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ABSTRACT
In this paper, we propose a biologically-inspired routing protocol
for mobile ad hoc networks. As biological systems are well-known
for their self-adaptability in a changing environment, we adopt
the mechanism ofattractor selectionin the next hop selection
process. Our protocol, calledMARAS, is a noise-driven and
feedback-based on-demand routing protocol, which fully operates
within the IEEE 802.11 protocol stack. The main contribution of
this paper lies in the design of the route maintenance mechanism
performed by using a feedback packet for each delivered data
packet. Since MARAS is based on attractor selection, i.e., a
biological mathematical model in the form of temporal differential
equations, MARAS is inherently adaptive to dynamically changing
environments. In addition, the route recovery can be achieved
without using additional broadcast control packets like in most
of the on-demand routing protocols, e.g., AODV. In comparative
evaluation, MARAS can achieve higher delivery efficiency while
having lower overhead than AODV in the failure scenarios. In
mobility scenarios, MARAS and AODV achieve roughly the same
performance. We also compare MARAS to another biologically-
inspired protocol, AntHocNet, and observe much lower overhead.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols

General Terms
Design, Performance, Algorithms

Keywords
Ad hoc networks, routing protocol, biologically-inspired network-
ing, attractor selection mechanism
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1. INTRODUCTION
Mobile Ad Hoc Networks (MANETs) have been receiving a lot

of research attention in the last few decades. MANETs differ from
traditional wired networks because they are independent of a fixed
infrastructure; this allows the mobile nodes to move freely and
makes many useful applications possible, e.g., rescue mission in an
infrastructure-less area. However, this flexibility comes at the cost
of difficulties in routing. Examples of these difficulties are dynamic
topology changes, limited bandwidth and energy, and incomplete
network information due to limited transmission range.

Many MANET routing protocols have been proposed in the
past and they can be distinguished into three main categories:
proactive, reactive (on-demand), andhybrid protocols. We focus
our research on on-demand protocols as it is crucial to preserve
wireless network resources and utilize them only when required. In
this aspect, proactive protocols are not appropriate because of the
periodic routing information exchange, like in DSDV [12]. Among
the on-demand protocols, AODV [11] is more scalable and more
adaptive than DSR [7] as shown in [13]. However, AODV has its
own weakness, which is high control overhead caused by flooding.
Therefore, we aim at designing a new routing protocol, which is
more adaptive under unstable conditions in the network and causes
lower overhead than AODV.

In our protocol, we consider a biologically-inspired mechanism
because biological systems are well-known for their robustness
and adaptability. There is a lot of research adopting mechanisms
inspired by biology, e.g., ant colony optimization (ACO) [4]
which is based on swarm intelligence [2], neural network which
is inspired by the human brain, and genetic algorithm which
is inspired by the evolutionary biology. For MANETs, many
biologically-inspired routing protocols have been proposed and
most of them are based on swarm intelligence, e.g., AntHocNet [3]
and HOPNET [15]. Note that our protocol however uses a
mechanism from cell biology calledattractor selection[8] and is
not based on swarm intelligence. The reason is that the concept
of routing with the attractor selection mechanism has been found
simple and robust to failures [9]. Also, we attempt to discover a
new alternative other than social insects-based swarm intelligence.

Our adaptive mobile ad hoc routing with attractor selection
(MARAS) is an extended work from [10]. Unlike the original
protocol, which focused only on the basic routing mechanism
using simplified assumptions on packet level, we perform a more
in-depth evaluation of MARAS in the IEEE 802.11 protocol
stack. MARAS is a noise-driven on-demand protocol which uses
feedback of delivered data packets from the destination for route



maintenance. Using the feedback information along with the
attractor selection mechanism allows MARAS to recover from link
failures without issuing any additional broadcast control message
like AODV. Evaluation results in this paper show that MARAS has
higher delivery efficiency and lower transmission overhead than
AODV in failure scenarios, while keeping a similar performance
to AODV in mobility scenarios. We also compare MARAS
to another biologically-inspired protocol, AntHocNet. Except
in scenarios with low failure occurrences and low traffic load,
MARAS generally has much higher delivery efficiency and much
lower overhead than AntHocNet and in the rest of considered
scenarios, which shows that MARAS is more adaptive.

The rest of this paper is organized as follows. First, we introduce
the attractor selection mechanism and the derived mathematical
model in Section 2. Next, we describe our protocol in Section 3.
In Section 4, the evaluation results are presented and discussed.
Finally, we conclude this paper and list future work in Section 5.

