
Non bandwidth-intrusive video streaming over TCP
Hiroyuki Hisamatsu

Department of Computer Science
Osaka Electro–Communication University

1130-70 Kiyotaki, Shijonawate
Osaka 575–0063, Japan

Email: hisamatu@isc.osakac.ac.jp

Go Hasegawa
Cybermedia Center, Osaka University

1-32 Machikaneyama, Toyonaka
Osaka 560–0043, Japan

Email: hasegawa@cmc.osaka-u.ac.jp

Masayuki Murata
Graduate school of Information Science

and Technology, Osaka University
1-5 Yamadaoka, Suita

Osaka 565–0871, Japan
Email: murata@ist.osaka-u.ac.jp

Abstract—Video streaming services using TCP as a transport
layer protocol—represented by YouTube—are becoming increas-
ingly popular and, accordingly, have come to account for a
significant portion of Internet traffic. TCP is greedy; that is,
it tries to exhaust the entire bandwidth. Thus, video streaming
over TCP tends to unnecessarily take bandwidth from competing
traffic.

In this paper, we first investigate the data transfer mechanisms
of the current video streaming services using TCP and show that
they perform data transfer at much higher rates than the video
playback rate. We then propose a new transfer mechanism for
video streaming over TCP, one that controls the data transfer
rate based on the network congestion level and the amount
of buffered video data at the receiver. Simulation results show
that the proposed mechanism has two characteristics lacked by
current video streaming over TCP, specifically a low frequency of
buffer underflow at the receiver and a lack of excessive bandwidth
“stealing” from competing traffic.

Index Terms—TCP (Transmission Control Protocol), Conges-
tion Control, Video Streaming, YouTube

I. INTRODUCTION

Video streaming services have gained popularity in recent
years, supported by a rapid increase in network bandwidth.
A good number of video streaming services utilize UDP as a
transport layer protocol. Also, such leading video players as
Windows Media Player and Real Player utilize UDP if it is
available. UDP-based applications are able to adjust their data
transfer rate since UDP does not conduct congestion control
and does not retransmit packets discarded in the network.
However, because UDP-based communications are often in-
tercepted by firewalls and/or NATs, there are environments
where UDP-based video streaming services cannot be offered.
TCP, on the other hand, can easily bypass firewalls and NATs.
For this reason, most of the current video streaming services,
such as YouTube [1] and nicovideo [2], support TCP-based
streaming.

However, it has been pointed out that TCP is not suitable for
video streaming because of its congestion control [3]. When
TCP detects a packet loss, it markedly shrinks the congestion
window size. Consequently, the TCP transfer rate decreases
greatly. Since constant-rate data transmission is desirable for
video streaming, TCP is generally not suitable for that service.
Another issue with TCP is that when the network bandwidth is
larger than the video playback rate, TCP, because of its greedy,
tries to exhaust the entire bandwidth. Thus, video streaming
over TCP has the problem that TCP increases its transfer rate

regardless of the video playback rate and unnecessarily takes
the bandwidth from other competing traffic.

Much research has been conducted on a new transport layer
protocols for video streaming [4]–[9]. For instance, proposed
in [4]–[6] are the transport layer protocols that, relative to
TCP, do not rapidly increase/decrease the congestion window
size, yet remain TCP-friendly. However, these protocols do
not avoid the above-mentioned issue of having too much
throughput relative to the video playback rate.

Moreover, in [7]–[9], the authors propose TCP modifica-
tions to keep the data transfer rate as requested from upper-
layer applications. For instance, in [8], [9], the authors propose
mechanisms to stabilize TCP throughput by concealing packet
loss from TCP by installing a Forward Error Correction (FEC)
layer in the lower part of a transport layer at both the sender
and receiver. However, these mechanisms transmit excessive
traffic to the network due to the redundancy of FEC.

Also presented are application layer protocols for me-
dia streaming [10], [11]. Real Time Streaming Protocol
(RTSP) [10] is used by the Windows Media Player and Real
Player. Real Time Messaging Protocol (RTMP [11]) is a
proprietary protocol of Adobe Systems. Currently, both RTSP
and RTMP only offers operations for viewing and listening
to streamed media. They request data transfer to their lower
protocols and do not conduct transfer control. Thus, they do
not resolve the problem of streaming traffic unnecessarily
taking away bandwidth from competing traffic.

