generally implemented at the hardware level,
so changing these protocols is costly. Furthermore, a number
of methods need to estimate the number of flows and the
throughput of each flow at the AP. In addition, although certain
solutions can alleviate the unfairness by changing the MAC
layer, they may also cause other unfairness in the transport
layer. For example, although a priority-based solution at the
AP [5] can significantly improve TCP fairness, this solution
may cause UDP unfairness by assigning too an overly high
priority to traffic from the AP.

In this paper, we propose a transport-layer solution to
deal with the above problems. The basic concept of the
proposed solution was presented in [6]. The reasons for using
a transport-layer solution are as follows. First, MAC-layer
solutions may cause other unfairness issues at the transport
layer, as described above. Second, the unfairness is mainly
caused by the behavior of the transport-layer protocols. Third,
since transport-layer protocols are generally implemented
through software, modifying transport-layer protocols is easier
than modifying MAC-layer protocols. The proposed method
alleviates the unfairness by detecting TCP ACK packet losses
as an indication of congestion at an AP. The proposed method
requires a small modification of the TCP congestion control
mechanisms only on stations in the WLAN. We have con-
firmed the fundamental characteristics of the proposed method
in [6]. Through simulation experiments in [6], we demon-



strated that the proposed method is effective not only for TCP
fairness among upstream flows but also for fairness between
upstream and downstream flows. In this paper, we develop
the proposed method, including additional functions that are
important for implementation in the actual environment.

Generally, Jain’s fairness index [7] has been used as an
evaluation metric of fairness among users, flows, etc. Since this
index depends only on the variation of allocated values, the
index values intuitively indicate whether the allocated values
are fair. Here, assume that we have two solutions, both of
which are identically effective for alleviating unfairness, but
one of them degrades the total amount of allocated values,
whereas the other does not decrease the total value. Although
the latter should be judged to be superior to the former, both
solutions are identical from the viewpoint of Jain’s fairness
index. In other words, Jain’s fairness index cannot evaluate
such situations accurately.

Therefore, in this paper, we propose a novel performance
metric that consider the trade-off relationships between per-
flow fairness and bandwidth utilization at network bottlenecks.
The proposed metric can simultaneously evaluate both fairness
and utilization with a single metric value. We then evaluate
the performance of the proposed method through experiments
using real WLAN environments with products from several
vendors. We demonstrate that the proposed method can sig-
nificantly improve TCP fairness regardless of the number of
upstream and downstream TCP flows.

The remainder of this paper is organized as follows. In
Section II, we discuss unfairness problems among TCP flows
in WLANs. In Section III, we introduce a novel performance
metric considering both per-flow fairness and bandwidth uti-
lization. Section IV describes a solution for alleviating TCP
unfairness in WLANs. In Section V, we present experimental
results obtained using the solution proposed in Section IV.
Finally, conclusions and a discussion of future research are
presented in Section VI.

II. FAIRNESS AMONG TCP FLOWS IN WLAN
ENVIRONMENTS

In a typical WLAN environment, all stations including
an AP use the same parameters of CSMA/CA. Thus, the
contending stations obtain fair access opportunities to wireless
channel in the long term. This also means that upstream
flows, transmitted from multiple client stations, and down-
stream flows, transmitted from an AP, share the same wireless
channel. Therefore, when n client stations share a single AP
in the WLAN network, the access opportunities to the wireless
channel of upstream traffic is n/(n + 1), whereas that of
downstream traffic is 1/(n + 1). Hence, an AP is likely to
become a congestion point, meaning that the fairness at the
MAC layer protocol does not contribute to the fairness at upper
layer protocols such as UDP and TCP. Such a difference in the
ability to access the wireless channel between upstream and
downstream traffic causes serious problems because many ap-
plications, such as P2P file sharing, used in WLANs generate
both downstream traffic and upstream traffic.