2. MATHEMATICAL MODEL
In this section, we introduce the background of the attractor

selection mechanism and our derived mathematical model.

2.1 Attractor Selection Mechanism
The attractor selection mechanism is modeled after the behavior

of E. coli cells, which is capable of adapting to dynamically chang-
ing nutrient conditions in the environment without an embedded
rule-based mechanism [8]. A mutantE. coli cell has a metabolic
network consisting of two mutually inhibitory sequences of chemi-
cal reactions which synthesize two corresponding nutrients. When
one of the nutrients becomes scarce, the protein concentration
activating a sequence for the missing nutrient increases to return
the cell to a stable condition. However, there is no explicit rule-
based mechanism to switch between the sequences of chemical
reactions. In [8], a model describing this bistable behavior of
protein concentrationsm1 andm2 is proposed as

dm1

dt
=

s(α)

1 +m2
2

− d(α)m1 + η1 (1)

and
dm2

dt
=

s(α)

1 +m2
1

− d(α)m2 + η2, (2)

wheres(α) andd(α) are the rate coefficients of protein synthesis
and degradation, respectively. Both of them depend onα which
represents the cell activity or cell volume growth. Theη1 andη2
are independent white noise in gene expression.

Each state in the metabolic network is represented by a pair
of protein concentrations(m1,m2). The equilibrium conditions
in the metabolic network are calledattractors. When the cell
becomes unstable due to external influences or internal noise, its
gene expression state will be driven to other attractors to return
the cell to a stable condition. As there are more than one possible
stable conditions, this mechanism selects a suitable attractor among
multiple attractors, which is called attractor selection.

We extend the model from two alternatives toM alternatives
based on Eqns. (1) and (2). Letmi be the value representing
whether theith choice should be selected. Moreover, let us define
the M -dimensional vector⃗m = (m1, . . . ,mM ). The attractor
selection amongM alternatives shall have the general form as

dm⃗

dt
= f(m⃗)× α+ η⃗, (3)

whereα expresses the goodness of the current condition andη⃗ =
(η1, . . . , ηM ) is the vector of the noise affecting the selection.
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Figure 1: Behavior of attractor selection system

The activityα is the main parameter which controls the influence
of randomness on attractor selection. When the current condition
of the system becomes undesirable, the activity decreases. As a
result, the value of termf(m⃗)×α will decrease and a larger effect
from noiseη⃗ will take place to shift the system to another attractor
by a random walk. Once the system reaches a suitable attractor,
the activity will increase and the effect of noise will be suppressed,
which then allows the system to become stable again.

In Figure 1, we show the general principle of the attractor
selection concept. The x-axis shows a one-dimensional statem,
where some possible values ofm are the attractors, the y-axis is
the activityα, and the z-axis indicates the energy potential defined
by f(m) × α. The current system state is illustrated as a circle
which is constantly in motion due to the effect of the noise. It can
be observed that when the activity is high, changing the system’s
state is difficult because of the steepness of the potential landscape.
On the other hand, when the activity is low, the landscape becomes
smoother and changing the state can be achieved easier by only the
small effect of noise.

At first, the concept of having noise in the system may look
undesirable. However, adding noise into the system makes it in
general more robust to external fluctuations. In sensor networks,
noise and random walk can provide load-balancing and scalable
properties [1]. Moreover, getting stuck in local minima can be
avoided using noise and random walk as explained in [14].

2.2 Application to MANET Routing Protocol
The attractor selection is adopted in our protocol for next hop

selection among neighbors. Hence, we map the vector of neighbors
to m⃗, which containsstate valuemi, indicating whether theith

neighbor should be selected amongM neighbors. We further map
activity α to the information reflecting the goodness of the current
routing condition. Since the next hop selection shall provide a
single next hop neighbor as the solution, we design the controlling
function of attractor selection as follows. For all neighborsi:

dmi

dt
=

s(α)

1 +m2
max −m2

i

− d(α)mi + (1− α)× ηi, (4)

wheremmax = maxj=1,...,M (mj), s(α) = α[βαγ+φ∗], d(α) =
α, φ∗ = 1/

√
2, and ηi is the white noise with mean of 0 and

variance of 1. Parametersβ andγ control the influence of activity
over state values and we use empirical valuesβ = 10 andγ = 3
throughout this study. The term(1−α) additionally suppresses the
effect of noise when the activity is high.

