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ABSTRACT
Improving the scalability of wireless sensor networks is an impor-

tant task, and toward this end, much research on self-organization
has been conducted. However, the problem remains that much
larger networks based on pure self-organization cannot be guaran-
teed to behave as desired. In this paper, we propose a controlled
potential-based routing protocol. This protocol is based on a novel
concept: a “controlled self-organization scheme”, which is a self-

organization scheme accompanied by control from outside the sys-
tem. This scheme ensures desired network behavior by controlling
a portion of nodes operated in self-organization. Through simu-
lation experiments with a multi-sink network, we show that traf-
fic loads can be equalized among heterogeneously distributed sink

nodes, and moreover, that load balancing among the relay nodes
can bring about a 138% extension of network lifetime.

Categories and Subject Descriptors
C.2.2 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Protocols—Routing protocols

General Terms
Algorithm, Design, Performance, Reliability

Keywords
Controlled Self-Organization, Potential-Based Routing, Diffusion
Equation, Load Balancing
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1. INTRODUCTION
Recent advances in wireless and micro-electromechanical sys-

tem (MEMS) technologies have made it possible to develop ex-
tremely small sensor nodes that have wireless communication fa-

cilities, and as a result, considerable attention has been directed at
wireless sensor networks (WSNs). Wireless sensor networks con-
sist of a large number of sensor nodes and sink nodes, and these
networks can be used for a wide range of applications free of any
need for a fixed network infrastructure, such as a monitoring of
phenomena over a wide area.

Many challenges must be met to realize a WSN, and one of these
is to improve scalability of routing. When dealing with thousands
of sensor nodes, the wireless channel is occupied by the exchange
of routing information, which consumes more energy and more
bandwidth. Within such networks, it is impractical to give numer-
ous nodes unique identifiers (IDs) and exchange all routing infor-

mation among them. This stands in contrast to IP networks, where
an ability to access an arbitrary node is required. Another scala-
bility problem is that heavy loads are placed on nodes neighboring
the sink node, as those nodes, as a consequence of many-to-one
(or many-to-some) communication, must forward data from other
sensor nodes in addition to their own data.

In order to reduce the amount of routing information that needs
to be exchanged throughout the network, the emphasis is on self-
organization, that is, entirely local decision-making by each node
based only on local information. Self-organization has good scal-
ability, adaptability, and robustness [4], which are important prop-
erties for sensor networks. These properties are brought about by

numerous interactions among the local-level components of a sys-
tem without external or centralized control process. Conversely,
pure self-organization has the following problems because of its
bottom-up design [12] in which only local information is used.

• Guaranteeing an optimal operation is difficult.

• Confirming an operation on the entire network is difficult.

• Convergence speed after an environmental change is slow.

Since each entity in self-organization makes a decision on the ba-



sis of local information, local optimization is easy to achieve, while

a global optimal operation of the network is hard to guarantee. This
local decision-making based on the local interaction in large sys-
tems derives emergence, however as is generally known, control-
ling emergence is not realistic. Then, once a self-organized system
converges to act undesirably, it remains unchanged. In [12], the
author suggests use of an observer/controller architecture, where

an observer and a controller are responsible for correcting the sys-
tem behavior. In the case of optimal operation in self-organized
routings, since each node selects its next hop based on only local
information, it is not possible to deal with network problems from
a macro viewpoint; one would not be able to alleviate excess con-
centrations of communication load induced by an irregular node

distribution density.
To resolve these problems, we propose a controlled self-organized

routing, which is based on a novel scheme called “controlled self-
organization” [2]. This scheme rests on a controller which is re-
sponsible for ensuring the desired behavior of the system, for guar-
anteeing a high degree of system perform, and for encouraging a

convergence of the state of the system. That is, the controller makes
the self-organized system manageable by controlling some of the
components within the self-organization scheme to accomplish the
above objectives.

In this paper we adopt a potential-based routing [1, 5, 6, 8–11,
13, 15, 16] as a self-organized routing and apply controlled self-

organization scheme to it. In other words, we propose a controlled
potential-based routing (CPBR). In potential-based routing schemes,
nodes have a scalar value called “potential”, and a next hop is based
on only a node’s potential and its neighbors’ potentials. Here, a
node calculates its own potential from the potentials, the number

of hops from the sink node, or the remaining energy of itself or its
neighbors. Basically, the smaller a hop count to the sink node is,
the lower is the potential value assigned to it. Therefore, if a node
simply transmits data toward one of its neighbor nodes having a
smaller potential than its own, the data will eventually reach the
sink node.