Data packet flow of upstream TCP connection
ACK packet flow of upstream TCP connection
Data packet flow of downstream TCP connection
ACK packet flow of downstream TCP connection
Packet loss due to buffer overflow

Fig. 1. Congestion at the AP

Moreover, when TCP is used as a transport protocol, serious
per-flow unfairness occurs not only between upstream and
downstream flows but also among upstream flows. When the
congestion occurs as a result of the above-mentioned situation,
TCP ACK packets of upstream flows and TCP data packets
of downstream flows are discarded at an access point buffer
(Fig. 1). Note that TCP activates the congestion control against
data packet losses, but not against ACK packet losses. There-
fore, the congestion window size of upstream flows continues
to grow until Retransmission Time Out (RTO) occurs and all
ACK packets in a window are lost. When all ACK packets of
a certain upstream flow are discarded, the congestion window
size is set to one packet. At this time, the buffer at the AP
is still fully utilized because the access point congestion is
not resolved. That is, once a certain flow experiences an RTO,
the flow cannot increase its congestion window size for some
time, which causes throughput unfairness among upstream
TCP flows.

On the other hand, when upstream and downstream TCP
flows coexist, upstream TCP flows do not activate the conges-
tion control mechanisms and increase the congestion window
size, whereas downstream TCP flows activate the congestion
control mechanisms and decrease the congestion window size.
This causes serious throughput unfairness between upstream
and downstream TCP flows because upstream TCP flows
obtain more access opportunities to the wireless channel than
downstream TCP flows.

Various solutions have been proposed for alleviating the
above TCP unfairness [2]–[5]. A solution proposed in [2]
improves fairness among upstream and downstream flows by
rewriting the advertised receiver window size at the AP. A
solution proposed in [4] alleviates unfairness between up-
stream and downstream flows by dividing the buffer in an AP
into a buffer for data packets and a buffer for ACK packets.
In [3], TCP unfairness among upstream flows is diminished
by filtering ACK packets in an AP. In [5], the author proposed
shortening the carrier sense duration of the WLAN APs.
However, the cost of changing existing hardware devices using
these methods is high because the MAC protocols or queue
management mechanisms must be modified.

We therefore proposed an end-to-end solution for alle-
viating serious TCP unfairness [6], focusing on numerous



ACK packets discarded at the buffer of an AP when serious
TCP unfairness occurs. The proposed method regards ACK
packet losses as an indication of congestion and activates
the congestion control, whereas the normal TCP does not
activate the congestion control against ACK packet losses. The
proposed method can improve TCP fairness not only among
upstream flows but also between upstream and downstream
flows.

III. PERFORMANCE METRIC FOR TRADE-OFF BETWEEN
FAIRNESS AND THROUGHPUT

A. Existing Methods

The definition of fairness is important when we discuss
fairness among flows, because the improvement of fairness
is sometimes achieved at the expense of total bandwidth
utilization. In previous researches [2]–[5], [8], fairness is
defined such that all flows contending on a wireless channel
in a WLAN achieve the same throughput, and the effect on
the total network throughput is not considered.

Jain’s fairness index, which defined as follows, has been
used to evaluate the fairness:

Fj(A) =
(
∑n

i=1 ai)
2

n
∑n

i=1 a2
i

(1)

where n is the number of contending users, A =
{a1, a2, · · · , an} is a set of allocations for n users such that
ai is an allocation for user i. The index value approaches one
as the variation of allocations decreases, and the index value
approaches 1/n as the variation of allocations increases. Note
that Jain’s index is independent of the scale of allocations.
For example, consider fairness when allocating 10, 30, and
40 dollars, respectively, to three persons, and fairness when
allocating 100, 300, and 400 dollars, respectively, to three
persons. Both cases are equivalent from the viewpoint of Jain’s
index (0.82).