In case of high activityα, Eqn. (4) gives the⃗m, which has a
single highmi value andM−1 low values. Then the deterministic
solution can be obtained by selecting the maximum value. While
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Figure 2: Dynamics ofM values from attractor selection model

in case of low activityα, Eqn. (4) gives a random⃗m where each
membermi has roughly the same value. This gives another state
value, which was previously not selected but has now become
more suitable for the current condition, a chance to become the
new maximum value easily requiring only small effect of noise.
According to this approach, the appropriate selection can be made.

The dynamics ofM = 6 alternative values from Eqn. (4) is
shown in Figure 2 where the solid lines represent themi values
while the ‘+’ line represents the activityα. From timet = 0 to 25,
α is low, therefore, each valuemi receives more effect from noise
and has a random value. After a solution is found at timet = 25,
α starts increasing. As a result, the gap between selected value and
non-selected values increases as well and becomes stable with one
high value andM − 1 low values onceα is equal to 1.0, which
indicates that the system reaches a suitable attractor.

3. OUR ROUTING PROTOCOL
In this secion, we explain the details of our protocol, Mobile

Ad hoc Routing with Attractor Selection (MARAS). MARAS uses
the feedback packets to evaluate the path that the data packets
have taken and notifies the path condition to each node along the
path. Therefore, we assume a bidirectional connectivity between
each neighbors. However, MARAS can also operate in a network
containing unidirectional links, as explained later in Section 3.4.3.

3.1 Route Establishment
We adopt the broadcast route discovery mechanism from AODV

and make a few modifications. In our protocol, when a node
has data to send but no route is available, aroute-request packet
(RREQ) is broadcast from the source node and re-broadcast by
other nodes until it reaches the destination. Each RREQ packet has
a unique ID, which is used to detect and drop a duplicated RREQ
packet. The previous hop of a valid RREQ packet is memorized for
sending the route reply packet back to the source in the future.

When the RREQ packet arrives at the destination, aroute-reply
packet(RREP) is generated and is forwarded in unicast manner via
the memorized reverse path to the source. When a node on the path
receives the RREP packet, it sets up the route entry for the source
of RREP, i.e., the destination of data packet. This route entry favors
the selection of the previous hop of the RREP packet. Moreover,
the route entry is marked with a maximum activityα = 1 because
of the availability of a route to the destination. Once the RREP
arrives at the source node, the data packet forwarding begins.

Due to the random selection of the next hop in the low activity
case, a node which was not on the pre-established path occasionally
receives a data packet. If the current node has no route entry for that

destination, then it will set up a new random vector which contains
equal state valuesmi of λ = 0.5 for every neighbori and starts
routing by the effect of noise. The random walk phase continues
until a feedback is received and the attractor selection mechanism
is applied to the routing information of the current node.

3.2 Routing Information
The routing information stored at each node in the route entry

are as follows.

• Destination addressis used for looking up the corresponding
route entry when a data packet is received.

• Neighbor vector⃗n = (n1, n2, . . . , nM ) is a list of neighbor
addresses, maintained by HELLO packets like in AODV.

• Attractor selection vector, calledrouting vectorm⃗ = (m1,m2,
. . . ,mM ) has the same dimension as the neighbor vector and
contains thestate values, where each state value is mapped to a
neighbor address in the neighbor vector. These state values are
used to determine the next hop of each data packet.

• Activityα reflects the current goodness condition of the path to
the destination. The routing vector is updated according to this
value, allowing the next hop selection to adapt to the current
condition.

• Precursor listcontains pairs of the address of the source node
and the address of the most recent neighbor that forwarded the
data packet originating at that source node to the destination via
the current node.

• Feedback windowis a sliding window where each frame contains
the travelled hop count of the feedback packet, which originates
at the destination and is sent via the current node. Each frame
is added to the feedback window on the reception of a feedback
packet and will be deleted afterwindow intervalT = 1.0 s to
avoid using outdated information.

3.3 Data Packet Forwarding
Next hop selection in data packet forwarding is controlled by the

attractor selection mechanism. Using attractor selection, MARAS
selects the neighbor which has themaximum state valuein the
routing vector as a next hop because the maximum value shows
the highest chance of that neighbor on delivering the data packet to
the destination. The data packet is forwarded to this next hop and
the process repeats itself until it reaches the destination.

The concept of attractor selection along with the maximum state
value favors the next hop selection in a way that MARAS will keep
selecting the same next hop as long as the activity is high. When
the activity drastically decreases, which reflects an undesirable
condition, state values first become closer to one another. Then,
the effect of noise changes the state values and allows a different
candidate to be chosen. Hence, MARAS is able to recover from
such conditions without using additional explicit control messages.