On the reduction of the load on nodes neighboring the sink node,
multiple sink nodes are deployed over the network, with data ob-
tained by the sink nodes transmitted to a data server (users or ap-
plications can then access the data from the server as necessary).
Here, each sensor node does not necessarily select only one sink
node as its destination. When potential-based routing is applied to

multi-sink networks, each node only has to forward data accord-
ing to potentials: the data will eventually reach a sink node. Thus,
potential-based routing can be straightforward to use on multi-sink
sensor networks.

Because the potential-based routing is based on self-organization,
it has above-described some problems, such as concentrations of

communication load provoked by an inhomogeneous distribution
density of sensor or sink nodes. In CPBR, sink nodes act as con-
trollers, according to network manager’s requests, that adjust their
own potentials to construct a desired potential field. We assume
that multiple sink nodes are connected to one another on a high-

bandwidth wired network so that they can exchange various infor-
mation periodically and instantaneously; for example, the number
of received data packets and the remaining energy of their neighbor
nodes. Sink nodes control their own potential on the basis of this
information so that even as sensor nodes decide their own potential
from local information, a preferable potential field is constructed

over the entire network.
In order to realize CPBR, we begin by introducing a potential-

field construction from the diffusion equation in Section 2. In the
section, we first show how sensor nodes construct a potential field

and select a next hop according to it. We then extend this method

of construction to include local optimization. In Section 3, we de-
scribe controlled potential-based routing intended for overall opti-
mization; then in the following section, we present the results of a
simulation. Finally, we conclude our paper in Section 5.

2. POTENTIAL-BASED ROUTING

2.1 Related Work
Various works related to potential-based routing have been con-

ducted [1, 5, 6, 8–11, 13, 15, 16]. Such efforts are classified into
following two types.

1. Physics-knowledge based schemes

2. Hop-count based schemes

As for physics-knowledge based schemes, the focus has been

on analogies between electrostatic fields and sensor networks [5,6]
and on analogies between electrical circuits and sensor networks [10].
In these studies, potentials are assigned at sensor nodes by solving
a Poisson equation. With the solution obtained from the equation,
a load-balancing potential field is constructed. However, to solve
the equation, certain location information is needed for the nodes.

However, obtaining and exploiting location information assume the
availability of GPS receivers or some other means, and thus the cost
of producing such nodes becomes much higher. By extension, the
cost for deploying sensor nodes also rises, which is a potentially
critical problem for constructing a large scale network. In a sense,

this is also a scalability problem. A related difficulty is that it might
not be feasible to provide GPS receivers indoors, in rooms below
ground level, within heavily forested areas, or at other such loca-
tions with limited or obstructed satellite coverage.

As for hop-count based schemes, nodes calculate their own po-
tential essentially from their hop count from the sink nodes [8, 11,

15,16]. In references [8,11,15], nodes also use their own remaining
energy and that of their neighbor nodes for load balancing. An ef-
fective data aggregation mechanism supported by potential-based
routing was proposed in [16], where local queue-length informa-
tion is used to calculate potentials. Although the proposed rout-
ing schemes exhibit good performance, location information is re-

quired in the schemes of references [9, 11]. Also, the parameters
used to calculate potentials were insufficiently examined and eval-
uated in references [8, 15], and thus the difference between their
proposals and mere minimum hop routing along with remaining en-
ergy information is not clear. Moreover, the most important prob-
lem is that all the above-mentioned studies offer no mechanism for

guaranteeing intended network operation. To resolve this critical
problem, we propose controlled potential-based routing (CPBR).
Our CPBR utilizes a physics-knowledge based scheme inspired by
thermal diffusion phenomenon as well as [13], however, our CPBR
does not require location information. We focus on an analogy

between the heat conduction from a heat source and the poten-
tial conveyance from a sink node. In CPBR, sensor nodes have
to change their own potential according to the potential of the sink
nodes. Making use of the diffusion equation that describes heat
conduction, CPBR allows diffusion of the potentials of sink nodes
throughout the entire sensor network.

2.2 Potential Field Construction from the Dif-
fusion Equation

The diffusion equation is shown by the partial differential equa-

tion (1), which provides magnitude φ of the diffusing quantity at



time t at position x.

