
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
A Transport-layer Solution for Alleviating TCP Unfairness
in a Wireless LAN Environment

Masafumi HASHIMOTO†a), Nonmember, Go HASEGAWA†, and Masayuki MURATA†, Members

SUMMARY Per-flow unfairness of TCP throughput in the IEEE 802.11
wireless LAN (WLAN) environment has been reported in past literature. A
number of researchers have proposed various methods for alleviating the
unfairness; most require modification of MAC protocols or queue man-
agement mechanisms in access points. However, the MAC protocols of
access points are generally implemented at hardware level, so changing
these protocols is costly. As the first contribution of this paper, we propose
a transport-layer solution for alleviating unfairness among TCP flows, re-
quiring a small modification to TCP congestion control mechanisms only
on WLAN stations. In the past literature on fairness issues in the Inter-
net flows, the performance of the proposed solutions for alleviating the
unfairness has been evaluated separately from the network bandwidth uti-
lization, meaning that they did not consider the trade-off relationships be-
tween fairness and bandwidth utilization. Therefore, as the second contri-
bution of this paper, we introduce a novel performance metric for evaluat-
ing trade-off relationships between per-flow fairness and bandwidth utiliza-
tion at the network bottleneck. We confirm the fundamental characteristics
of the proposed method through simulation experiments and evaluate the
performance of the proposed method through experiments in real WLAN
environments. We show that the proposed method can achieve better a
trade-off between fairness and bandwidth utilization, regardless of vendor
implementations of wireless access points and wireless interface cards.
key words: Transmission Control Protocol (TCP), wireless LAN, fairness,
congestion control, fairness index

1. Introduction

With recent developments in wireless networking tech-
nologies, accessing the Internet through a wireless LAN
(WLAN) is becoming common, and WLAN-based Internet
access environments are often available at public areas, such
as railway stations and airports. As such, it is important to
consider fairness among coexisting users.

As the WLAN environment, IEEE 802.11 families [1]
are standardized. The current IEEE 802.11 implementa-
tions primarily use the Distributed Coordination Function
(DCF) as the medium access control protocol. In the DCF,
a medium access mechanism is based on Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA).
CSMA/CA enables stations, including an access point (AP),
to fairly access a wireless channel [1]. Therefore, fair-
ness among stations in the WLAN is ensured at the MAC
layer. However, the fairness at the MAC layer does not
mean the fairness at upper layers. When TCP is used as
a transport-layer protocol, two types of unfairness among
TCP flows (TCP unfairness) occur [2]–[4]: unfairness be-
tween upstream and downstream TCP flows and unfairness

†The authors are with Graduate School of Information Science
and Technology, Osaka University, Suita-shi, 565-0871, Japan.

a) E-mail: m-hasimt@ist.osaka-u.ac.jp
DOI: 10.1587/transcom.E0.B.1

among upstream TCP flows. Here, the traffic in a WLAN
consists of the traffic flowing from client stations to wired
networks via an AP (called upstream traffic) and vice versa
(called downstream traffic). Downstream traffic is transmit-
ted only from an AP, whereas upstream traffic is generated
from multiple client stations. Therefore, upstream traffic
obtains more access opportunities to the wireless channel
than downstream traffic, resulting in unfairness between up-
stream and downstream traffics. On the other hand, the un-
fairness among upstream flows is caused by their congestion
control mechanisms, i.e., TCP activates the congestion con-
trol against data packet losses, but not against ACK packet
losses [5].

Various solutions have been proposed to alleviate un-
fairness in WLANs [2]–[4], [6]–[10]. These solutions di-
minish TCP throughput unfairness by modifying the MAC
protocol parameters or queue management mechanisms in
APs. However, the MAC protocols of APs are generally
implemented at the hardware level, so changing these pro-
tocols is costly. Furthermore, some methods need to esti-
mate the number of flows and the throughput of each flow at
the AP. In addition, although certain solutions can alleviate
the unfairness by changing the MAC layer, they may also
cause other unfairness problems in the transport layer. For
example, a priority-based solution at the AP [6] can improve
fairness among TCP flows, but this solution may cause un-
fairness among UDP flows by assigning higher priority to
traffic from the AP.

As the first contribution of the present paper, we pro-
pose a transport-layer approach to alleviate the above un-
fairness. The reasons for using a transport-layer solution
are as follows. First, MAC-layer solutions may cause other
unfairness issues at the transport layer, as described above.
Second, the unfairness is mainly caused by the behavior of
the transport-layer protocols. Third, since transport-layer
protocols are generally implemented by software, modify-
ing transport-layer protocols is easier than modifying MAC-
layer protocols. The proposed method alleviates unfairness
among TCP flows by detecting TCP ACK packet losses as
an indication of congestion at an AP. It requires a small mod-
ification of the TCP congestion control mechanisms only on
WLAN stations.

Generally, Jain’s fairness index [11] has been used as
an evaluation metric of fairness among users, flows, etc.
Since this index depends only on the variation of allocated
values, the index values intuitively indicate whether the al-
located values are fair. Here, assume that we have two solu-

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

tions, both of which are identically effective for alleviating
unfairness, but one of them degrades the total amount of al-
located values, whereas the other does not decrease the total
value. Although the latter should be judged to be superior to
the former, both solutions are identical from the viewpoint
of Jain’s fairness index. In other words, Jain’s fairness index
cannot evaluate such situations accurately. Therefore, as the
second contribution of the present paper, we propose a novel
performance metric that considers the trade-off relationships
between per-flow fairness and bandwidth utilization at a net-
work bottleneck. The proposed metric can simultaneously
evaluate both fairness and utilization with a single metric
value.

We conducted ns-2 [12] simulation experiments in or-
der to confirm the fundamental characteristics of the pro-
posed method. Through the simulation results, we show that
the proposed method is effective not only for fairness among
upstream flows but also for fairness between upstream and
downstream flows. We then confirm the applicability and
product-dependent characteristics of the proposed method
through experiments using real environments with WLAN
products from several vendors.

The remainder of the present paper is organized as fol-
lows. In Sect. 2, we discuss unfairness problems among
TCP flows in WLANs. Section 3 describes a solution for
alleviating TCP unfairness in WLANs. In Sect. 4, we intro-
duce a performance metric considering both per-flow fair-
ness and bandwidth utilization. In Sect. 5, we confirm
the fundamental characteristics of the solution proposed in
Sect. 3 through simulation experiments. Section 6 presents
experimental results. Finally, conclusions and a discussion
of future research are presented in Sect. 7.