3.4 Route Maintenance
MARAS maintains the routes as long as they are being used

and removes unused routes after a certain period of time to save
the memory resource required to maintain them. In order to keep
the routing information up-to-date, MARAS uses the feedback
packet to learn the current condition of the network. The route
maintenance mechanisms are explained in this section.

3.4.1 Feedback Packet
Upon the data packet arrival at the destination, a feedback

packet is generated and sent back to the source. The feedback
packet utilizes the memorized previous hop in the precursor list



at each intermediate node to take the most recent route back to the
source and to avoid getting lost. During its journey, its travelled
hop count information is left in thefeedback windowof each
intermediate node for the purpose of activity calculation. The hop
count information in the feedback window is deleted afterwindow
intervalT to avoid using outdated information.

3.4.2 Activity Calculation
The activity of each routing vector is calculated upon the arrival

of a feedback packet at timet0 based on the travelled hop count
of the most recent feedback packet and the minimum travelled hop
count in the feedback window:

α(t0) =
mint0−T<t≤t0 w(t)

w(t0)
, (5)

wherew(t) is the travelled hop count of the feedback packet which
arrives at timet. Until the next arrival of the feedback packet,
α(tx) = α(t0), wheretx ≥ t0.

This activity changes according to the hop count to the destina-
tion in the range between 0 and 1. If the hop count to the destination
becomes larger, then it means that the current path to the destination
is no longer appropriate and an attempt to find a better path should
be made. Therefore, the activity will decrease and the effect from
noise will induce a random walk. On the other hand, once a shorter
path is found,α(t) will immediately become 1, and MARAS will
keep using this path until another change occurs in the network.

3.4.3 Activity Decay and Routing Vector Update
When the route is broken, data packets cannot arrive at the

destination and there will be no feedback packet returning to the
source. In such condition, the activity must decay to let the system
escape from a stalling condition. In case of unidirectional links,
the absence of feedback is treated similarly to the case of a broken
link. This implies that paths consisting of bidirectional links are
preferably chosen.

In our protocol, given the current timet and the most recent
feedback packet arrival att0, we use the simple activity decay
equation on the stored activity:

α(t) =

{
α(t0)− δ if t− τ ≤ t0 < t

α(t− τ)− δ otherwise,
(6)

where the decay constantδ = 0.1 is used for the current im-
plementation. The decay process is periodically performed over
interval τ = 1.0 s. The activity decay mechanism is performed
regardless of the feedback packet arrival. Therefore, when there is
no incoming feedback packet, the activity will continuously decay
and the routing vector will be updated using the decayed activity.

To keep the information in the routing vector consistent with the
value of activity, the routing vector is always updated after there is
any change of the activity value.

3.4.4 Attractor Selection-based Route Recovery
In MARAS, data packets occasionally take a random walk

looking for a new path to the destination because of the noise term
and the random routing vector as explained in Section 3.1. This
behavior of data packets inherently contributes to route recovery.
As such, MARAS does not have any mechanism designated for
route recovery.

However, using the data packet as a route recovery packet has
a drawback of a possibly lower delivery efficiency due to loss of
data packets. Since the delivery efficiency is crucial in most of
the communication, the random walk packet should travel as many
hops as possible to achieve the high delivery efficiency. On the

other hand, the longer path of the random walk packet also causes
larger overhead and interference. This trade-off is considered in our
implementation and we introduce therandom walk rangeρ and
random walk thresholdθ for this purpose. Whenever the activity
is lower than the random walk thresholdθ, the maximum TTL is
limited to random walk rangeρ instead of the default value to avoid
the negative effect of a long path. We use empirical valuesρ = 10
andθ = 0.6 throughout this study.

4. EVALUATION
We evaluate MARAS by performing simulations with the net-

work simulator QualNet. MARAS is compared to AntHocNet
and AODV. We use the code of AntHocNet from the developers
available at [5] and the implementation of AODV in QualNet 4.0.
Three different variants of AODV, which are the standard AODV,
the standard AODV with local route repair feature (AODV+L), and
the standard AODV with both local route repair and allowing RREP
by intermediate node (AODV+LI), are used in this evaluation.