∂φ(x, t)
∂t

= D � φ(x, t), (1)

where D is the diffusion rate and takes a positive value. By dis-
cretizing this equation and regarding φ as a potential, it becomes
possible to construct a potential field based on self-organization
where the behavior is governed by only local information.

2.2.1 Discrete Diffusion Equation
Node n calculates its own potential at time step t+1 (denoted by

φ(n, t + 1)) based on the discrete diffusion equation (2). In equa-
tion (2), Na(n) denotes a set of nodes neighboring node n. It can
be noted from the equation, that location x is cleared and the po-

tential of node n is obtained from the latest potentials of nb(n) and
its own last potential. In order to calculate potentials, nodes must
periodically inform their neighbor nodes of their own potentials.

φ(n, t+ 1)=φ(n, t)+D(n)
∑

k ∈ Na(n)

{φ(k, t)−φ(n, t)}. (2)

In discrete equation (2) (derived from continuous equation (1)), it
can be thought that D(n) is a parameter that changes the magnitude
of influences by potentials of the neighbor nodes. An important

point should be noted: potentials may oscillate when D(n) is large.
For the solution of the problem, we consider the case where node n
has an only one neighbor node m. Equation (2) can thus be re-
placed by φ(n, t+1) = D(n)φ(m, t)+(1−D(n))φ(n, t), which
represents an internal/external division of the points on the number
line. In the following, we consider the case of φ(n, t) < φ(m, t).
In the case 0 < D(n) < 1:

After node n receives the potential of node m, the following in-
equality is satisfied: φ(n, t) < φ(n, t + 1) < φ(m, t). Repeating
this procedure, potentials of node n and node m approach and con-
verge between φ(n, t) and φ(m, t). In this case, node n’s potential
remains smaller than node m’s potential.

In the case 1 ≤ D(n) < 2:
After node n receives the potential of node m, the following in-

equality is satisfied: φ(m, t)<φ(n, t+1)<2φ(m,t)−φ(n, t). Re-
peating this procedure, the potentials of node n and node mapproach
and converge, but the relationship between the magnitude of node n’s
potential and node m’s potential is indefinite.

In the case 2 ≤ D(n):
After node n receives the potential of node m, the following

inequality is satisfied: 2φ(m, t)−φ(n, t)≤φ(n, t+ 1). Repeating
this procedure, potentials of node n and node m remain unchanged
or diverge. Moreover, the magnitude relationship between node n’s
potential and node m’s potential is indefinite.

For the diffusion of potentials, it is preferable that D(n) satisfies
the following expression: 0 < D(n) < 1. In the general case (i.e.,
when there exist multiple neighbor nodes), we set D(n) to α

|Na(n)| ,
where |Na(n)| is the number of neighbor nodes of node n. As a re-
sult, it can be considered that each node has been influenced by the

potential of essentially only one node. We then set α to the value
between 0 and 1 in order to keep the potential from oscillating.

2.2.2 Boundary Condition
As an initial condition, the potentials of sensor nodes are set to

zero. To construct a potential field from equation (2), we utilize a

Dirichlet boundary condition to specify the sink nodes’ potentials:

∀d ∈ Ns, φ(d, t) = Φ(d), (3)

where Ns is a set of sink nodes and φ(d, t) is the potential of sink

node d at time step t. Φ(d) (≤ 0) is the potential control function,

which we discuss later in Section 3. By the nature of the diffusion

equation, this boundary condition is insufficient because the poten-
tials of all nodes will arrive at much the same value as the potential
of the sink node eventually. We thus define another boundary con-
dition that has to be satisfied by nodes at the edge of the network:

∀n ∈ Nedge, φ(n, t) = 0, (4)

Nedge is a set of nodes at the edge of the network, and node n is an

element of the set that satisfies any of the following conditions (5)
or (6):

∀k ∈ Na(n), H(n) > H(k), (5)

∀k ∈ Na(n), {H(n)≥H(k)} ∩ {Did(n)=Did(k)}. (6)

Here, H(n) is the minimum hop count of node n from a nearby

sink nodes and Did(n) is the ID of the sink node. Nodes append H
and Did into their ID, which is transmitted periodically to let their
neighbor know their H and Did. Sink nodes set their H to zero and
Did to their own ID. When node n receives an ID from node m,
node n updates H(n) and Did. If H(m) + 1 is larger than H(n),
node n sets H(n) to H(m) + 1 and also sets Did(n) to Did(m).
When H(m)+1 equals H(n), node n changes Did(n) to Did(m)
with a probability of 0.5.