In this paper, we propose an application-based data transfer
mechanism that transfers video data at the minimum required
rate for video streaming over TCP. First, we investigate the
characteristics of the data transfer mechanisms of current video
streaming services using TCP and show that they perform
data transfer at a much higher rate than the video playback
rate. We then propose a new data transfer mechanism that
resolves this issue. Our proposed mechanism acquires TCP
state variables to estimate the level of network congestion. It
then controls data transfer at an application layer according
to the network congestion level and the buffered video data
size at the receiver. By simulation experiments, we show
that the proposed mechanism (1) decreases the frequency of
buffer underflow at the receiver and (2) avoids excessively
taking bandwidth from competing traffic. Note that the current
mechanism of TCP video streaming fails to achieve either.

The reminder of this paper is organized as follows. First, in

2011 Eighth International Conference on Information Technology: New Generations

978-0-7695-4367-3/11 $26.00 © 2011 IEEE

DOI 10.1109/ITNG.2011.21

78

Section II, we investigate the characteristics of the data transfer
mechanisms of current video streaming services using TCP. In
Section III, we explain our data transfer control mechanism.
We then evaluate the performance of our proposed mechanism
in Section IV. Finally, in Section V, we present a conclusion
and discuss future works.

II. INVESTIGATION OF CURRENT VIDEO STREAMING
MECHANISMS USING TCP

In this section, we investigate the currently utilized video
streaming services using TCP and clarify the features and
problems of their data transfer mechanisms. Specifically, we
examined YouTube and nicovideo. Due to space limitations,
we only explain the investigation results of YouTube. Note
that the transfer mechanism of nicovideo has the same kind
of problem as that of YouTube.

In the investigation, we observed data transfer in video
streaming at a packet level using tcpdump at a receiver.
The receiver is located at Osaka Electro-Communication Uni-
versity in Shijonawate-shi, Osaka, Japan. We acquired video
sequences from servers thought to be in Japan (although
YouTube dose not disclose the location of their servers, we
conclude that the servers investigated here are located in Japan
from the results of traceroute commands). We measured
10 video sequences on YouTube, and ran five measurements
for each video sequence. The playback time of the YouTube
video sequences was 10 [m] and the quality was 1080p (the
playback rate was about 3.60 [Mbit/s]).

We disabled the TCP delayed ACK option since we wanted
to observe typical TCP behaviors. Moreover, we configured
the advertising window size, which is the buffer size of the
receiver TCP, to 224 [KByte], a size sufficiently large to avoid
throughput limitations.

From the observation results, we found that YouTube uti-
lizes two mechanisms for video data transfer. Moreover, by
conducting five time experiments against the same video
sequence from the same server, we could not determine the
detailed conditions for selecting one of those two mechanisms.
We found that the data transfer behavior of YouTube is
independent of available bandwidth between the server and the
receiver. We confirmed these characteristics by experiments
under various bandwidth limitations on the link connected
to the receiver. We refer to these two mechanisms below as
mechanism(i) and mechanism(ii), respectively.

Mechanism(i) has two phases: a first and a second phase.
Figure 1(a)(b) shows the receiving timing of data packets in the
first phase, and in the second phase, respectively. The y axis
of the graphs represents the byte-count sequence number (mod
100,000) of received TCP data packets. The x axis represents
the time, which is zero when the first data packet is received.