However, the total amounts of allocated values are different.
That is, Jain’s index is not suitable for comparing fairness and
considering the total amount of allocations. The total amount
of allocated values corresponds to the network bandwidth
utilization in the context of network bandwidth sharing. There-
fore, when we have a solution for alleviating unfairness while
slightly degrading the total throughput, Jain’s index cannot
accurately evaluate such a performance trade-off.

B. Definition of the Proposed Metric

Given a throughput set X = {x1, x2, · · · , xn}, where xi is
the throughput of the i th flow, and the network bandwidth at
the bottleneck, C, where

∑n
i=1 xi ≤ C, we define fair and

fully-utilized throughput xf = C
n , where all flows achieve the

same throughput and the network bandwidth is fully utilized.
Using the relationship between Jain’s fairness index Fj(X) in
Eq. (1) and total throughput

∑n
i=1 xi, we define the desired

properties for proposed fairness index F (X,C) as follows:
1) If

∑n
i=1 xi =

∑n
i=1 yi ≤ C and Fj(X) < Fj(Y ), then

F (X, C) < F (Y, C).

TABLE I
COMPARISON BETWEEN JAIN’S FAIRNESS INDEX AND THE PROPOSED

INDEX (C = 30 Mbps)

Case
Throughput distribution

[Mbps]
Total

[Mbps]
Jain’s
index

Proposed
index

1 { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3} 30 1.00 1.00
2 { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} 20 1.00 0.90
3 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10 1.00 0.69
4 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 6} 15 0.50 0.67
5 { 1, 1, 1, 1, 1, 1, 1, 1, 6, 6} 20 0.50 0.64
6 { 2, 2, 2, 2, 2, 2, 2, 2, 2, 12} 30 0.50 0.50
7 { 1, 1, 1, 1, 1, 1, 2, 3, 3, 6} 20 0.62 0.73
8 { 1, 1, 1, 3, 3, 3, 3, 4, 5, 6} 30 0.78 0.78

2) If
∑n

i=1 xi =
∑n

i=1 yi ≤ C and Fj(X) = Fj(Y ), then
F (X, C) = F (Y,C).

3) If
∑n

i=1 xi = C, then Fj(X) = F (X,C).
where Y = {y1, y2, · · · , yn}.

We start from the index f(X, C), which represents the
degree to which the throughput of each user is not fair and
fully utilized throughput (xf ):

f(X, C) =
1
n

n∑
i=1

(xi − xf )2. (2)

We then normalize f(X, C) by xf and obtain g(X, C) as
follows:

g(X, C) =

√
1
n

∑n
i=1(xi − xf )2

xf
. (3)

According to [7], Jain’s fairness index can be transformed into

Fj(X) =
1

1 + COV 2
(4)

COV =

√
1
n

∑n
i=1(xi − x̄)2

x̄
(5)

where COV is the coefficient of variance of allocations to the
users, and x̄ = 1

n

∑n
i=1 xi is the average of the allocations.

Finally, by comparing Eqs. (3) and (5), we obtain the following
definition of a novel index:

F (X, C) =
1

1 + g(X, C)2

=
C2

n
∑n

i=1 x2
i − 2C

∑n
i=1 xi + 2C2

. (6)

Note that the index satisfies the above-mentioned properties.
The index approaches one when the bandwidth utilization of
the network bottleneck approaches 100 % and the through-
put variance of each flow is small. In contrast, the index
approaches 1/n when the throughput variance is large.