2. Fairness among TCP Flows in WLAN Environments

In a typical WLAN environment, all stations including an
AP use the same parameters of CSMA/CA. Thus, the con-
tending stations obtain fair access opportunities to wire-
less channel in the long term. This also means that up-
stream flows transmitted from the multiple client stations
and downstream flows transmitted from the AP share the
same wireless channel. Therefore, when n client stations
share a single AP in the WLAN network, the access op-
portunities to the wireless channel of upstream traffic is
n/(n + 1), whereas that of downstream traffic is 1/(n + 1).
Hence, when the amount of the upstream and downstream
traffic is roughly the same, the AP is likely to become a
congestion point, and unfairness occurs between upstream
and downstream traffic. It means that the fairness at the
MAC layer protocol does not always contribute to the fair-
ness at upper layer protocols such as UDP and TCP. Since
the many kinds of applications such as P2P file sharing and
audio/video conference applications generate both upstream
and downstream flows, this problem should be resolved.

Furthermore, when TCP is used as a transport proto-
col, serious per-flow unfairness occurs not only between
upstream and downstream flows but also among upstream

Data packet flow of upstream TCP connection

ACK packet flow of upstream TCP connection

Packet loss due to buffer overflow

(a) Multiple upstream TCP flows exist

Data packet flow of upstream TCP connection

ACK packet flow of upstream TCP connection

Data packet flow of downstream TCP connection

ACK packet flow of downstream TCP connection

Packet loss due to buffer overflow

(b) Upstream and downstream TCP flows coexist

Fig. 1 Congestion at the AP

flows. In what follows, we specifically explain the two types
of the unfairness. Figure 1 depicts the situations in which
the unfairness occurs when the wireless network bandwidth
is fully utilized.

Suppose that each client station has an upstream TCP
flow, as depicted in Fig. 1(a). In this situation, ACK pack-
ets of the upstream flows are discarded at the AP buffer.
Note that TCP activates the congestion control against data
packet losses, but not against ACK packet losses. Therefore,
the congestion window size of upstream flows continues to
grow until Retransmission Time Out (RTO) occurs and all
ACK packets in a window are lost. When all ACK pack-
ets of a certain upstream flow are discarded, the congestion
window size is set to one packet. At this time, the buffer at
the AP is still fully utilized because the congestion is not re-
solved. That is, once a certain flow experiences an RTO, the
flow cannot increase its congestion window size for some
time, which causes throughput unfairness among upstream
TCP flows.

On the other hand, when upstream and downstream
TCP flows coexist as shown in Fig. 1(b), ACK packets of
upstream flows and data packets of downstream flows are
discarded at the AP buffer. In this situation, the upstream
TCP flows continue to grow the congestion window size,
whereas downstream TCP flows decrease the congestion
window size, since TCP activates the congestion control
mechanism only against data packet losses. Consequently,
the downstream TCP flows maintain the low transmission
rate, whereas the upstream TCP flows maintain the high
transmission rate. Therefore, serious throughput unfairness
occurs between upstream and downstream TCP flows.

HASHIMOTO et al.: A TRANSPORT-LAYER SOLUTION FOR ALLEVIATING TCP UNFAIRNESS IN A WIRELESS LAN ENVIRONMENT
3

Time

Window size

ACK packets are lost
 RTO occurs

(a) Without modification

Time

Window size

ACK packets are lost

(b) Proposed method

Fig. 2 Behaviors of TCP Reno with and without the proposed method

Various solutions have been proposed for alleviating
the above TCP unfairness [2]–[4], [6]–[10]. A solution pro-
posed in [2] improves fairness among upstream and down-
stream flows by rewriting the advertised receiver window
size at the AP. A solution proposed in [4] alleviates unfair-
ness between upstream and downstream flows by dividing
the buffer in an AP into a buffer for data packets and a buffer
for ACK packets. In [3], TCP unfairness among upstream
flows is diminished by filtering ACK packets in an AP. In
[6], the author proposed shortening the carrier sense dura-
tion of the WLAN APs. A solution proposed in [9] im-
proves TCP unfairness among upstream and downstream
flows by controlling the rate of upstream flows such that to-
tal throughput should be divided equally between upstream
and downstream flows. However, the cost of changing ex-
isting hardware devices using these methods is high because
the MAC protocols or queue management mechanisms must
be modified.

On the other hand, since transport-layer protocols
are generally implemented through software, changing
transport-layer protocols are easier than changing MAC-
layer protocols. In addition, the above unfairness is mainly
caused by the behaviors of TCP. Therefore, in the present
paper, we propose a transport-layer solution for alleviating
TCP unfairness.

3. TCP Congestion Control for ACK Packet Losses

Figure 2(a) depicts the behavior of TCP Reno when ACK
packets are discarded at the AP buffer. The main reason for
unfairness among TCP flows is that the TCP continues to
increase the congestion window size even when the AP is
highly congested and numerous ACK packets are discarded,
as shown in Fig. 2(a). Therefore, we propose a simple mod-
ification to TCP congestion control mechanisms to alleviate
these unfairness. The proposed method is based on a simple
concept: TCP should activate congestion control when ACK
packet losses are detected, whereas the traditional TCP ac-
tivates congestion control only when data packet losses are
detected. Figure 2(b) shows the behavior of the proposed
method on TCP Reno, corresponded to Fig. 2(a). The pro-
posed method activates congestion control when detecting
ACK packet losses, as shown in Fig. 2(b).