The expression (5) cannot define the potentials of nodes at the
network edge when two or more nodes with the same hop count
exist at the network edge. Instead, we use expression (6) for that

case. By using Did, nodes in the middle portion of two sink nodes
are prevented from mistakenly deciding that they are at the edge
of the network. Because Did represents the closest sink node, Did

does not coincide among neighboring nodes in the middle portion
of two sink nodes.

2.2.3 Local Optimization
In this section, we present the construction of a potential field

where nodes can select the best next hop locally. To do this, we
add a term ρ on the right-hand side of the discrete diffusion equa-
tion (2).

φ(n, t+ 1) =

φ(n, t)+D(n)
∑

k∈Na(n)

{φ(k, t)−φ(n, t)}+ρ(n, t), (7)

where ρ(n, t) is a variable indicating the influence of node n on

the potential field at time step t (a larger ρ is associated with lower
probability that node n is selected as a next hop and vice versa).
Here, we show load balancing based on the residual energy with
ρ(n, t).

Node n increases ρ(n, t) when the residual energy of node n is
smaller than the average of that of the neighbor nodes whose hop

count equals H(n). Residual energy is contained in an ID and
transmitted periodically.

The algorithm for deciding ρ(n, t) is as follows, and is executed
each time a potential is received.

1. Node n extracts the average residual energy of the neighbor
nodes that have the same hop count as node n at time step t
(denoted by Eavg(n, t)) and compares Eavg(n, t) with own

residual energy at time step t (denoted by Erem(n, t)).

• If Erem(n, t) > Eavg(n, t), ρ(n, t) is set to zero.

• If Erem(n, t) ≤ Eavg(n, t), it follows step 3..

2. Edif (n, t) is the difference of energy between node n and
its neighbors at time step t and assigned to Eavg(n, t) −
Erem(n, t).
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Figure 1: Intermittent receiver-driven data transmis-
sion (IRDT) protocol, which is one of the receiver-driven
duty cycling MAC protocols such as RI-MAC [14]; we apply
this protocol to the potential-based routing

• If Edif (n, t) < Edif (n, t− 1), ρ(n, t) is unchanged.

• If Edif (n, t) ≥ Edif (n, t − 1), δ(n, t) is added to
ρ(n, t), where δ(n, t) is the difference between φ(n, t)
and average potential of the neighbor nodes whose hop
count is same as node n at time step t.

3. Finally, ρ(n, t) is set to
ρ(n,t)
|Na(n)| .

The procedure 3. is to suppress the dependence for the number

of neighbor nodes on potential. This reduces dependency from our
routing on the density of the network.

2.2.4 MAC Layer Protocol and Potential Dissemination
Another major challenge in wireless sensor network research is

energy efficiency. For energy efficiency in wireless sensor net-
works, consideration of duty cycling MAC in which wireless nodes

sleep and wake up periodically is required. Then, we use an in-
termittent receiver-driven data transmission (IRDT) protocol for
MAC layer, which aims to save energy and get high reliability [7].
Note that our routing protocol is not limited to IRDT and it is ap-
plicable also in other underlying protocols. In IRDT, each receiver
sends its own ID to inform other nodes that it is ready to receive a

data packet (Figure 1). A sender node waits for a receiver ID, and
when it acquires an ID from an appropriate receiver, it establishes
a link with it by returning an SREQ message. After obtaining an
acknowledgement for the SREQ (RACK), the sender transmits a
data packet and terminates the communication upon receipt of an
acknowledgement for the data (DACK). In this way, a sender node

can communicate with one or more receivers flexibly, which can
improve the communication reliability and save considerable en-
ergy. Because IRDT is an asynchronous MAC protocol that does
not require synchronization, it is considered to have scalability.

By having the potential and node ID be periodically transmitted

in IRDT, a node can inform its neighbor nodes of its potential. This
simple modification produces little overhead. Note that because
IRDT uses a duty cycling mechanism, where each node periodi-
cally cycles between an awake state and a sleep state, it is not nec-
essarily that a transmitted potential be received by a node within
the range of the communication. Each node wakes up and waits

to receive potentials for a period of Tp at intervals of Ti. We refer
to this period as the “sampling period”, and to this interval as the
“sampling interval”. A sampling period should be longer than the
interval of the periodic ID transmission in IRDT to ensure neighbor
potentials are known by a node.