We consider two metrics in this evaluation: delivery efficiency
and transmission overhead. Thedelivery efficiencyis the ratio of
the number of successfully delivered data packets at the destina-
tion to the number of data packets sent from the source. The
transmission overheadis the ratio of the sum of all unicast and
broadcast transmissions in the network for the whole simulation to
the number of the successfully delivered data packets. This metric
reflects the amount of network load inflicted by the delivery of each
data packet.

4.1 Simulation Configurations
The evaluation is separated into two main scenarios: a failure

scenario and a mobility scenario. In this section, we describe
simulation configurations for both scenarios.

The area of the evaluation scenario is 1500×1500 m2 for both
scenarios. Using the node placement tools available in Qualnet,
nodes are placed uniformly in the failure scenario and randomly
in the mobility scenario. The number of nodes is varied from 121,
169, to 256 in the same area but only the results from the 256 nodes
case are discussed here due to the space limitations.

Each node in the simulation uses the IEEE 802.11b wireless
module with data rate of 2 Mbps which is the common config-
uration in many protocol evaluations [3, 15]. The approximate
radio range is 510 m as we use the free-space model of QualNet
without propagation fading. Additionally, we assume an infinite
wireless interface buffer at each node. Regarding the traffic, CBR
is used with UDP as a transport layer protocol to avoid effects
from the congestion control mechanisms of TCP. We use CBR of
8 kbps which sends out 10 packets per second. The results which
are discussed in this section are the average values of each traffic
session from 100 simulation runs. In both scenarios, the simulation
time is 1000 s where the traffic generation starts and ends at the
same time as the simulation.

The specific parameters of MARAS are summarized in Table 1.
The parameters of AntHocNet are set according to the sample
configuration file provided with the code in [5]. The other
parameters of AODV and MARAS, which are not given here, are
default values according to the implementations in QualNet 4.0.

In the failure scenarios, a failure model is used to simulate
topology changes which are caused by joining and leaving nodes.
We force approximately 25% of all nodes to fail at the same time
by switching their wireless interfaces off using the API available in
QualNet. Consequently, link failures occur and the route recovery
performance can be evaluated. Failing nodes are randomly selected
among all nodes excluding the sources and the destinations. The



Table 1: Simulation parameters of MARAS
Category Parameter Name Value

Attractor selection
High valueβ 10
Activity exponentγ 3

Activity calculation
Window intervalT 1.0 s
Decay constantδ 0.1
Decay intervalτ 1.0 s

Routing
Random vector’s initial valueλ 0.5
Random walk thresholdθ 0.6
Random walk rangeρ 10

configurations of the number of failures are between 0 and 90
with the incremental step of 10 occurrences. The failure interval
is calculated by dividing the total simulation time by the number
of failure occurrences, which ranges between 100 s in case of 10
failures to 11.11 s in case of 90 failures. We use this variable
interval to maintain the same number of active nodes and to
evaluate the effect of the failure frequency. The first group of
nodes is forced to fail at 0 s. Iteratively after the failure interval,
the previously failing nodes recover from failures and a new group
of randomly selected nodes fails. Note that the value 0 means no
failure occurrences.

For the mobility scenarios, the random waypoint mobility model
(RWP) is used as it is the most common mobility model in
evaluations. In RWP, there are three main parameters: maximum
speed, minimum speed, and pause time. A mobile node under this
model will select a random target coordinate and a random speed
within the range of minimum and maximum speed for moving
toward the target. Once the mobile node reaches the target, it will
remain still at that target forpause timeperiod before repeating the
process again. In our mobility scenario, we use 0 as a minimum
speed and 2, 5, and 10 m/s are used for the maximum speed. The
pause time is set as 0 to study the pure effect from mobility.

4.2 Failure Scenario
In this section, the evaluation results from the failure scenario

are shown and discussed. This scenario has two source/destination
pairs. The sources are the two nodes closest to the lower left corner
of the simulation area and the destinations are the two nodes closest
to the upper right corner. The purpose of the selection of source
and destination pairs is to cause interference between both sessions.
The simulation results using only a single traffic session showed
nearly similar results and are omitted here due to space limitations.

In Figure 3, MARAS achieves higher delivery efficiency and
lower transmission overhead per successfully delivered packet
than AODV for all cases. Comparing the results between the
two traffic sessions and the single traffic session, the delivery
efficiency of MARAS drops only approximately 5–10%, but the
delivery efficiency of AODV drops 10–15%, which shows that
MARAS can handle a higher amount of traffic than AODV before
the performance degrades. Regarding AntHocNet, even though
the delivery efficiency is higher for less dynamic conditions with
low failure occurrences, it becomes much lower and drops faster
over the increasing number of failure occurrences. Moreover,
the overhead of AntHocNet increases much faster than AODV+LI
and MARAS over the increasing number of failure occurrences.
Therefore, it is sufficient to say that MARAS is more robust and
adaptive against large number of failures and changes in topology
than AODV and AntHocNet.