More specifically, the proposed method activates

congestion control when the number of ACK packet
losses in a window exceeds a pre-determined threshold
(thresh ack losses). The TCP sender detects ACK packet
losses by monitoring the sequence number of the received
ACK packets. When the TCP sender observes abnormal
jumps in the ACK sequence numbers, these jumps are re-
garded as ACK packet losses in the network and are calcu-
lated as follows:

ack loss = max
(⌊

ack − prev ack
MS S

⌋
− 1, 0

)
(1)

where ack loss is the number of ACK packet losses, ack is
the sequence number (bytes) of the current received ACK
packet, prev ack is the sequence number (bytes) of the pre-
vious received ACK packet, and MS S is maximum segment
size (bytes). When the number of ACK packet losses in a
Round Trip Time (RTT) exceeds thresh ack losses, a TCP
sender halves the congestion window (cwnd) and slow-start
threshold (ssthresh) is set to the halved congestion win-
dow size. Note that before halving the window size, the
TCP sender waits for another RTT to avoid false detection
caused by the disorder of data packet reception at the TCP
receiver. Additionally, when detecting data packet losses, a
TCP sender stops checking the ACK packet losses for one
RTT.

When using Eq. (1) to detect ACK packet losses, the
effect of the delayed ACK option [13] should be considered.
Note that the delayed ACK option has been implemented in
both Windows and Linux [14], [15]. Let b be the number of
data packets acknowledged by a received ACK packet. Sev-
eral TCP receiver implementations with the delayed ACK
send one ACK packet for two consecutive received packets,
so b is two typically. When the delayed ACK option is en-
abled, Eq. (1) cannot correctly estimate the number of ACK
packet losses. Therefore, TCP senders must determine the
value of b.

There are two possible methods by which determine
the value of b. In the first method, a TCP receiver explic-
itly informs a TCP sender of the value of b. In the sec-
ond method, a TCP sender estimates the value of b without
any explicit information from the TCP receiver. In the first
method, the TCP sender can obtain an accurate value of b,
but this method requires modifications at TCP receivers. For
this reason, we use the second method, which does not re-
quire TCP receiver-side modification.

In the proposed method, the value of b is estimated as
follows:

best =

⌊
sbi +

1
2

⌋
(2)

sbi = (1 − β) sbi−1 + β

(
ack − prev ack

MS S

)
(3)

where best is the estimated value of b, and sbi is the i th
smoothed value for b with smoothing factor β. Note that sbi
in Eq. (3) is a continuous value, but best in Eq. (2) should be
a discrete value because b should be a discrete value. Thus,

4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Algorithm 1 TCP congestion control for ACK packet losses
1: Initialization:
2: prev ack ← the smallest sequence number of the unacknowledged

packets (snd una)
3: sb← MS S × 2, b← MS S × 2
4: cnt ack loss← 0
5: data loss← 0, wait state← 0
6: On each ACK:
7: sb← (1 − β) sb + β

(ack−prev ack
MS S

)
8: best ←

⌊
sb + 1

2

⌋
9: cnt ack loss← max

(⌊ ack−prev ack
best×MS S

⌋
− 1 + cnt ack loss, 0

)
10: prev ack ← ack
11: On each RTT:
12: if wait state then
13: if cnt ack loss ≥ thresh ack losses and not data loss then
14: cwnd ← max

(
cwnd

2 , 1
)

15: ssthresh← cwnd
16: end if
17: data loss← 0
18: cnt ack loss← 0
19: wait state← 0
20: else
21: if cnt ack loss ≥ thresh ack losses or data loss then
22: wait state← 1
23: end if
24: end if
25: Packet loss:
26: data loss← 1
27: Packet disorder:
28: cnt ack loss← max(cnt ack loss − 1, 0)

best is calculated by half-adjust rounding. Using Eq. (2),
Eq. (1) is transformed into:

ack loss = max
(⌊

ack − prev ack
best × MS S

⌋
− 1, 0

)
. (4)

Algorithm 1 shows the pseudo-code of the proposed
method. Note that the proposed method can be utilized with
arbitrary TCP modifications because the proposed method
can be applied to several TCP variants without any ill-effect.

In addition, because the proposed method is one of a
TCP modification which detects early congestion of net-
works such as TCP Reno, the proposed method is ineffec-
tive when the proposed method and that TCP modifications
coexist. Thus, the proposed method has the same issues of
TCP modifications which have been reported in several re-
searches [16], [17]. The deployment of the proposed method
is future work.

4. Performance Metric for Evaluating Trade-off be-
tween Fairness and Utilization

4.1 Jain’s Fairness Index

The definition of fairness is important when we discuss fair-
ness among flows, because the improvement of fairness is
sometimes achieved at the expense of total bandwidth uti-
lization. In previous researches [2]–[4], [6], [9], fairness is
defined such that all flows contending on a wireless channel
in a WLAN achieve the same throughput, and the effect on

the total network throughput is not considered.
Jain’s fairness index, which defined as follows, has

been used to evaluate the fairness:

F j(X) =

(∑n
i=1 xi

)2

n
∑n

i=1 x2
i

(5)

where n is the number of contending users, X =

{x1, x2, · · · , xn} is a set of allocations for n users such that
xi is an allocation for user i. The index value approaches
one as the variation of allocations decreases, and the in-
dex value approaches 1/n as the variation of allocations in-
creases. Note that Jain’s index is independent of the scale of
allocations. For example, consider fairness when allocating
10, 30, and 40 dollars, respectively, to three persons, and
fairness when allocating 100, 300, and 400 dollars, respec-
tively, to three persons. Both cases are equivalent from the
viewpoint of Jain’s index (0.82).

However, the total amounts of allocated values are dif-
ferent. That is, Jain’s index is not suitable for comparing
fairness and considering the total amount of allocations. The
total amount of allocated values corresponds to the network
bandwidth utilization in the context of network bandwidth
sharing. Therefore, when we have a solution for alleviat-
ing unfairness while slightly degrading the total throughput,
Jain’s index cannot accurately evaluate such a performance
trade-off.

4.2 Proposed Metric

Given a throughput set X = {x1, x2, · · · , xn}, where xi is the
throughput of the i th flow, and the network bandwidth at
the bottleneck, C, where

∑n
i=1 xi ≤ C, we define fair and

fully-utilized throughput x f =
C
n , where all flows achieve

the same throughput and the network bandwidth is fully uti-
lized. Using the relationship between Jain’s fairness index
F j(X) in Eq. (5) and total throughput

∑n
i=1 xi, we define the

desired properties for proposed fairness index F(X,C) as
follows:

1. If
∑n

i=1 xi =
∑n

i=1 yi ≤ C and F j(X) < F j(Y), then
F(X,C) < F(Y,C).

2. If
∑n

i=1 xi =
∑n

i=1 yi ≤ C and F j(X) = F j(Y), then
F(X,C) = F(Y,C).

