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Abstract— The energy consumption by the Internet is rising
at an unprecedented rate. Future networks should be able to
provide the means for meeting this energy demand. Numerous
researches have been carried out to understand the energy con-
sumption level of a network. However, there are few approaches
to develop a metric that indicates and analyzes the energy
consumption level of a network based on its topological structure.

In this paper we propose an entropy-based metric that can
be applied for the evolution of energy efficiency in the future
Internet. With the proposed entropy-based metric, we analyze
the energy consumption levels of various networks that have
different topological structures. Moreover, we demonstrate that
the entropy-based metric has a positive linear relation with the
energy consumption level of a network with intensive simulation
studies.

Index Terms— Energy consumption, Entropy, Future net-
works.

I. I NTRODUCTION

Energy issues of future networks have come to the fore in
recent years. Many studies estimate that power consumption
of the Information and Communication Technology (ICT)
sector rises up to 10% of the world wide power consumption
according to [1] [2]. In addition, around 8% of the total energy
in the U.S. was consumed by network components of the
Internet, and it would grow by 50% within a decade [3].
Thus, in near future, the Internet could be constrained on its
continued growth due to this energy restriction.

Thus, there have been several research attempts to investi-
gate this energy conservation issues. As a pioneering work, the
authors in [4] proposed the idea of sleeping of network com-
ponents for energy conservation in the Internet. To achieve the
goal, they suggested to construct a topology that has a good
correlation between the number of awake devices and traffic
load. Thus, a network can be operated partially depending
on traffic load. In [5], some experiments were carried out to
investigate where most power is consumed in a network. They
found that the amount of energy consumption by a network
component is nearly constant and independent from the actual
traffic load. Thus, they suggested to maximize the utilization
of network components to minimize power consumption level
of a network. In [6][7], the authors investigated how many
nodes and links can be turned off while maintaining the global
connectivity of the network as well as sustaining Quality
of Service (QoS)1. They proposed a heuristic algorithm to
find the minimum set of nodes and links satisfying the
given traffic demand and QoS, and reported that 23% of

1E.g., maximum link utilization under 50%

total energy conservation can be easily achieved. Another
optimization approach was proposed to find the minimum
energy consumption level of an IP over WDM networks in [8].
They reported that minimizing the number of IP router ports
can potentially and maximally save the energy consumption
of a IP over WDM network. Their observation is matched to
the result presented in [5] which minimizing the number of
used network components is the best way to reduce energy
consumption of a network.

All of the related works summarized above focused on the
energy consumption level of a network using either experi-
ments or optimization approaches. Especially, searching the
minimum set of network components (routers and line cards)
that consume the least energy is quite straightforward since the
problem is equivalent to the designing of the cost minimized
network. However, comparing to these approaches, developing
a metric or an indicator that measures the level of energy
consumption level of a network has not been investigated in
other literatures to the best of our knowledge.

In this paper we attempt to define an entropy-based metric
that indicates the energy consumption level of a network.
Entropy was originally introduced to describe potential energy
level of a system in both the classical thermodynamics [9]
and statistical mechanics [10]. Thus, considering an entropy-
based metric to understand the energy consumption level of
a telecommunication system was an intuitive approach. Some
backgrounds of entropy are given in the next Section. We
firstly derive the positive linearity relation between the energy
consumption level and entropy of a network analytically.
Then, the derived relation is verified numerically. With the
developed entropy-based metric, we consider how topological
structure of a network affects its energy consumption level.
For this purpose, we construct networks that have different
topological structures, and show how entropies of these net-
works vary due to their topological structures. To estimate the
real energy consumption level of a network, we formulate a
Linear Programming (LP) formulation of the problem that
is to search the minimum total energy consumption level
of a network. Moreover, we investigate how the energy
consumption level of a network is affected by the energy
consumption behavior of network devices.

The rest of this paper is organized as follows. In Section II,
we derive the relation for a telecommunication between its
energy consumption level and its entropy. This is followed by
numerical evaluations of the derived the relation in Section III.
Finally, we conclude the paper in Section IV.
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II. D ERIVATION OF THE RELATION FOR A NETWORK

BETWEEN ITS ENERGY CONSUMPTION LEVEL AND

ENTROPY

The term entropy was coined by Rudolf Clausius [9] in
the context of classical thermodynamics. According to the
definition, entropy of a system can be interpreted as potential
energy that the system contains. The classical thermodynamics
was extended to the new field called statistical mechanics by
James Clerk Maxwell and Lugwig Boltzman [10]. In classical
thermodynamics, energy is associated with a single whole
system. One the other hand, in statistical mechanics energy is
described by the role of the tiny particles of the system.