In mechanism(i), a server transmits roughly 80 [MByte] data
in the first phase, whereupon it interrupts data transfer. The
average transfer rate in the first phase is about 43.4 [Mbit/s],
which is excessively high compared to the video playback rate.
Some of the short interruptions in packet transmission apparent
in Fig. 1(a) are not caused by packet losses; instead, the server

 0

 20000

 40000

 60000

 80000

 100000

 0 0.5 1 1.5 2

S
e

q
u

e
n

c
e

 N
u

m
b

e
r

Time [s]

(a) First phase

 0

 20000

 40000

 60000

 80000

 100000

 20 21 22 23 24 25

S
e

q
u

e
n

c
e

 N
u

m
b

e
r

Time [s]

(b) Second phase

Fig. 1. YouTube data packet receiving: mechanism(i)

may stop packet generation for some reasons. We believe that
Youtube conducts such a greedy, high-rate data transmission
at the beginning of the transfer to buffer sufficient amount of
video data at the receiver.

Several seconds after the first phase has finished, YouTube
shifts to the second phase. In the second phase, YouTube
transmits data and then switches over to discontinuous data
spurts that continue until finishing the data transfer. The server
sends between 32 [KByte] and 128 [KByte] of data within one
round-trip time duration. Then, once the server sends a total
of about 2.20 [MByte] data, it interrupts the data transfer for
several seconds. The average transmission rate at the time of
data transfer in the second phase was about 6.13 [Mbit/s],
which is also larger than the video playback rate.

With regards to mechanism(i), we find that YouTube trans-
mits data at a higher rate than the video playback rate in both
the first and the second phase. The reason for the decreased
transfer rate in the second phase, we presume, is that the
receiver is thought to have buffered enough video data in
the first phase. Moreover, throughout experiments at different
bandwidth limitations, we found that the data transfer size
and rate are largely independent of the network bandwidth.
We believe that the server dose not “care” the network

79

status but rather the such differences in transfer sizes/rates
are attributable to server conditions, such as CPU load, and
number of TCP connections to connect.

Next, we explain mechanism(ii) of YouTube. In mecha-
nism(ii) of Youtube, unlike in mechanism(i) of Youtube, we
found that there is no special control. The server sends video
data at an extremely high rate from the beginning to the
end of the video sequence. The average data transfer rate
is about 45.1 [Mbit/s], which is much higher than the video
playback rate. From these observations, it is apparent that the
data transfer mechanism for transmits video data at a rate far
beyond what is necessary.

We found that YouTube transfers video data at extremely
high rate relative to the video playback rate. This is good from
the viewpoint of enabling continuous playback. However, it is
a serious problem from the viewpoint of needless competition
with other applications.

It is more desirable to transmit a small chunk of data for
every interval. However, optimal chunk size and chunk trans-
mitting interval are strongly dependent on the network. Video
streaming with such fixed parameters may overflow/underflow
network capacity and produce failures in video playback at
the receiver.

III. NON BANDWIDTH INTRUSIVE VIDEO STREAMING
OVER TCP

In this section, we propose a new data transfer mechanism
for video streaming over TCP that transfers video data at the
minimum required rate and dose not unnecessarily deprive
the other competing traffic of bandwidth. It does this by
transmitting a sufficient amount of data such that buffer
underflows do not occur at the receiver.

A. Outline of Proposal Mechanism

The proposed mechanism is assumed to be installed as an
application program at the sender and receiver. Moreover, the
sender-side application requires the mechanism to acquire TCP
state variables from a TCP connection transmitting video data.
It is easily possible to acquire TCP state variables, for instance
in the case of Linux, by using web 100 kernel [12]. Note
that we do not modify any TCP operations, including the
congestion control mechanism.

The receiver-side application notifies the sender-side appli-
cation of the amount of buffered video data (bdst) per one
round-trip time (RTT) using the TCP connection for data
transfer. The sender-side application, while considering the
network congestion level and buffered video data size at the
receiver, calculates the application-level window size and the
amount of video data to send in the next RTT to avoid buffer
underflow and playback interruption. Control of the proposed
mechanism operates in the unit of one RTT.

B. TCP State Variables to Acquire

In the proposed mechanism, the sender-side application
acquires the TCP state variables to estimate the network
congestion level. Specifically, the sender application acquires
the current congestion window size (cwnd), smoothed RTT

(srtt), retransmission timer value (RTO), slow-start threshold
(ssthreh), and maximum segment size (MSS). These variables
are obtained at every RTT. In addition, when a packet loss
is detected at TCP, the sender-side application is immediately
informed of the occurrence of the packet loss and its detection
method: reception of three duplicate ACKs (TD-ACKs) and
occurrence of the timeout (TO).