3. If
∑n

i=1 xi = C, then F j(X) = F(X,C).

where Y = {y1, y2, · · · , yn}.
We start from the index f (X,C), which represents the

average squared distance between the each flow’s through-
put and the fair and fully-utilized throughput (x f):

f (X,C) =
1
n

n∑
i=1

(xi − x f)2. (6)

We then normalize f (X,C) by x f and obtain g(X,C) as fol-
lows:

g(X,C) =

√
1
n
∑n

i=1(xi − x f)2

x f
. (7)

HASHIMOTO et al.: A TRANSPORT-LAYER SOLUTION FOR ALLEVIATING TCP UNFAIRNESS IN A WIRELESS LAN ENVIRONMENT
5

Table 1 Comparison between Jain’s fairness index and the proposed in-
dex (C = 30 Mbps)

Case
Throughput distribution

[Mbps]
Total

[Mbps]
Jain’s
index

Proposed
index

1 { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3} 30 1.00 1.00
2 { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} 20 1.00 0.90
3 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10 1.00 0.69
4 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 6} 15 0.50 0.67
5 { 1, 1, 1, 1, 1, 1, 1, 1, 6, 6} 20 0.50 0.64
6 { 2, 2, 2, 2, 2, 2, 2, 2, 2, 12} 30 0.50 0.50
7 { 1, 1, 1, 1, 1, 1, 2, 3, 3, 6} 20 0.62 0.73
8 { 1, 1, 1, 3, 3, 3, 3, 4, 5, 6} 30 0.78 0.78

According to [11], Jain’s fairness index can be transformed
into

F j(X) =
1

1 +COV2 (8)

COV =

√
1
n
∑n

i=1(xi − x̄)2

x̄
(9)

where COV is the coefficient of variance of allocations to
the users, and x̄ = 1

n
∑n

i=1 xi is the average of the alloca-
tions. Finally, by comparing Eqs. (7) and (9), we obtain the
following definition of the proposed index:

F(X,C) =
1

1 + g(X,C)2

=
C2

n
∑n

i=1 x2
i − 2C

∑n
i=1 xi + 2C2

. (10)

Note that the index satisfies the above-mentioned prop-
erties. The index approaches one when the bandwidth uti-
lization of the network bottleneck approaches 100 % and the
throughput variance of each flow is small. In contrast, the
index approaches 1/n when the throughput variance is large.

4.3 Comparison with Jain’s Fairness Index

In Table 1, Jain’s fairness index and the proposed index are
compared using simple examples in which the network ca-
pacity bandwidth is 30 Mbps. Cases 1, 2, and 3 in Ta-
ble 1 have fair throughput distributions, but different to-
tal throughputs. The proposed index can differentiate these
cases, whereas Jain’s index cannot distinguish among them.
As in Cases 1, 2, and 3, Cases 4, 5, and 6 have different total
throughputs, but the throughput distributions have the same
variations. The proposed index becomes small for Cases
4, 5, and 6 since the variance of throughput distribution of
which are 2.25, 4.0, and 9.0, respectively. Thus, the values
of the proposed index become small when a small number
of flows obtain much bandwidth, even if the total through-
put is high. In Cases 2, 5, and 7, the total throughputs
are identical, but the throughput distributions have differ-
ent variations. These cases corresponded to property 1 in
Subsect. 4.2. In this situation, the order of the three cases
in Jain’s index and that in the proposed index are identical.
Moreover, when the total throughput is equal to the network
bandwidth capacity, as in Cases 1, 6, and 8, Jain’s index and

IEEE
802.11a

Client stations (laptops)

Wired node
(desktop)

Access point

100 ms

100 Mbps

Fig. 3 Simulation environment

the proposed index are identical. This situation is related to
property 3 in Subsect. 4.2.

5. Evaluation with Simulation Experiments

In this section, we show simulation results in order to con-
firm the basic characteristics of the proposed method.

5.1 Simulation Settings and Methods

Figure 3 shows the simulation environment using IEEE
802.11a WLAN with the ns-2 simulator. In the environ-
ment, multiple client stations share one AP which is con-
nected to a wired node through a wired link with 100 Mbps
capacity and one-way propagation delay of 100 ms. In the
simulation evaluation, except as otherwise noted, all stations
were located at four meters from the AP and the buffer size
of the AP was set to 100 packets. The buffer size of the
wired link, the sender buffer size of each station, and the ad-
vertised receiver window size were set to large enough not
to limit the TCP performance. As the queue management
mechanisms, the Drop Tail principle was used in the AP and
the wired link. TCP connections used either the proposed
method on TCP Reno or conventional TCP Reno. In order
to use these TCPs in the ns-2 simulator, we used the ns-2
modules which are converted from the Linux implementa-
tion codes by NS-2 TCP-Linux [18]. The thresh ack losses
parameter in the proposed method was set to one. Note that
we confirmed that we can obtain the best performance of
the proposed method when the thresh ack losses parameter
is one. In addition, for comparative purposes, the prioritised
AP scheme proposed in [6] was also evaluated. In order to
focus on fundamental characteristics, the delayed ACK op-
tion was disabled. The effects of the delayed ACK option
are investigated in Sect. 6.

In the simulation experiments, only one flow was gen-
erated for each station, meaning that we increased the num-
ber of stations for increasing the number of concurrent flows
in the network. The simulation time was set to 200 seconds
and the data transmission of each flow started at random
time which was uniformly distributed on [0 s, 10 s]. The
simulations ran ten times in order to average the results.

6
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(a) Without modification

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(b) Prioritized AP scheme [6]

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(c) Proposed method

Fig. 4 Average throughput of each flow when ten upstream flows exist

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 D1 D2 D3 D4 D5

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(a) Without modification

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 D1 D2 D3 D4 D5

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(b) Prioritized AP scheme [6]

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 D1 D2 D3 D4 D5

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(c) Proposed method

Fig. 5 Average throughput of each flow when five upstream flows and five downstream flows coexist

5.2 Evaluation Results and Discussion

Figures 4 and 5 show the snapshot results for the average
throughput when ten upstream flows exist and when five
upstream flows and five downstream flows coexist, respec-
tively. Note that the other results of ten times trials are also
almost the same as Figs. 4 and 5. In these figures, Ui and D j
in x-axis denote the i th upstream flow and the j th down-
stream flow, respectively. The average throughput of each
flow is calculated using the amount of data transmitted in
50-200 seconds in the simulation. Figures 4(a) and 5(a)
shows the serious TCP unfairness occurs among upstream
flows and between upstream and downstream flows with-
out modification, whereas the prioritized AP scheme and
the proposed method can successfully alleviate TCP unfair-
ness both among upstream flows and between upstream and
downstream flows as shown in Figs. 4(b), 4(c), 5(b), and
5(c).