In statistical mechanics, entropy represents the state of
whole system (e.g., temperature called macrostate) with the
states of all tiny particles (e.g., directions of particles called
microstate) in the system. For instance, the energy level of
a system (e.g., gas) becomes maximized when all molecules
of a gas have very different states (e.g., direction). Due to
this reason, the entropy is also interpreted as a measure of
disorder since entropy increases as the states of microstates
become close to random.

The mathematical foundation of statistical mechanics were
applied into new academic field called the modern information
theory by claude shannon [11]. He adopted entropy to measure
the level of uncertainty associated with probabilistic events.

There have been a lot of arguments to define the concept of
entropy clearly since it can be interpreted in many different
ways as shown above. Since entropy was originally introduced
to describe potential energy level of a system in both the
classical thermodynamics and statistical mechanics, it is a
natural choice to consider an entropy-based metric to measure
the energy consumption level of a telecommunication system.

In addition, we found an attempt in the field of hydrology
community that entropy was used as an indicator of the
potential energy level of a river network in [12]. With the
retranslation of the potential energy of a river network in the
context of a telecommunication, we adopted an entropy-based
metric to define the relation between the energy consumption
level of a telecommunication network and its entropy.

The potential energy of a river network can be considered
as the amount of water that the river network contains. In
terms of telecommunication networks, it can be translated into
the amount of traffic that a network accommodates. Since a
telecommunication network consumes more energy to accom-
modate more traffic load, their approach can be extended to
telecommunication networks for defining the relation between
the energy consumption level of a telecommunication network
and its entropy.

The derivation begins with the understanding of the prin-
ciple of maximum entropy estimate approach[13]. Maximum
entropy estimate provides a quantitative technique for assign-
ing probabilities using currently available information, and
strictly avoiding the use of any other information that we may
use unconsciously. As the name implies, it is an estimation

method, in other words, when given constraints are not enough
(under-determined problem) to determine the exact solution of
an optimization problem, it selects the most plausible solution
by maximizing entropy of the system.

Keeping in mind the principle of maximum entropy es-
timate approach, the optimization problem shown in Equ.
(1)(2)(3) can be formulated to make an estimation of a
probability distributionpi.

Maximize S = −
D∑

i=1

pi log pi (1)

subject to

D∑

i=1

piei = E (2)

D∑

i=1

pi = 1 (3)

To understand the notations of the optimization problem,
let us have a look Fig. 1. Assuming that traffic travels down
from nodeA (This node is called the outlet node.) into the
end nodes.pi is the probability that a randomly chosen link is
at ith hops from the nodeA. ei represents the energy which
is consumed by a flow when it reaches toith hops from the
nodeA. It is natural to assume that a network consumes more
energy when traffic flows travel more hops in the network.
For this reason,E represents the average energy consumption
level of the network.D is the longest distance from the outlet
node to end nodes. In this example,D is equal to4.

Fig. 1. A schematic example.

The solution of the optimization problem is known as the
Maxwell-Boltzman distribution, and is shown as follows,

pi = e−µei/

D∑

i=1

e−µei (4)

whereµ is the lagrangian multiplier. After taking log of both
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sides of Equ. (4), it becomes

ei = − 1
µ

log pi

D∑

i=1

e−µei

= −α log piβ, (α = 1/µ, β =
D∑

i=1

e−µei) (5)

Now, by substitutingei in Equ. (2) with Equ. (5),

E =
D∑

i=1

pi(−α log piβ)

= −α

D∑

i=1

pi log pi − α log
D∑

i=1

piβ

= αS − α log β (6)

In [12], the authors definedα as DT whereT represents
the temperature of the network. Since temperature does not
mean much in the telecommunication network, we ignore it
so that we assume thatα represents onlyD.

Finally, Equ. (6) shows the relation for a telecommunica-
tion network between its energy consumption level (E) and
entropy (S). Considering thatα and β are constant values,
it shows the positive linear relation between its energy con-
sumption level (E) and entropy (S). In other words, the higher
entropy value a network has, the more energy it consumes.

III. E VALUATIONS

A. Verification of the relation between its energy consumption
level and entropy shown in Equ. (6).

Initially, we setup the following simulation scenario.
Barab́asi and Albert (BA) [14] and Erdos and Renyi (ER) [15]
topologies (N=1000,m (average degree)= 3, 4, . . . , 30) are
constructed. Then, their minimum cost spanning trees (MST)
are found after the costs of individual links are set using
the Equ. (7). It is because the entropy we propose here was
introduced for a river network which has a tree structure.

cij = 1/kikj (7)

where ki is the degree of nodei. Due to the Equ. (7),
links belonging to high degree nodes tend to have low costs
so that they are likely to be selected as part of minimum
spanning tree (MST). For this reason, the MSTs of BA and
ER topologies obtained using the equation can maintain the
topological properties of the original BA and ER topologies
such as degree distribution. In addition, to select the outlet
node (nodeA in Fig. 1) of a network, we select a node with
the highest betweeness centrality in the network. Finally, the
entropies (S) and the energy consumption levels (E) of the
BA and ER MSTs are calculated using Equ. (1) and Equ. (2),
respectively. Their relation is plotted in Fig. 2.