C. Comparison with Jain’s Fairness Index

In Table I, Jain’s fairness index and the proposed index
are compared using simple examples in which the network
capacity bandwidth is 30 Mbps. Cases 1, 2, and 3 in Table I
have fair throughput distributions, but different total through-
puts. The proposed index can differentiate these cases, whereas



Jain’s index cannot distinguish among them. Like Cases 1,
2, and 3, Cases 4, 5, and 6 have different total throughputs,
but the throughput distributions have the same variations. The
proposed index becomes small for Cases 4, 5, and 6, since
the variance of throughput distribution of which are 2.25, 4.0,
and 9.0, respectively. Thus, the values of the proposed index
become small when a small number of flows acquire almost
all of the bandwidth, even if the total throughput is high. In
Cases 2, 5, and 7, the total throughputs are identical, but
the throughput distributions have different variations. These
cases corresponded to property 1) in Subsection III-B. In this
situation, the order of the three cases in Jain’s index and
that in the proposed index are identical. Moreover, when the
total throughput is equal to the network bandwidth capacity,
as in Cases 1, 6, and 8, Jain’s index and the proposed
index are identical. This situation is related to property 3) in
Subsection III-B.

IV. TCP CONGESTION CONTROL FOR ACK PACKET
LOSSES

The main reason for unfairness among TCP flows is that a
TCP continues to increase the congestion window size even
when the AP is highly congested and numerous ACK packets
are discarded. Therefore, we propose a simple modification
to TCP congestion control mechanisms to alleviate these
unfairness. This proposal is based on a simple concept: TCP
should activate congestion control when ACK packet losses
are detected, whereas the traditional TCP activates congestion
control only when data packet losses are detected.

More specifically, the proposed method activates congestion
control when the number of ACK packet losses in a window
exceeds a pre-determined threshold (thresh ack losses). The
TCP sender detects ACK packet losses by monitoring the
sequence number of the received ACK packets. When the
TCP sender observes abnormal jumps in the ACK sequence
numbers, these jumps are regarded as ACK packet losses in
the network and are calculated as follows:

ack loss = max
(⌊

ack − prev ack

MSS

⌋
− 1, 0

)
(7)

where ack loss is the number of ACK packet losses, ack
is the sequence number of the current received ACK packet
(bytes), prev ack is the sequence number of the previous
received ACK packet (bytes), and MSS is maximum segment
size (bytes). When the number of ACK packet losses in a
Round Trip Time (RTT) exceeds thresh ack losses, a TCP
sender halves the congestion window.

When using Eq. (7) to detect ACK packet losses, the effect
of the delayed ACK option [9] should be considered. Note
that the delayed ACK option has been implemented in both
Windows and Linux [10], [11]. Let b be the number of data
packets acknowledged by a received ACK packet. Several
TCP receiver implementations send one ACK packet for two
consecutive received packets, so b is typically set to two. When
the delayed ACK option is enabled, Eq. (7) cannot correctly
estimate the number of ACK packet losses. Therefore, we

IEEE 
802.11a

Client stations (laptops) 

Wired node 
(desktop) 

Access point

(a) Simple experimental environment

IEEE 
802.11a

Client stations (laptops) 

PC router 
with netem 

Access point Wired node 
(desktop) 

(b) Experimental environment with a PC router

Fig. 2. Experimental environments

add a function which determine the value of b to the method
proposed in [6].

There are two possible methods by which determine the
value of b. In the first method, a TCP receiver explicitly
informs a TCP sender of the value of b. In the second method,
a TCP sender estimates the value of b without any explicit
information from the TCP receiver. In the first method, a TCP
sender provides an accurate value of b, but this method requires
modifications at a TCP receiver. For this reason, we use the
second method, which does not require a TCP receiver-side
modification.

In the proposed method, b is estimated as follows:

best =
⌊
sbi +

1
2

⌋
(8)

sbi = (1 − β) sbi−1 + β

(
ack − prev ack

MSS

)
(9)

where best is the estimated value of b, and sbi is the i th
smoothed value for b with smoothing factor β. Note that sbi

in Eq. (9) is a continuous value, but best in Eq. (8) should be a
discrete value because b should be a discrete value. Thus, best

is calculated by half-adjust rounding. Using Eq. (8), Eq. (7)
is transformed into:

ack loss = max
(⌊

ack − prev ack

best × MSS

⌋
− 1, 0

)
. (10)