Figure 6 represents the results when there are ten up-
stream flows and the five stations are located at one meter
and the others are located ten meters from the AP. Note that
we obtained the similar results when upstream and down-
stream flows coexist. The prioritized AP scheme degrades
the effectiveness for alleviating unfairness among flows de-
pendently on distance of the stations from AP, as shown in
Fig. 6(a). This is because that the prioritized AP scheme
is sensitive to the wireless channel environment since it is
based on MAC parameter tuning regarding the channel ac-

cess. On the other hand, the performance of the proposed
method is independent on the wireless channel since the pro-
posed method is based on a transport-layer approach.

Figure 7 plots the average RTT of each flow corre-
sponded to the results in Figs. 4 and 5. In Fig. 7, RTTs of
each flow with the proposed method are smaller than with-
out modification or with the prioritized AP scheme. The
reason for this is as follows. Without modification, the con-
gestion window size of upstream flows continues to grow
and the packets exceeded the data rate of wireless channel
are buffered at the sender buffer of each station. This results
in that RTTs of each flow become large. Likewise, with
the prioritized AP scheme, RTTs of each flow also become
large because the prioritized AP scheme can improve fair-
ness among flows, but the congestion window size of up-
stream flows remain to grow when the wireless channel is
fully utilized. In contrast, the proposed method can also
alleviate the congestion at the wireless channel because up-
stream flows with the proposed method activate the conges-
tion control. Therefore, the proposed method can maintain
low RTT.

6. Experimental Evaluation

In this section, we present experimental results using real
environments with WLAN products from several vendors
in order to confirm the applicability and product-dependent
characteristics of the proposed method in real environments.

HASHIMOTO et al.: A TRANSPORT-LAYER SOLUTION FOR ALLEVIATING TCP UNFAIRNESS IN A WIRELESS LAN ENVIRONMENT
7

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(a) Prioritized AP scheme [6]

 0

 1

 2

 3

 4

 5

 6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

T
hr

ou
gh

pu
t [

M
bp

s]

Flow Number
(b) Proposed method

Fig. 6 Average throughput of each flow when ten upstream flows exist and stations are relocated

 0

 100

 200

 300

 400

 500

 600

U1U2U3U4U5U6U7U8U9U10

A
ve

ra
ge

 R
T

T
 [

m
s]

Flow Number

TCP Reno
Prioritized AP

Proposed

(a) Ten upstream flows

 0

 100

 200

 300

 400

 500

 600

U1U2U3U4U5D1D2D3D4D5

A
ve

ra
ge

 R
T

T
 [

m
s]

Flow Number

TCP Reno
Prioritized AP

Proposed

(b) Five upstream flows and five downstream flows

Fig. 7 Average RTT of each flow

IEEE
802.11a

Client stations (laptops)

Wired node
(desktop)

Access point

(a) Simple experimental environment

IEEE
802.11a

Client stations (laptops)

PC router
with netem

Access point
 Wired node
(desktop)

(b) Experimental environment with a PC router

Fig. 8 Experimental environments

6.1 Experimental Settings and Methods

Two experimental environments are shown in Fig. 8. In both
environments, ten client stations share one AP. All client
stations were located within 50 cm of the AP in order to

Table 2 Wireless devices
(a) Wireless Interface Cards

Vendor Product name
Buffalo WLI-CB-AGHP
NEC Aterm WL54AG

(b) Access Points

Vendor Product name
Buffalo WAPS-HP-AM54G54
NEC Aterm WR8500N

Corega CG-WLR300NNH

avoid packet losses due to wireless link error. In Fig. 8(a), a
wired node is directly connected to the AP through a wired
link. On the other hand, in the experimental environment
in Fig. 8(b), we introduced a PC router between the AP and
the wired node for the purpose of evaluation in long delay
environments. DELL Latitude E5500 laptops and a DELL
Precision 390 desktop were used as the client stations and
the wired node, respectively. All nodes, including the wired
node, used Ubuntu 8.10 (Linux kernel 2.6.28) as the OS.
As shown in Fig. 8(b), another DELL Precision 390 desktop
was used as the PC router with netem [19] for generating
a 50 ms delay to the wired link between the AP and the
wired node. We used Web100 [20] patch to collect the TCP
connection information, such as the congestion window size
and the RTT from the Linux kernel. We used TCP Reno
and implemented the proposed method on the Linux code
of TCP Reno.

The wireless devices listed in Table 2 were used as
wireless interface cards for client stations and the AP. Note
that all client stations used the same type of wireless inter-
face card in each experiment. Due to space limitation, we

8
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Table 3 Estimated buffer size of each AP

Vendor minRTT
[ms]

T
[Mbps]

cwndover f low

[bytes]
Best

[packets]
Buffalo 0.975 21.8 118003 76.9
NEC 0.563 19.6 76719 50.2

Corega 0.674 20.2 366826 243.4

show only the results obtained using the Buffalo’s wireless
interface card. However, the tendencies of the results are
similar regardless of the type of wireless interface card. In
the following, APs are abbreviated as [vendor name]-AP,
respectively, e.g., Buffalo-AP.

The buffer size of an AP significantly affects on flow’s
throughput and end-to-end delay [21]. However, AP ven-
dors do not make publish the buffer size in detail. For the
reason, we estimated the buffer size through simple exper-
iments with a single TCP connection, with an estimation
equation as follows:

Best =

(
cwndover f low −

T · minRTT
8

)
/MS S (11)

where Best is the estimated buffer size (packets) of an AP,
cwndover f low is the congestion window size (bytes) of a single
TCP connection when TCP detects data packet losses, re-
garding it as buffer overflow occurs at the AP, T is through-
put (bps) just before TCP detects data packet losses, and
minRTT is a minimum RTT (seconds) during the experi-
ments. Table 3 presents the results of estimated buffer size
of each AP. Note that the experiments were conducted ten
times for averaging the results. In Table 3, the buffer size of
Corega-AP is the largest of all.