We observe the clear positive linear relations between the
entropies (S) and the energy consumption levels (E) in both
figures. The data sets are fitted by the linear equation shown
in Equ. (6), and the estimates of coefficientsα andβ of the

equation are shown in Table. 1. Theα value ofER is larger
than that ofBA. As mentioned previously,α representsD
which shows the longest distance from the outlet node to end
nodes. SinceER topology tends to have longerD thanBA2,
the former is likely to have largerα than the latter.

In addition, β is in inverse proportion of the sum ofei
3,

thus, if we assume that a traffic flow consumes same energy
per hop, a network with largeβ consumes more energy than
a network with smallβ. Thus, it suggests thatBA topology
consumes less energy thanER topology. We can also observe
the superiority ofBA topology to ER in terms of energy
saving by comparing the entropy values of both topologies.
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Fig. 2. The energy consumption level (E) versus the entropy (S) of BA
(Top) and ER (Bottom) minimum spanning tree (MST) topologies.

Table 1. Estimates of coefficientsα andβ in Fig. 2.

BA MST ER MST

α 0.52 1.80
β 0.47 1.65

B. Verification of the linearity relation in different types of
topologies

Here, we investigate the relation between the energy con-
sumption levels and the entropies in different types of net-
works other thanBA and ER topologies. For this purpose,
we initially construct ER topologies and transform their
topological structures to be power law topologies4 using the
rewiring method in [16]. In the middle of the topological

2BecauseER has generally longer average shortest path (ASP) thanBA.
3The energy which is consumed by a flow when it reaches toith hops

from the outlet node.
4Degrees (links) of all nodes in a network are characterized as a distribution

functionP (k) that is the probability that a randomly chosen node has degree
k. When the degree distribution of a network follows a power function P(k)∼
k−γ , it is called a power law topology.
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evolution, we observe different types of topologies whose
degree distributions are shown in the top figures on the left
side of Fig. 3.

This result also shows the clear positive linear relation
between the energy consumption levels of the topologies
and their entropies. Additionally, it demonstrates that the
topological transformation proposed in the paper[16] can be
utilized to evolve a topology into an energy efficient topology.

C. Investigation of the energy consumption level of a network.

In the previous sections, we demonstrated thatBA topology
(power law topology) is more energy efficient thanER
topology since the entropy value of the former is smaller than
that of the latter. In this section, we verify this observation by
investigating the energy consumption levels ofBA and ER
topologies with realistic simulation scenarios.

1) Simulation I: Initially, BA andER topologies (N=200,
m≈2(directional topology)) are constructed. For statistical
purpose,15 sets for each case are generated. All links of
the topologies have60 units of capacities and consume1 unit
of energy per 1 unit of flow5. Each topology has total39800
origin-destination (OD) pairs6. Among the whole OD pairs,
only (R = 1%, 4%, 7%, . . . 22% increased by 3%.) of them are
randomly activated. A demand for each OD pair is generated
from the uniform distribution [0, 1], and10 different paths are
set between each OD pairs in terms of its energy consumption
level. Then, the energy consumption level of a network is
formulated as a multi-commodity flow problem. Firstly, let us
define the notation in Table. 2.

Table 2. Notations.

Notations Explanation

K Traffic demands. Each demand is shown ask (1≤ k ≤ K).
Pk A collection of directed paths from the origin node to the

destination node.
f(P ) The flow on a pathP .
e(P ) The energy consumption of the pathP .

δij(P ) Equals one if a link(i, j) is contained in the path P and
is zero otherwise.

eij Per unit power consumption of flow on the link(i, j), e.g.,
e(P ) =

∑
(i,j)∈P eij . The link(i, j) connects two portsi

andj. We assume that the two ports consume same amount
of power.

cij The capacity of each link(port). The link(i, j) connects
two portsi andj. We assume that the two ports have same
capacities.

dk The size of thekth demand for allk= 1, . . . , K.

With the above notations, we modify the path-flow formu-
lation in Ahuja et al [17] to provide an Linear Programming
(LP) formulation of the problem that is to search the minimum
total energy consumption level of a network. It is shown as
follows,

5The link can accommodate 60 units of flow at maximum, and the energy
consumed by the link is same as the amount of flow on the link.

6The number of OD pairs in a network withN nodes is equal to N*(N-1).