C. Congestion Level Estimation

We estimate the number of packets queued throughout
the network as an index of the network congestion level.
Henceforth, we use the network congestion level in the sense
of the number of packets queued over the entire network.
Based on the mechanism in TCP Vegas [13], the network
congestion level cl(i) in ith RTT is calculated as

cl(i) =
baseRTT (i − 1)

MSS
×(

apwnd(i − 1)
baseRTT (i − 1)

− apwnd(i − 1)
RTT (i − 1)

)
where apwnd(i), baseRTT (i), RTT (i) and MSS are the
application-level window size of the proposed mechanism, the
minimum srtt, the srtt, and the maximum TCP segment size,
respectively.

The proposed mechanism determines what packet loss oc-
curs in what congestion level from the packet loss detec-
tion method and the congestion level when the packet loss
occurred. When the sender-side application is notified of an
occurrence of a packet loss by TCP, it calculates the current
number of packets queued throughout the network cl, and
records cl and the packet loss detection method. From cls
and the detection methods that were recorded, the sender-side
application calculates dupmin and TOmin, with dupmin and
TOmin being the lower bound of 95% confidence interval
of the congestion level when packet losses are detected by
TD-ACKs, and that when packet losses are detected by TO,
respectively. We calculate dupmin and TOmin from cl of the
last α [h].

D. Target Value of Video Data to be Buffered

We first introduce bret(i), bdup(i) and bTO. Here, bret(i),
bdup(i) and bTO(i) are the amount of video data to be buffered
to avoid buffer underflow when one packet loss is detected by
TD-ACKs, that when two or more packet losses are detected
by TD-ACKs, and that when packet losses are detected by TO,
respectively.

bret(i) is the amount of video data buffered at the receiver
to avoid buffer underflow when a packet loss occurs, it is
detected by TD-ACKs, and no additional packet loss occurs
until TCP cwnd recovers to catch up with the video rate.
Using the current TCP congestion window size cwnd(i) and
the video playback rate rate, bret(i) in ith RTT is given by

bret(i) = (3 + max (nwnd(i − 1) − bcwnd(i − 1)/2c), 0))

× RTTmax(i − 1) · rate − MSS

nwnd(i−1)∑
k=bcwnd(i−1)/2c

k

80

where nwnd(i) is the congestion window size to achieve the
video playback rate. nwnd(i) is given by

nwnd(i) = RTTmax(i) · rate/MSS

RTTmax(i) is given by

RTTmax(i) = RTT (i) + γRTTstd(i) (1)

where RTT (i) is the exponential weighted moving average
of the RTT with weight β, and RTTstd(i) is the standard
deviation of the RTT. The reason for not using the current
RTT is to take account of RTT fluctuation.

bdup(i) is the amount of video data buffered at the receiver
to avoid the buffer underflow when a packet loss occurs, it
is detected by TD-ACKs, and additional packet losses occurs
until cwnd recovers to nwnd(i). Taking into account the worst
case, we consider a situation whereby the window size is
reduced to one by occurring two or more packet losses. bdup(i)
is given by

bdup(i) = (3 + nwnd(i − 1) − 1)RTTmax(i − 1) · rate

− MSS

nwnd(i−1)∑
k=1

k.

bTO(i) is the amount of video data buffered at the receiver
to avoid buffer underflow when packet losses are detected by
TO. bTO(i) is given by

bTO(i) =
{

RTO(i − 1) +
(
4 + blog2ssthresh(i − 1)c

+ nwnd(i − 1) − 2blog2ssthresh(i−1)c)RTTmax(i − 1)
}

rate

−
(blog2ssthresh(i−1)c∑

k=0

2k +
nwnd(i−1)∑

k=2blog2ssthresh(i−1)c

k
)
MSS.

where RTO(i) is the retransmission timer value and ssthresh
is the threshold value for TCP slow-start.