V. PERFORMANCE EVALUATION

A. Experimental Settings and Methods

Two experimental environments are shown in Fig. 2. In
both environments, ten client stations share one AP. All client
stations are located within 50 cm of the AP in order to avoid
packet losses due to wireless link error. In Fig. 2, a wired
node is directly connected to the AP through a wired link.
On the other hand, the experimental environment in Fig. 2(b)



TABLE II
WIRELESS DEVICES

(a) Wireless Interface Cards
Vendor Product name
Buffalo WLI-CB-AGHP

NEC Aterm WL54AG

(b) Access Points
Vendor Product name
Buffalo WAPS-HP-AM54G54

NEC Aterm WR8500N
Corega CG-WLR300NNH

introduces a PC router between the AP and the wired node for
the purpose of evaluation in long delay environments. DELL
Latitude E5500 laptops and a DELL Precision 390 desktop are
used as the client stations and the wired node, respectively.
All nodes, including the wired node, use Ubuntu 8.10 (Linux
kernel 2.6.28) as the OS. As shown in Fig. 2(b), another DELL
Precision 390 desktop is used as the PC router with netem [12]
for generating a 50 ms delay to the wired link between the AP
and the wired node. We use Web100 [13] patch to collect the
TCP connection information, such as the congestion window
size and the RTT from the Linux kernel. We used TCP Reno
and implemented the proposed method on the Linux code of
TCP Reno.

The wireless devices listed in Table II are used as wireless
interface cards for client stations and the AP. Note that all
client stations use the same type of wireless interface card in
Table II(a) in each experiment. Due to space limitations, we
show only the results obtained using the Buffalo’s wireless
interface card. However, the tendencies of the results are
similar regardless of the type of wireless interface card. In
the following, APs are abbreviated as [vendor name]-AP, e.g.,
Buffalo-AP.

The experiments using the environments in Fig. 2 were
conducted as follows. Only one TCP flow is generated for each
client station using Iperf [14], assuming bulk data transfer. We
keep the number of concurrent TCP flows at ten and change
the ratio of upstream and downstream TCP flows from (0, 10)
to (10, 0). For the purposes of comparison, TCP connections
use either the proposed method on TCP Reno or conventional
TCP Reno. The thresh ack losses parameter in the proposed
method is set to one. The experiment time is set to 180
seconds, and each TCP connection is generated simultane-
ously when the experiment starts. We disabled vendor-specific
functions implemented at APs. The TCP-delayed ACK option
was disabled at TCP receivers, except in experiments using
the environment shown in Fig. 2(b). For each experimental
setting, the experiments are conducted ten times in order to
average the results.

B. Experimental Evaluation Results and Discussion

Figs. 3, 4, and 5 show the snapshot results for the average
throughput of ten upstream flows in the experimental envi-
ronment shown in Fig. 2(a) using Buffalo-AP, NEC-AP, and
Corega-AP, respectively. The average throughput is calculated
using the amount of data transmitted in 50-180 seconds in
the experiment. Figs. 3(a), 4(a), and 5(a) show that serious
throughput unfairness occurs, regardless of the vendors of the
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Fig. 3. Average throughput of ten upstream flows when using Buffalo-AP
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Fig. 4. Average throughput of ten upstream flows when using NEC-AP
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Fig. 5. Average throughput of ten upstream flows when using Corega-AP

APs. Note that some of the upstream flows occupy the network
bandwidth, whereas other flows are completely starved. From
the viewpoint of unfairness, Corega-AP provides better results
than the other APs. In other words, the number of starved
flows when using Corega-AP is smaller than that when using
the other APs. This is because of the difference in the buffer
size at the APs. The buffer size of Corega-AP is larger than
that of the other APs. On the other hand, Figs. 3(b), 4(b), and
5(b) show that the proposed method successfully alleviates
throughput unfairness among upstream TCP flows, regardless
of the AP products.