Minimize
∑

1≤k≤K

∑

P∈Pk

e(P )f(P ) (8)

subject to
∑

1≤k≤K

∑

P∈Pk

δij(P )f(P ) ≤ cij (9)

∑

P∈Pk

f(P ) = dk (10)
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Fig. 4. The optimized energy consumption levels of both BA and ER
topologies (N=200, m≈2) are calculated by increasing the numbers of
activated OD pairs in both topologies. The 95%confidence intervals are small
enough to be inside the marks so they are omitted. Each result is averaged
over 15 realizations.

This LP formulation searches a set of routes for given traffic
demands that consume the least energy. The constraints in
Equ. (9) restrict the amount of flow on a particular link (port)
(i, j). The last constraint in Equ. (10) shows the sum of all
flows between one OD(Origin-Destination) pairk must be
equal to the given demanddk. To solve this LP problem,
GLPK [18] (GNU Linear Programming Kit) was used, which
is a free software package intended for solving large-scale
linear programming (LP), mixed integer programming (MIP),
and other related problems.

In Fig. 4, BA topology consumes less energy thanER
topology since the latter increases more rapidly than the
former. This result is well matched to the one that we
predicted in Fig. 2.

2) Simulation II: In this simulation, we observe how the
energy consumption levels ofBA and ER topologies vary
when the energy consumption model [19] is applied for both
topologies.

The authors [19] introduced a metric called the energy
proportionality index (EPI) that quantifies the proportionality
between the consumed energy and the traffic load on a net-
work device. This proportionality behavior of network device
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Fig. 3. Top figures on the left side show the degree distributions of ER topology (N=1000,m=4) at different times of being rewired (e.g.,(a): T = 103, . . .
(f): T = 106). The rewiring process was conducted on ER topologies based on our previous paper[16]. The below two figures show the energy consumption
levels (E) of the minimum spanning trees (MST) of the counterpart topologies and their entropies (S). Lastly, the right figure plots the relation between the
energy consumption levels (E) and the entropies (S) after individual elements are normalized by its respective maximum element. Each result is averaged
over 10 realizations.

is required to make future networks more energy efficient
[20] [21]. The energy proportionality index (EPI) is defined
as follows,

EPI(%) = (1− I) ∗ 100 (11)

whereI represents the energy consumption level of a device
when it is under idle (no traffic) condition. With 100%EPI,
the device consumes energy perfectly proportional to traffic
load on the device. On the other hand, a device with 0%EPI
consumes constant energy regardless of the amount of traffic
passing through the device.

With the same simulation setup described previously, we
calculate the total energy consumption levels ofBA andER
topologies using Equ. (12).

TCE =
E∑

i

[(1− I) ∗ ui + I] (12)

whereTCE stands for total consumed energy,E is the total
number of links, andui represents the utilization of linki.

Fig. 5 plots the energy saving rate ofBA comparing to
ER topology as EPIs of individual devices in both topologies
increase. WhenEPI is equal to zero, the energy consumption
levels of bothBA and ER topologies are same since both
topologies have same number of links. Remember that a link
consumes constant amount of energy regardless of traffic load
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Fig. 5. Energy saving rate of BA comparing to ER topologies asEPI varies.
R represents the percentage of the activated OD pairs. The inset figure shows
the percentage of empty links (links with no traffic load) as the number of
activated OD pairs increases. The inset figure shows the number of empty
links (link with no traffic load) as the number of activated OD pairs increases
in both BA and ER topologies. Each result is averaged over 15 realizations.

whenEPI is equal to zero (I=1). As the energy saving rate
of BA to ER increases asEPI increases. It implies that
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BA topology can benefit more from the network devices that
consume energy proportional to traffic load thanER topology
does. In addition, the differences among the energy saving
rates at differentR values suddenly shrink atEPI=100%
since the number of empty links (link with no traffic load),
which is related with the value ofR (Refer to the inset figure),
does not affect on the energy consumption level any more.

IV. CONCLUSIONS

In the classical thermodynamics and statistical mechanics,
entropy has been used to describe potential energy level of
a system. By adopting the idea of entropy, we developed an
entropy-based metric that measures the energy consumption
level of a telecommunication network. We demonstrated that
the relation between energy consumption level and entropy of
a network shows a positive linear relation, and the linearity
relation was verified with intensive simulation studies.

Initially, we showed thatBA is a more energy efficient
topology thanER by analyzing the entropy values of both
topologies. To confirm the observation, we investigated the
energy consumption levels ofBA and ER topologies with
realistic simulation setups. Moreover, we also demonstrated
that the proposed entropy metric can predict the energy
consumption levels of various types of networks also.

For the understanding of energy consumption behavior of
a network, the proposed entropy-based metric mainly focused
on the topological structure of a network without considering
several important factors such as traffic demand matrix. We
leave the inclusion of traffic demands as a parameter into the
entropy-based metric for our future works.
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