A sender-side application calculates the amount of video
data should be buffered to avoid receiver-side buffer underflow.
In ith RTT, the amount of data that a receiver-side application
should buffer in order to play back video continuously is given
by the following equation.

btgt(i) =



bdup(i)−bret(i)
dupmin

cl(i) + bret

(0 ≤ cl(i) < dupmin)
bT O(i)−bdup(i)
TOmin−dupmin

(cl(i) − dupmin) + bdup(i)

(dupmin ≤ cl(i) < TOmin)

bTO (TOmin ≤ cl(i))
(2)

When cl(i) satisfies 0 ≤ cl(i) < dupmin, we assume that
network packet losses do not happen very often. In this case,
in order to avoid buffer underflow, the proposed mechanism
buffers video data in preparation for a packet loss. As cl(i)
increases, the network is considered to be in an increasingly
dangerous state; packet losses more serious than a single
packet loss are considered likely to occur. Here, we simply

increase the amount of video data to be buffered linearly to
cl(i).

When cl(i) satisfies dupmin ≤ cl(i) < TOmin, the network
is considered to be in a congestion level at which packet loss
detection by TD-ACKs may occur. In this case, the proposed
mechanism buffers video data in preparation for a packet loss
detected by TD-ACKs and additional packet losses until cwnd
recovers to nwnd(i). Moreover, the amount of video data to
be buffered increases linearly to cl(i), similarly to the case in
which 0 ≤ cl(i) < dupmin is satisfied.

When cl(i) satisfies TOmin ≤ cl(i), we assume that the
network is at a serious congestion level where a TO may
happen. Here, we believe that enough video data should be
buffered to avoid a buffer underflow even should a TO occur.
However, we do not target a network with a congestion status
so severe that packet losses occur repeatedly after a TO until
cwnd recovers nwnd(i). Here, we resign ourselves to the
observation that video streaming of the video playback rate
within such a network simply cannot be performed at a rate
specified by the application.

Since we cannot estimate the network congestion level until
the first packet loss occurs, the target value btgt(i) is set equal
to bTO(i) until the first packet loss occurs. We also configure
the initial value of dupmin and TOmin to be sufficiently large.

E. Controlling Transfer Rate

The proposed mechanism controls data transfer in a sender-
side application. This is performed by adjusting the amount
of video data apwnd(i) passed from an application to TCP in
one RTT. By using bdst(i) and Eqs. (1)(2), apwnd(i) is given
by

apwnd(i) = min (max(RTTmax(i − 1) · rate + btgt(i)
− bdst(i), MSS), 2apwnd(i − 1)) .

The proposed mechanism determines the amount of data
passed to TCP in one RTT based on the difference between
btgt(i), the target value of video data to be buffered, and
bdst(i), the amount of buffered video data in the receiver. The
minimum of apwnd(i) accords with TCP minimum window
size. It also acts to prevent resetting of the TCP congestion
window. Furthermore, in order to keep from increasing the
transfer rate too rapidly, the maximum value is set at the twice
of apwnd(i − 1), which is based on TCP slow-start phase.

IV. PERFORMANCE EVALUATION BY SIMULATION
EXPERIMENTS

Using ns-2 simulator, we ran extensive simulation exper-
iments at the packet level to confirm the effectiveness of
our proposed mechanism. Figure 2 shows the network model
for the experiments, where five TCP connections for video
streaming, TCP connections for FTP, and one UDP flow share
the single bottleneck link having a capacity of 100 [Mbit/s].
The arrival of UDP packets follows a Poisson process, with an
average arrival rate of 10 [Mbit/s]. For comparison purposes,
we utilized two kinds of YouTube-like transfer mechanisms, to
which we refer below as YouTube-like(i) and YouTube-like(ii).