Fig. 6 presents the average throughput of upstream and
downstream flows and the total throughput for various ratios of
upstream and downstream flows. In the figure, uxdy denotes
that the number of upstream and downstream TCP flows are x
and y, respectively. Fig. 6 shows that, using TCP Reno, when
at least one upstream TCP flow exists in the network, the
upstream flows occupy almost all of the network bandwidth,
and the downstream flows are starved. On the other hand,
the proposed method can significantly improve the throughput
fairness between upstream and downstream flows, and starved
flows do not occur. Fig. 6(b) reveals that the degree of fairness
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Fig. 6. Effect of the number of upstream and downstream flows

improvement is small when using NEC-AP. The reason for this
is as follows. In this case, the flows experience RTO even when
the proposed method is used, whereas the proposed method
produces no RTO when using the other APs. We believe that
the reason for this is that the buffer size of the NEC-AP is
much smaller than that of the other APs. However, even in
this case the proposed method can avoid starvation of flows.

In terms of total throughput, the total throughput of ten
downstream flows with TCP Reno and the proposed method
are equivalent, regardless of AP type. This is because ACK
packets are not discarded at the APs and the behaviors of TCP
with and without the proposed method are identical. However,
when there exist one or more upstream flows, the total
throughput of the proposed method degrades while the fairness
improves significantly. The reason for this is as follows. When
the proposed method is not used, several ACK packets of
upstream TCP flows are discarded at the APs. This means that
the numbers of data packets and ACK packets in the WLAN
are not balanced, and so the number of data packets that are

transmitted in the WLAN increases. However, when using
the proposed method, the numbers of data packets and ACK
packets are balanced because the proposed method activates
congestion control against ACK packet losses and the number
of ACK packet losses at APs decreases. Note that the total
throughput would increase when deactivating the proposed
method, but the increased throughput is distributed among
non-starved flows, so that the fairness among flows degrades.
In other words, in the proposed method, there exists a trade-off
relationship between fairness and bandwidth utilization.

In order to evaluate this relationships, we use the in-
dex proposed in Section III with the Sliding Window
Method (SWM) [15]. The SWM can provide a quantitative
measure of fairness over a wide range of time scales and has
the advantage of measuring short-term fairness and long-term
fairness at the same time. Intuitively, the short-term fairness
of a data transmission flow refers to its ability to provide
equitable access to resources to all contending flows over
short time scales. In contrast, long-term fairness measures the
average amount of resources assigned over a longer time. The
SWM function applied to Eq. (6) is as follows:

SWM (w) =
C2

n
∑n

i=1 xi(w)2 − 2C
∑n

i=1 xi(w) + 2C2
(11)

where w is the time-window size for evaluating the fairness,
and xi(w) is the average throughput of flow i in a time-
window w.

Figs. 7, 8, and 9 show the evaluation results obtained with
the proposed metric with SWM when using Buffalo-AP, NEC-
AP, and Corega-AP, respectively, under the same conditions
as Fig. 6. Parameter C in Eq. (11) is set to 29.60 Mbps
according to the theoretical maximum throughput of IEEE
802.11a WLAN with 1460 bytes MTU [16]. The index values
are identical for the cases using and without using the proposed
method when there is no upstream flow (Figs. 7(a), 8(a) and
9(a)). This implies that the proposed method is not activated
because there is no ACK packet loss. On the other hand,
when we use Buffalo-AP or NEC-AP, the index values of
the proposed method are significantly better than that of TCP
Reno in terms of not only long-term fairness but also short-
term fairness when one or more upstream flow exists in the
network. However, the index value of TCP Reno when using
Corega-AP is better than that when using the other APs. This
is due to the large buffer size of Corega-AP mentioned above
(Fig. 5(a)).