The experiments using the environments in Fig. 8 were
conducted as follows. Only one TCP flow was generated
for each client station using Iperf [22], assuming bulk data
transfer. We kept the number of concurrent TCP flows at
ten and change the ratio of upstream and downstream TCP
flows from (0, 10) to (10, 0). For the purposes of com-
parison, TCP connections used either the proposed method
on TCP Reno or conventional TCP Reno. As in Sect. 5,
the thresh ack losses parameter in the proposed method was
set to one. The experiment time was set to 180 seconds,
and each TCP connection was generated almost simultane-
ously when the experiment starts. More specifically, a com-
puter separated from the experimental network in Fig 8, con-
nected to each stations and the wired node through a sepa-
rate wired network, simultaneously executed Iperf programs
through the separate wired network, in order to generate a
TCP connection at each station and the wired node. We dis-
abled vendor-specific functions implemented at APs, such
as Frame Burst in Buffalo-AP. For each experimental set-
ting, the experiments were conducted ten times in order to
average the results.

We first conducted experiments using the environment
shown in Fig. 8(a) in which the delayed ACK option was
disabled at TCP receivers. In the experiments, the proposed
method used the equation in Eq. (1) in order to estimate the
number of ACK packet losses. On the other hand, in order to

investigate the effects using the equation in Eq. (4), we then
conducted experiments using the environment in Fig. 8(b)
with and without the delayed ACK option. In the situation,
the smoothing factor β in Eq. (3) was set to 1/32.

6.2 Evaluation Metric

The effectiveness of the proposed method is evaluated from
the viewpoint of fairness and bandwidth utilization by as-
sessing the throughput of each flow, and the index proposed
in Sect. 4.

In order to evaluate fairness and trade-off relationships
between fairness and bandwidth utilization, Sliding Window
Method (SWM) function [23] is applied to the proposed in-
dex. The SWM can give a quantitative measure of an arbi-
trary metric over a wide range of time scales. Especially,
when using the SWM to measure fairness, it has an advan-
tage of measuring short-term fairness and long-term fair-
ness at the same time. Intuitively, short-term fairness of a
data transmission flow refers to its ability to provide equi-
table access to resources to all the contending flows over
short time scales. In contrast, long-term fairness measures
the average amount of resources assigned over a longer time.
The SWM function which applied to Eq. (10) is as follows:

SWM(w) =
C2

n
∑n

i=1 xi(w)2 − 2C
∑n

i=1 xi(w) + 2C2 (12)

where w is a time-window size for evaluating the fairness,
and xi(w) is an average throughput of flow i in a time-
window w. In the present paper, parameter C in Eq. (12)
is set to 29.60 Mbps according to the theoretical maxi-
mum throughput of IEEE 802.11a WLAN with 1460 bytes
MTU [24].

6.3 Evaluation Results and Discussion

Figure 9 presents the average throughput of upstream and
downstream flows and the total throughput for various ra-
tios of upstream and downstream flows and three types of
APs. In the figure, uxdy in x-axis denotes that the number
of upstream and downstream TCP flows are x and y, respec-
tively. The lines in these figures represent total through-
put, and the bars represent average throughput of upstream
and downstream flows, respectively. When the bars are
the same height, it means the perfect fairness between up-
stream and downstream flows. The average throughput of
each flow is calculated using the amount of data transmit-
ted in 50-180 seconds in the experiment. Figure 9 shows
that, when at least one upstream flow with TCP Reno ex-
ists in the network, the upstream flows occupy almost all
of the network bandwidth, and the downstream flows are
starved. On the other hand, the proposed method can signif-
icantly improve the throughput fairness between upstream
and downstream flows, and no flow is starved. Figure 9 re-
veals that the degree of fairness improvement of the pro-
posed method is small when using NEC-AP. The reason for
this is as follows. Flows with the proposed method do not

HASHIMOTO et al.: A TRANSPORT-LAYER SOLUTION FOR ALLEVIATING TCP UNFAIRNESS IN A WIRELESS LAN ENVIRONMENT
9

 0

 5

 10

 15

 20

 25

 30

u00d10 u01d09 u03d07 u05d05 u07d03 u09d01 u10d00
 0

 5

 10

 15

 20

 25

 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

T
ot

al
 T

hr
ou

gh
pu

t [
M

bp
s]

Number of flows

TCP Reno (upstream)
TCP Reno (downstream)

Proposed (upstream)

Proposed (downstream)
TCP Reno (total)
Proposed (total)

(a) Buffalo-AP

 0

 5

 10

 15

 20

 25

 30

u00d10 u01d09 u03d07 u05d05 u07d03 u09d01 u10d00
 0

 5

 10

 15

 20

 25

 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

T
ot

al
 T

hr
ou

gh
pu

t [
M

bp
s]

Number of flows

TCP Reno (upstream)
TCP Reno (downstream)

Proposed (upstream)

Proposed (downstream)
TCP Reno (total)
Proposed (total)

(b) NEC-AP

 0

 5

 10

 15

 20

 25

 30

u00d10 u01d09 u03d07 u05d05 u07d03 u09d01 u10d00
 0

 5

 10

 15

 20

 25

 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

T
ot

al
 T

hr
ou

gh
pu

t [
M

bp
s]

Number of flows

TCP Reno (upstream)
TCP Reno (downstream)

Proposed (upstream)

Proposed (downstream)
TCP Reno (total)
Proposed (total)

(c) Corega-AP

Fig. 9 Effect of the number of upstream and downstream flows

experience RTO when using Buffalo-AP or Corega-AP. In
contrast, flows with the proposed method experience RTO
when using NEC-AP because the buffer size of NEC-AP is
too small for ten flows to flow. However, even when us-
ing NEC-AP, the proposed method can avoid starvation of
flows.