81

Video Streaming

UDP, 10[Mbit/s]
FTP

100[Mbit/s], 5[ms]
100[Mbit/s], 20[ms]

100[Mbit/
s], 5[ms]

Fig. 2: Simulation model

Both of YouTube-like(i) and YouTube-like(ii) operate based
on measurement results like those described in Section II.
YouTube-like(i) has two phases such as in mechanism(i) in
Subsection II. In the first phase, 80.0 [MByte] of video data
is transferred. Then, YouTube-like(i) stops sending for 2.0 [s],
after which it enters the second phase. It then sends video
data in on-off fashion, where transmission of 2.2 [MByte]
data (it is divided into chunks of 128 [KByte] and one chunk
is transmitted in one RTT) followed by a 1.5 [s] pause are
repeated. In contrast, YouTube-like(ii) transfers video data
without any control in an application layer. In simulation
experiments, we use the following parameters for the proposed
mechanism: α = 1 [h], β = 0.2, and γ = 1.

In simulation experiments, the UDP flow and the TCP
connection(s) for FTP begin data transfer when a simulation
starts to create background traffic and competing traffic in the
network. At 30 [s], TCP video streaming connections start
data transfer. The playout delay of video streaming at the
receiver is 5 [s] and the packet size is 1500 [Byte]. The
simulation finishes when the transfer of all video data is
completed. We use the simulation result (excluding the first
30 [s] of the simulation time) to calculate such performance
metrics as average throughput, average packet loss probability
and average underflow time experienced by the receiver-
side application. The video sequence has 270 [MByte], the
playback rate is 3.6 [Mbit/s], and the playback time is 600 [s],
which is equivalent to YouTube’s 1080p video.

Figure 3 exhibits simulation results as a function of the
number of TCP connections. Figures 3(a)–(d) show (a) the
average throughput of TCP connections for video stream-
ing, (b) the average total buffer underflow time per video
streaming connection, (c) the average packet loss probability
in the network during the experiments, and (d) the average
total throughput of TCP connections for FTP, respectively. In
Fig. 3(a), we see that the YouTube-like(ii) transfer rate is much
higher than the video playback rate, while the transfer rates
under the proposed mechanism and under YouTube-like(i) are
almost equal rate to the video playback rate. Note that it is
not necessary to transfer video data at a much higher rate than
the video playback rate (as in the case with YouTube-like(ii))
to maintain continuous video playback.

Figure 3(b) shows that buffer underflow does not occur
often under the proposed mechanism and YouTube-like(ii).
On the other hand, under YouTube-like(i), we found that as
the number of TCP connections for FTP increases, the buffer
underflow time becomes large. This is because YouTube-
like(i) controls video data transfer independently of network
status. In this case, YouTube-like(i) dose not obtain sufficient
throughput and so buffer underflow occurs when YouTube-
like(i) competes with other TCP connections.

We next focus on the packet loss probability in the network.
Figure 3(c) shows that the packet loss probability of the
proposed mechanism is lower than that of YouTube-like(ii).
This is because YouTube-like(ii) performs video data transfer
without any controls. Thus TCP tries to exhaust the entire
bandwidth due to its greedy nature. Therefore, the network
congestion level of YouTube-like(ii) is higher than that of
the proposed mechanism, which controls the data transfer
rate in accordance with congestion level and video playback
status at the receiver. Conversely, the packet loss probability
of the proposed mechanism is higher than that of YouTube-
like(i). This can be explained as follows. When the network
congestion level becomes high, the proposed mechanism in-
creases the target value for video data to be buffered at
the receiver. In other words, the propose mechanism acts to
increase the data transfer rate. On the other hand and as men-
tioned above, YouTube-like(i) transmits packets independently
of the network congestion status. Consequently, the packet
loss probability of the proposed mechanism is higher than
that of YouTube-like(i). Note that YouTube-like(i) experiences
buffer underflow for long durations, especially when network
congestion is serious, as a price to pay for low packet loss
probability.