Potentials of neighbor nodes are managed in a soft-state man-

ner. In other words, if a node receives a potential from a neighbor

node during a sampling period, the node stores the potential; oth-

erwise, the node deletes the information about the neighbor node.
The procedure for calculating a potential is shown below.
During a sampling period Tp:

1. If a node receives a potential, it returns its own potential.
After returning its potential, it calculates its own potential
according to equation (2).

2. A node that receives, and that was intended to receive, the

potential returned in step 1. also calculates its own potential.

While waiting for an ID for data transmission:

1. If a node receives an ID, it returns an SREQ containing its
own potential. After returning the SREQ, it calculates its
own potential.

2. A node that receives, and that was intended to receive, the
potential returned in step 1., also calculates its own potential.

Immediately after a sampling period Tp:

1. Potentials of nodes whose potentials have not been updated
for a period of Ti are deleted. After this process, the node
calculates its own potential.

2.3 Routing in Potential Field
Here, consideration of both routing protocol and MAC protocol

(in particularly, duty cycling MAC protocol) is important for en-
ergy efficiency. In IRDT, a node that has data to send waits for
an ID from an appropriate node [7]. When the node receives an
appropriate ID, it forwards the data to the sender of the ID. In
our potential-based routing, a potential is transmitted along with

an ID. A sender waits for a potential and when it receives a po-
tential, it decides whether to forward data. Most of the proposed
potential-based routing schemes use only one receiver that has the
minimum potential; however, in duty-cycling MAC protocols, most
the energy is consumed while the sender nodes wait for a receiver
to awaken. Because energy efficiency is crucial in a sensor net-

work, our potential-based routing uses multiple receivers. This can
reduce energy consumption and improve reliability. When node n
receives a potential from node r and it is not greater than its own
potential, node n always returns an SREQ to node r.

3. CONTROLLED POTENTIAL-BASED
ROUTING

In CPBR, multiple sink nodes share information and decide their
own potentials for constructing a desired potential field. Sink nodes
exchange information at regular time intervals Tm for the purpose
of control. We call this information “metric value” (denoted by m).
We aim here at balancing the load on sink nodes and sensor nodes.

• Load balancing of sink nodes
For this purpose, sink nodes control their potential to main-
tain a uniform number of received data packets. The metric
value here is the number of data packets received by sink
node d (denoted by Ndt(d)).

• Load balancing of sensor nodes
In the network, the nodes particularly neighboring the sink
nodes frequently relay data and thus consume more energy.
Thus, the metric value is needed to be based on the sum of
the remaining energy of sink node d’s neighbors (denoted
by Pnb(d)). To make the energy consumption of the neigh-
bor nodes of sink node d equal, sink nodes control their po-

tential to equalize the decrease rate of Pnb(d) (denoted by
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Figure 2: Network model (3 sink nodes)

Prt(d)). As the metric value, the energy consumption rate,
P ′
nb(d)−Pnb(d)

Pnb(d)
, is used, where P ′

nb(d) is the last Pnb(d).

The potential of sink node d, φ(d), is given by the potential con-
trol function Φ(d). Φ(d) is decided with the following algorithm.

1. Sink nodes set their potential to the initial value Φinit:

Φ(d) = Φinit (Φinit < 0). (8)

2. Sink nodes calculate m̄, which is the average of the metric
value. For example, m̄ for Ndt(d) (denoted by mN for con-

venience) is defined by equation (9) and m̄ for Prt(d) (de-
noted by mP ) is defined by equation (10):

mN =

∑
d∈Ns

Ndt(d)∑
d∈Ns

1
, (9)

mP =

∑
d∈Ns

{P ′
nb(d)− Pnb(d)}∑

d∈Ns
Pnb(d)

. (10)

3. The potential of sink node d is given according to expres-

sion (11):

Φ(d) =

{
Φ(d) ∗ (1− θm(d)−m̄

m̄
) (m(d) ≥ m̄)

Φ(d) ∗ (1 + θ m̄−m(d)
m̄

) (m(d) < m̄),
(11)

where θ is a constant (−1 < θ < 1). The change in po-
tential can be larger when it is away from the mean value;

conversely, the change can be smaller when it is closer to the
mean value. At this time, so as to avoid an aberrant value of
potential, the potential is taken to be within a range decided
beforehand, [Φmin,Φmax].