In terms of total throughput, the total throughput of ten
downstream flows with TCP Reno and with the proposed
method are equivalent, regardless of type of AP. This is be-
cause ACK packets are not discarded at the APs and the

behaviors of TCP with and without the proposed method
are identical. However, comparing the total throughput of
the proposed method and TCP Reno when there exist one
or more upstream flows, the former is smaller than the lat-
ter. The reason for this is as follows. When the proposed
method is not used, some ACK packets of upstream TCP
flows are discarded at the APs. This means that the num-
bers of data packets and ACK packets in the WLAN are
not balanced, and so the number of data packets that are
transmitted in the WLAN increases. However, when using

10
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

the proposed method, the numbers of data packets and ACK
packets are balanced because the proposed method activates
the congestion control against ACK packet losses and the
number of ACK packet losses at APs decreases. Note that
the total throughput would increase when deactivating the
proposed method, but the increased throughput is distributed
among non-starved flows, so that the fairness among flows
degrades. In other words, in the proposed method, there ex-
ists a trade-off relationship between fairness and bandwidth
utilization.

Figures 10 and 11 show the evaluation results obtained
using the proposed metric with SWM when ten upstream
flows exist and when five upstream flows and five down-
stream flows coexist, respectively, under the same condi-
tions as Fig. 9. When we use Buffalo-AP or NEC-AP, the
index values of the proposed method are significantly bet-
ter than that of TCP Reno in terms of not only long-term
fairness but also short-term fairness when one or more up-
stream flow exists in the network. On the other hand, the
index value of TCP Reno when using Corega-AP is better
than that when using the other APs. This is due to the large
buffer size of Corega-AP as shown in Table 3. More specif-
ically, as more the buffer size of an AP becomes large, the
more packets of each flow are maintained at the AP. Because
this leads the number of RTO occurred to reduce, the degree
of unfairness is slightly alleviated.

In order to investigate the effect of using the delayed
ACK option and using the equation in Eq. (4), we con-
ducted experiments with and without the delayed ACK op-
tion under the environment shown in Fig. 8(b). Figure 12
shows the average throughput of upstream and downstream
flows and the total throughput for various ratios of upstream
and downstream flows in the experimental environment of
Fig. 8(b) using Buffalo-AP with a 50 ms delay. In Fig. 12,
the results obtained using and without using the delayed
ACK option are labeled as delack and nodelack, respec-
tively. From the viewpoint of fairness, TCP Reno experi-
ences serious unfairness among upstream and downstream
flows, regardless of the use of the delayed ACK option,
whereas the proposed method can significantly improve fair-
ness with or without the delayed ACK option. Furthermore,
both the total throughput of TCP Reno and the proposed
method increase when using the delayed ACK option. This
is because the delayed ACK option decreases the number
of ACK packets in the WLAN and that consequently in-
creases the number of data packets injected into the WLAN.
Therefore, when using the delayed ACK option, the pro-
posed method can enhance the total throughput without de-
grading the improvement in fairness.

Figure 13 shows the evaluation results obtained using
the proposed index under the same conditions as Fig. 12.
Comparing the index values of the proposed method with
and without using the delayed ACK option, the index value
with the delayed ACK option is better than that without
the delayed ACK option. This means that, in the proposed
method, the improvements in bandwidth utilization leads to
the improvement in the index values.

7. Conclusion

In the present paper, we first proposed a transport-layer so-
lution for alleviating TCP unfairness in a WLAN environ-
ment. We then proposed a novel performance metric for
evaluating the trade-off relationship between fairness and
bandwidth utilization at a network bottleneck. The proposed
index is based on the variations in throughput of concur-
rent flows and the ideal throughput distribution, in which all
flows achieve the same throughput and the network band-
width is fully utilized.

In order to confirm the basic characteristics of the
proposed method, we conducted simulation experiments.
Based on the results of the simulation experiments, we
confirmed that the proposed method can alleviate TCP un-
fairness among upstream flows and between upstream and
downstream flows while maintaining low RTT. Through ex-
tensive experiments using real WLAN environments with
the products from several vendors, we then confirmed that
the proposed method alleviates TCP unfairness regardless of
the vendor of the APs and wireless interface cards. More-
over, the proposed method with the delayed ACK option
enhances the total throughput without degrading the effec-
tiveness of fairness improvement. Through trade-off evalu-
ations using the proposed metric, we also demonstrated that
the proposed method can achieve a markedly better trade-off
between fairness and bandwidth utilization.

In the future, we intend to evaluate the proposed
method in environments that include wired networks with
several traffic scenarios.

References

[1] IEEE 802.11-2007, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications. IEEE, June 2007.

[2] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and P. Sinha, “Under-
standing TCP fairness over wireless LAN,” Proc. INFOCOM 2003,
pp.863–872, March 2003.

[3] F. Keceli, I. Inan, and E. Ayanoglu, “TCP ACK congestion control
and filtering for fairness provision in the uplink of IEEE 802.11 in-
frastructure basic service set,” Proc. ICC 2007, pp.4512–4517, June
2007.

[4] J. Ha, E.C. Park, K.J. Park, and C.H. Choi, “A cross-layer dual queue
approach for improving TCP fairness in infrastructure WLANs,”
Wireless Personal Commun., vol.51, no.3, pp.499–516, June 2009.

[5] S. Floyd, “The NewReno modification to TCP’s fast recovery algo-
rithm,” RFC 3782, April 2004.

[6] Y. Fukuda and Y. Oie, “Unfair and inefficient share of wireless
LAN resource among uplink and downlink data traffic and its so-
lution,” IEICE Trans. Commun., vol.E88-B, no.4, pp.1577–1585,
April 2005.

[7] S.W. Kim, B.S. Kim, and Y. Fang, “Downlink and uplink resource
allocation in IEEE 802.11 wireless LANs,” IEEE Trans. Vehicular
Tech., vol.54, no.1, pp.320–327, Jan. 2005.

[8] S. Gopal and D. Raychaudhuri, “Experimental evaluation of the TCP
simultaneous-send problem in 802.11 wireless local area networks,”
Proc. the 2005 ACM SIGCOMM Workshop on Experimental Ap-
proaches to Wireless Network Design and Analysis, pp.23–28, Aug.
2005.