Note that the sudden changes between 0 and 10 on the x-axis
of every graph are caused by the different number of active nodes.
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Figure 3: Evaluation results against number of failure occurrences

As the failure model puts 25% of nodes into inactive state, there
are less HELLO packets, less radio interference, and less effects
from broadcast storm. Therefore, higher delivery efficiency, lower
overhead, and shorter paths are expected in such situation.

MARAS performs better than AODV and AntHocNet because of
less usage of broadcast control packets. In case of AODV, reactive
route recovery in broadcast manner is always used. Therefore, the
overhead of AODV is very high because of the effect of broadcast
storm. Since AODV+LI uses less route error broadcast packets,
its overhead is lower than the other two. Moreover, AODV also
suffers from the loss of HELLO packets in congested channels
which causes even higher overhead. AntHocNet can avoid using
only broadcast control packets upon error by gradually changing
the routing information using a proactive approach. Therefore,
the amount of overhead in AntHocNet grows when the network
dynamic increases because the proactive approach cannot keep
up with the changes and the broadcast route repair needs to be
performed. On the other hand, MARAS has no explicit route
recovery mechanism and uses only the feedback packet per each
delivered data packet. As the number of feedback packets is
in proportion to the traffic, not to the network dynamic, it can
be observed that MARAS also has an almost constant amount
of overhead. Moreover, lower overhead is achieved by lower
interference of unicast feedback packets and the robustness and
adaptability of the attractor selection mechanism.

4.3 Mobility Scenario
In this section, the evaluation results from the mobility scenario

are shown and discussed. In this evaluation, 10 concurrent traffic
sessions were performed. The source and the destination pairs are
selected randomly among 256 nodes. However, each node can be
either the source or the destination for only one traffic session to
avoid the bottleneck problem.
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Figure 4: Evaluation results against maximum speed

The delivery efficiency results are shown in Figure 4(a). First,
the delivery efficiency of AntHocNet totally deteriorates in this
high traffic load and high network dynamic scenario due to its
proportionally increasing overhead as seen in failure scenarios.
Next, the delivery efficiency of AODV and AODV+L become
much better than in the cases of the failure scenarios because
of a better chance to reach the destination node directly due to
mobility. However, the delivery efficiency of AODV+LI becomes
worse because AODV+LI relies too much on the stored routing
information, which is likely to be outdated. Comparing MARAS
to AODV, the delivery efficiency of AODV is slightly larger in
the scenarios where the maximum speed is less than 5 m/s, but
MARAS has slightly higher delivery efficiency when the maximum
speed becomes larger. However, these differences in terms of both
delivery efficiency and overhead between MARAS and AODV
are not significant and it can be concluded that MARAS has
approximately the same level of performance as AODV in this
mobility scenario.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented MARAS, an adaptive routing pro-

tocol for MANETs inspired by the attractor selection mechanism.
This mechanism is formulated by nonlinear stochastic differential
equations with a control factor, called activity, which controls the
influence of randomness in the selection process. Feedback packets
are used to evaluate the route that the data packet takes and to
update the activity at each node in the route by using the hop count
information, allowing the route to react to changes in the network
without creating additional control overhead on changes. As a
result, MARAS achieves a higher delivery efficiency and a lower
overhead than the other well-studied routing protocols, AODV and
AntHocNet, because of its adaptability to frequent failures.

According to the evaluation results, AntHocNet with fine-tuned

parameters from [6] does not perform well in our simulation
settings. AODV performs quite well in both scenarios but requires
the manual selection of optional features to adapt to a new condi-
tion. However, MARAS is capable of maintaining its performance
throughout all the evaluated scenarios in this study without the need
of tuning the parameters to adapt to new conditions as in other
protocols. Hence, it can be concluded that MARAS is suitable as an
adaptive general purpose routing protocol for MANETs. Although
not shown in the paper, we also conducted scalability tests and
verified that MARAS is more scalable than AODV against the
increased node density.

Currently, the parameters used in the evaluation are merely
empirical values. As future work, we would like to investigate
the effects of parameters of MARAS, i.e.,ρ, β, andγ to further
improve the performance of MARAS for specific applications or
environments in addition to its general purpose adaptability.
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