4. SIMULATION RESULTS
We evaluate the impact of CPBR through computer simulation

by using an event-driven simulation program we made written in
Visual C++. The network model is a square (length of each side:

600 m) in which 150 sensor nodes are randomly deployed and 3
sink nodes (sink 1, sink 2, and sink 3) are set at points (300, 300),
(100, 300), and (500,100), respectively as described in Figure 2.
The communication range of each node is 100 m. We assume that
data packets are generated by each sensor node according to a Pois-
son process with intensity λ and are sent to the sink node by multi-

hop relay. The simulation commences after an initializing phase, in

Table 1: Parameter settings
Parameter Value

λ 0.003 packet/s/node
Current consumption (TX) 20 mA
Current consumption (RX) 25 mA

Current consumption (SLEEP) 0 mA
Ti 100 s

Tm 50 s or 500 s
Φinit −30
Φmin −90
Φmax 0
θ 0.5

which each node sufficiently exchanges its potential with neighbor
nodes. The simulation ends at 20,000 seconds. The interval of ID
transmission is 1.0 s, and Tp is also set to 1.0 s. Other parameters
are set as shown in Table 1. Note that θ decides the rate of increase
and decrease of potential. Here, a positive value is used for θ to

increase Φ when m is larger than m̄ and vice versa. For Tm, the
interval of the potential control, two values are used. Tm is set to
500 s when the metric value is the number of received data pack-
ets because the frequency of data generation (= λ) is not too high,
and Tm of 50 s is used for the energy consumption rate (in this
case, Tm depends on Ti, the standby interval for receiving poten-

tials). When a node receives a potential during Tp, it immediately
returns its own potential together with its remaining energy. Since
this sampling period occurs at intervals of Ti, the remaining energy
at neighbor nodes is updated within Ti

2
on average. Therefore, the

potentials of the sink nodes can be comparatively controlled over a
short cycle.

4.1 Load Balancing of Sink Nodes
Potential control based on the numbers of received data, Ndt(d),

can balance the load of the sink nodes. Simulation results are
shown in Figure 3. In this figure, the y-axis indicates the num-
ber of data packets received by each sink node during Tm (500 s)
with 95% confidential interval. When sink nodes do not control

potentials (we call it “autonomous” for simplicity), the number of
received data packets remains mostly unchanged over time. With
potential control of sink nodes (we call it “controlled” for sim-
plicity), the number of received data packets (over 3 sink nodes)
converges to a nearly identical value. This identical value equals
λTm

Nn
Ns

(= 75), where Nn is the number of sensor nodes. Con-

vergence time is about 10000 s, which indicates that 20 times con-
trol causes the number of received data packets to converge. When
considering the operating time of an actual sensor network system,
which can be in units of years, we note that convergence within a
realistic time is possible.

Figure 4 shows the number of received data packets in a net-
work where 5,000 sensor nodes and 100 sink nodes are randomly
deployed. The network field shapes a square (length of each side:
3500 m). Also in this case, potential control works properly with-
out a significant change in convergence time; however, there are
some issues. The deviation is larger than that of Figure 3(b). This

is an inevitable result of a self-organization mechanism when a net-
work grows in scale.

Next, we examine the adaptivity of CPBR to the heterogeneous
density of sensor nodes. In Figure 5, we show the impact of poten-
tial control when there is a difference in density of sensor nodes:
We use a square field, with a 600 meter long side, where the right

half of the field has double node density of the left half. CPBR can
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Figure 3: Potential control based on the number of received data packets (3 sinks)
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Figure 4: Potential control based on the number of received data packets (100 sinks)

attain good convergence of the number of received data packets
also in this case. This indicates our proposed potential control can
adaptively accommodate heterogeneous density of sensor nodes.
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Figure 6: Network model (9 sink nodes)

We also demonstrate the robustness of CPBR against sink node
failures and additions. Here, we randomly deployed 300 sensor

nodes over a square-shaped network (length of each side: 850 m),

and placed 9 sink nodes at locations (142, 708), (142, 425), (142,
142), (425, 708), (425, 425), (425, 142), (708, 708), (708, 425),
and (708, 142) (denoted by sink 1 to sink 9 respectively) as shown

in Figure 6. Here, the number of sink nodes is varied as follows.

• Six sink nodes (2, 4, 6, 7, 8, and 9) are active at 0 second.

• After four hours, two sink nodes (6 and 9) break down.

• Eight hours after that failure, two sink nodes (1 and 3) are
added.

• At twelve hours into the simulation, a sink node (5) is added.