[9] N. Blefari-Melazzi, A. Detti, I. Habib, A. Ordine, and S. Salsano,

HASHIMOTO et al.: A TRANSPORT-LAYER SOLUTION FOR ALLEVIATING TCP UNFAIRNESS IN A WIRELESS LAN ENVIRONMENT
11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno
Proposed

(a) Buffalo-AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno
Proposed

(b) NEC-AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno
Proposed

(c) Corega-AP

Fig. 10 Proposed index with SWM when ten upstream flows exist

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno
Proposed

(a) Buffalo-AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno
Proposed

(b) NEC-AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno
Proposed

(c) Corega-AP

Fig. 11 Proposed index with SWM when five upstream flows and five downstream flows coexist

 0

 5

 10

 15

 20

 25

 30

u00d10 u01d09 u03d07 u05d05 u07d03 u09d01 u10d00
 0

 5

 10

 15

 20

 25

 30

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
bp

s]

T
ot

al
 T

hr
ou

gh
pu

t [
M

bp
s]

Number of flows

TCP Reno-nodelack (upstream)
TCP Reno-nodelack (downstream)

TCP Reno-delack (upstream)
TCP Reno-delack (downstream)

Proposed-nodelack (upstream)
Proposed-nodelack (downstream)

Proposed-delack (upstream)
Proposed-delack (downstream)

TCP Reno-nodelack (total)
TCP Reno-delack (total)

Proposed-nodelack (total)
Proposed-delack (total)

Fig. 12 Effect of the delayed ACK option when using Buffalo-AP with a 50 ms one-way delay

“TCP fairness issues in IEEE 802.11 networks: Problem analysis
and solutions based on rate control,” IEEE Trans. on Wireless Com-
mun., vol.6, pp.1346–1355, April 2007.

[10] B.A.H.S. Abeysekera, T. Matsuda, and T. Takine, “Dynamic con-
tention window control mechanism to achieve fairness between up-
link and downlink flows in IEEE 802.11 wireless LANs,” IEEE
Trans. Wireless Commun., vol.7, no.9, pp.3517–3525, Sept. 2008.

[11] D.M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol.17, pp.1–14, 1989.

[12] The Network Simulator ns-2. available at http://www.isi.edu/
nsnam/ns/.

[13] R. Braden, “Requirements for internet hosts – communication lay-

ers,” RFC 1122, Oct. 1989.
[14] Microsoft Corporation, Microsoft Windows Server 2003 TCP/IP Im-

plementation Details, June 2003.
[15] P. Sarolahti and A. Kuznetsov, “Congestion control in linux TCP,”

Proc. USENIX Annu. Tech. Conf., pp.49–62, June 2002.
[16] J. Mo, R.J. La, V. Anantharm, and J. Walrand, “Analysis and com-

parison of TCP Reno and Vegas,” Proc. INFOCOM 1999, pp.1556–
1563, March 1999.

[17] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improve-
ment of fairness between TCP reno and vegas for deployment of
TCP vegas to the Internet,” Proc. IEEE ICNP 2000, Nov. 2000.

[18] A Linux TCP implementation for NS2. available at http://
netlab.caltech.edu/projects/ns2tcplinux/ns2linux/.

12
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno-nodelack
Proposed-nodelack

TCP Reno-delack
Proposed-delack

(a) Ten upstream flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

A
ve

ra
ge

 P
ro

po
se

d
In

de
x

Window Size [sec]

TCP Reno-nodelack
Proposed-nodelack

TCP Reno-delack
Proposed-delack

(b) Five upstream flows and five downstream flows

Fig. 13 Proposed index with SWM when using Buffalo-AP with a 50 ms one-way delay

[19] netem. available at http://www.linuxfoundation.org/en/
Net:Netem.

[20] M. Mathis, J. Heffner, and R. Reddy, “Web100: Extended TCP in-
strumentation for research, education and diagnosis,” ACM Com-
puter Commun. Review, vol.33, no.3, pp.69–79, July 2003.

[21] F. Li, M. Li, R. Lu, H. Wu, M. Claypool, and R. Kinicki, “Measur-
ing queue capacities of IEEE 802.11 wireless access points,” Proc.
BROADNETS 2007, pp.846–853, Sept. 2007.

[22] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf-
the TCP/UDP bandwidth measurement tool.” available at http://
dast.nlanr.net/Projects/Iperf/.

[23] C.E. Koksal, H. Kassab, and H. Balakrishnan, “An analysis of short-
term fairness in wireless media access protocols,” Proc. ACM Sig-
metrics 2000, June 2000.

[24] J. Jun, P. Peddabachagari, and M. Sichitiu, “Theoretical maximum
throughput of IEEE 802.11 and its applications,” Proc. NCA 2003,
pp.249–256, April 2003.

Masafumi Hashimoto received the M.E.
degree in Information Science and Technology
from Osaka University, Japan, in 2010. He is
now a D.E. candidate at Graduate School of In-
formation Science and Technology, Osaka Uni-
versity. His research work is in the area of trans-
port architecture for future high-speed networks.

Go Hasegawa received the M.E. and
D.E. degrees in Information and Computer Sci-
ences from Osaka University, Japan, in 1997
and 2000, respectively. From July 1997 to June
2000, he was a Research Assistant of Graduate
School of Economics, Osaka University. He is
now an Associate Professor of Cybermedia Cen-
ter, Osaka University. His research work is in
the area of transport architecture for future high-
speed networks and overlay networks. He is a
member of the IEEE.

Masayuki Murata received the M.E. and
D.E. degrees in Information and Computer Sci-
ence from Osaka University, Japan, in 1984 and
1988, respectively. In April 1984, he joined
Tokyo Research Laboratory, IBM Japan, as a
Researcher. From September 1987 to January
1989, he was an Assistant Professor with Com-
putation Center, Osaka University. In Febru-
ary 1989, he moved to the Department of Infor-
mation and Computer Sciences, Faculty of En-
gineering Science, Osaka University. In April

1999, he became a Professor of Cybermedia Center, Osaka University, and
is now with Graduate School of Information Science and Technology, Os-
aka University since April 2004. He has more than five hundred papers of
international and domestic journals and conferences. His research interests
include computer communication network architecture, performance mod-
eling and evaluation. He is a member of IEEE, ACM and IEICE. He is a
chair of IEEE COMSOC Japan Chapter since 2009. Also, he is now partly
working at NICT (National Institute of Information and Communications
Technology) as Deputy of New-Generation Network R&D Strategic Head-
quarters.