In order to investigate the effect of Eq. (8) in estimating the
parameter using the delayed ACK option, we conducted an
experiment using and without using the delayed ACK option
under the environment shown in Fig. 2(b). Fig. 10 shows
the average throughput of upstream and downstream flows
and the total throughput for various ratios of upstream and
downstream flows in the experimental environment of Fig. 2(b)
using Buffalo-AP with a 50 ms delay. The smoothing factor
β in Eq. (9) is set to 1/32. In Fig. 10, the results obtained
using and without using the delayed ACK option are labeled
as delack and nodelack, respectively. The total throughput
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Fig. 7. Proposed index with SWM when using Buffalo-AP
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Fig. 8. Proposed index with SWM when using NEC-AP
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Fig. 9. Proposed index with SWM when using Corega-AP

increases when using the delayed ACK option with the original
TCP Reno or the proposed method. This is because the delayed
ACK option decreases the number of ACK packets in the
WLAN and consequently increases the number of data packets
injected into the WLAN. Furthermore, from the viewpoint of
fairness, the original TCP Reno experiences serious unfairness
among upstream and downstream flows, regardless of the use
of the delayed ACK option, whereas the proposed method
can significantly improve fairness using or without using the
delayed ACK option. In other words, when using the delayed
ACK option, the proposed method can enhance the total
throughput without degrading the improvement in fairness.

Fig. 11 shows the evaluation results obtained using the
proposed index under the same conditions as Fig. 10. In
Fig. 11(a) in which ten downstream flows exist, the index
values of the proposed method obtained using the delayed
ACK option are better than those obtained without using the

delayed ACK option. The reason for this is that the bandwidth
utilization is improved by enabling the delayed ACK option,
as described above. Furthermore, comparing the index values
of the proposed method obtained using and without using
the delayed ACK option, the index value obtained using the
delayed ACK option is better than that obtained without using
the delayed ACK option. In other words, in the proposed
method, the improvements in bandwidth utilization leads to
the improvement in the index values.

VI. CONCLUSION

In this paper, we proposed a novel performance metric
for evaluating the trade-off relationship between fairness and
bandwidth utilization in a wireless LAN environment. The
proposed metric is based on the variations in throughput
of concurrent flows and the ideal throughput distribution, in
which all flows achieve the same amount of throughput and the
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Fig. 10. Effect of the delayed ACK option when using Buffalo-AP with a 50 ms one-way delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

A
v

er
ag

e 
P

ro
p
o

se
d

 I
n
d
ex

Window Size [sec]

TCP Reno-nodelack
Proposed-nodelack

TCP Reno-delack
Proposed-delack

(a) Ten downstream flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

A
v

er
ag

e 
P

ro
p
o

se
d

 I
n
d
ex

Window Size [sec]

TCP Reno-nodelack
Proposed-nodelack

TCP Reno-delack
Proposed-delack

(b) Five upstream flows and five down-
stream flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

A
v

er
ag

e 
P

ro
p
o

se
d

 I
n
d
ex

Window Size [sec]

TCP Reno-nodelack
Proposed-nodelack

TCP Reno-delack
Proposed-delack

(c) Ten upstream flows

Fig. 11. Proposed index with SWM when using Buffalo-AP with a 50 ms one-way delay

network bandwidth is fully utilized. In addition, we proposed
a transport-layer solution for alleviating TCP unfairness in
a WLAN environment and evaluated the proposed method.
Based on the results of the experimental evaluations, we
confirmed that the proposed method alleviates TCP unfairness
regardless of the vendor of the APs and wireless interface
cards, although the total throughput decreases slightly when
the delayed ACK option is disabled. Moreover, the proposed
method using the delayed ACK option enhances the total
throughput without degrading the effectiveness of fairness
improvement. Through trade-off evaluations using the pro-
posed metric, we also demonstrated that the proposed method
can achieve a markedly better trade-off between fairness and
bandwidth utilization. In the future, we intend to evaluate the
proposed method in environments that include wired networks
with several traffic scenarios.
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