Results of the simulation are shown in Figure 7. Comparing Fig-
ure 7(a) and Figure 7(b), we find that CPBR can control potentials
adequately after failures and additions of sink nodes; thus, CPBR
is robust against sink node failures and additions.

4.2 Load Balancing of Sensor Nodes
Balancing the load of sensor nodes based on the residual energy

is expected to be accomplished by potential control based on en-
ergy consumption rate. Figure 8 is a simulation result where po-
tential control based on Prt(d) is used. The network model is
same as that of Figure 2. The y-axis of the figure indicates the
energy consumption of each node with 95% confidential interval in

6-hour simulation, while the x-axis represents each node sorted by
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Figure 5: Potential control based on the number of received data packets (heterogeneous node density)
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Figure 7: Potential control based on the number of received data packets (failures and additions of sink nodes)

descending order. In our potential-based routing, relay load is con-
centrated on the node that has the minimum potential among the
neighbors of the sink node. Hence, once a potential field has been

constructed, the relay load remains concentrated on a specific node
(as apparent in Figure 8(a)). In this figure, because the number of
received data packets at sink 1 is largest, the energy consumption of
the heaviest loaded node is larger. Figure 8(c) indicates that poten-
tial control can reduce the energy consumption of that node. This is

because the number of neighbor nodes at each sink nodes is nearly
equal; therefore, the number of data packets received by the sink
nodes are also nearly equal. If the number of neighbor nodes dif-
fers considerably, the bias of energy consumption may grow even
more than the result shown in Figure 8(a). In any situation where
there is a major difference among the number of neighbor nodes,

the local load-balancing mechanism described in Section 2.2.3 can
substantially reduce the energy consumption of the heaviest loaded
node as shown in Figures 8(b) and 8(d). The results of CPBR with
a local load-balancing mechanism are shown in Figure 8(d). While
the total energy consumption rises due to an increase of detours, a
58.0 % reduction in the energy consumption of the heaviest loaded

node was attained comparing with the result shown in Figure 8(a).
Given that energy is consumed only by communication, we find
that CPBR with load balancing acted to extend the time until the
first node runs out of energy by 138% (= 0.58

1−0.58
× 100).

Figure 9 shows the network lifetime based on the number of alive

nodes and network lifetime based on reachability to sink nodes.
There are various definitions for network lifetime in sensor net-
works depending on applications [3] and in this paper we use fol-

lowing two simple definitions.

1. The time until the first node depletes its energy (alive node).

2. The time until 20% of nodes lose reachability to sink nodes
(80% reachability).

For evaluating network lifetime, we set the battery of sensor
nodes to comparatively small value (1.0 mAh) and simulation time
is set to longer time than battery lifetime. Comparing “controlled

with local load balancing” with “autonomous” in Figure 9(a), the
time until the first node depletes its energy is prolonged to more
than twice as remarked above. In terms of the time guaranteeing
80% reachability, that of CPBR with load balancing (“controlled
with local load balancing”) is 11.5% shorter than that of default
potential-based routing (autonomous) because CPBR increases to-

tal energy consumption. However, the time of CPBR ensuring
100% reachability is 2.14 times longer than that of default.

5. CONCLUSION
In a controlled self-organization scheme intended to ensure de-

sired network behavior, one or more controllers control a portion
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Figure 8: Potential control based on neighbors’ energy consumption rate (energy consumption distribution)

of nodes operated in self-organization with centralized control, dis-

tributed control, or some other control scheme. In this paper, we
proposed controlled potential-based routing (CPBR), which is based
on a controlled self-organization scheme. In this scheme, sen-
sor nodes calculate their own potential in a self-organized manner
while sink nodes control their own potentials according to network
manager’s demands by distributed control so as to construct a de-

sired potential field. Our CPBR is over IRDT protocol, however,
it is not limited to IRDT and it is applicable also in the sensor net-
work where other MAC protocols were adopted. Through com-
puter simulation, we show that load balancing of the sink nodes
can be attained in diverse situations with potential control based
on the number of data received at each sink nodes. We also show

that CPBR, with potential control based on the energy consump-
tion rate, can extend the time until the first node deplete its en-
ergy by 138 %. Presently in our laboratory, investigations into the
variations in system behavior and in convergence time as network
size becomes increasingly large are underway. Additionally, on the
subject of our routing scheme, further evaluation on robustness and

detailed study on the dependence on node density are our future
work.
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