Finally, we focus on the total throughput of background
traffic. From Fig. 3(d), we see that the total throughput of
background traffic when using the proposed mechanism is
higher than that when using YouTube-like(ii). This is because
YouTube-like(ii) transfers video data at a high rate regardless
of the video playback rate. As the result, the video streaming
connections steal the bandwidth from background traffic. On
the other hand, the total throughput of background traffic
when using YouTube-like(i) is higher than that when using
the proposed mechanism. As explained earlier, the proposed
method increases the number of packets sent to the network
when network congestion gets worse. Thus, the video transfer
rate becomes large, driving down the throughput of competing
traffic. Throughout the simulation experiments, we find that
the proposed mechanism is effective in (1) suppressing the
occurrence of the buffer underflow (2) avoiding unnecessarily
diversion of bandwidth background traffic. Note that the
current video streaming mechanisms do not have these two
characteristics.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a non bandwidth-intrusive
video streaming mechanism and have shown its effectiveness
by simulation. First, we have investigated data transfer mech-

82

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 1 2 3 4 5

A
ve

ra
ge

 th
ro

ug
hp

ut
 [M

bi
t/s

]

of background TCP connections

proposal
YouTube-like(i)
YouTube-like(ii)

(a) Average throughput of TCP for video streaming

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5

T
ot

al
 b

uf
fe

r
un

de
rf

lo
w

 ti
m

e
[m

s]

of background TCP connections

proposal
YouTube-like(i)
YouTube-like(ii)

(b) Average total buffer underflow time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty
 [%

]

of background TCP connections

proposal
YouTube-like(i)
YouTube-like(ii)

(c) Average packet loss probability

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

A
ve

ra
ge

 th
ro

ug
hp

ut
 [M

bi
t/s

]

of background TCP connections

proposal
YouTube-like(i)
YouTube-like(ii)

(d) Average total throughput of TCP for FTP

Fig. 3: Simulation results

anisms of the current video streaming services using TCP.
Our investigation has shown that video streaming over TCP is
currently performed at a much higher rate than the video play-
back rate. We have proposed a new data transfer mechanism
to resolve this problem. The proposed mechanism transfers
video data without unnecessarily taking the bandwidth from
competing traffic. In simulation experiments, we have shown
that proposed mechanism suppresses the occurrence of buffer
underflow and dose not unnecessarily divert bandwidth from
background traffic.

As future works, it is important to evaluate the performance
of the proposed mechanism in a real network. We also plan to
extend the proposed mechanism so that it can be operate solely
by a sender-side application. Moreover, it would be interesting
to consider what type of data transfer control is preferred for
the network, where an increase in transfer rates for continuous
video playback acts to worsens the network congestion and
exacerbates video playback interruptions.

ACKNOWLEDGMENT

This work was partly supported by Grant-in-Aid for Scientic
Research (A) 21240004 of the Japan Society for the Promotion
of Science (JSPS) in Japan.

REFERENCES

[1] “YouTube.” available at http://www.youtube.com/.
[2] “nicovideo.” available at http://www.nicovideo.jp/.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proceedings of ACM
SIGCOMM 2000, pp. 43–56, Aug. 2000.

[4] L. Cai, X. Shen, J. Pan, and J. Mark, “Performance analysis of TCP-
friendly AIMD algorithms for multimedia applications,” IEEE/ACM
Transactions on Networking, pp. 339–355, apr 2005.

[5] F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end TCP-friendly
streaming protocol and bit allocation for scalable video over wireless
Internet,” IEEE Journal on Selected Areas in Communication, pp. 777–
790, may 2004.

[6] S. L. Bangolae, A. P. Jayasumana, and V. Chandrasekar, “TCP-friendly
congestion control mechanism for an udp-based high speed radar ap-
plication and characterization of fairness,” in Proceedings of the The
8th International Conference on Communication Systems, pp. 164–168,
2002.

[7] Y. Zhu, A. Velayutham, O. Oladeji, and R. Sivakumar, “Enhancing TCP
for networks with guaranteed bandwidth services,” ACM Computer Net-
works: The International Journal of Computer and Telecommunications
Networking, vol. 51, pp. 2788–2804, July 2007.

[8] T. Tsugawa, N. Fujita, T. Hama, H. Shimonishi, and T. Murase,
“TCP-AFEC: An adaptive FEC code control for end-to-end bandwidth
guarantee,” in Proceedings of 16th International Packet Video Workshop
(PV 2007), pp. 294–301, 2007.

[9] B. Libæk and O. Kure, “Protecting scalable video flows from congestion
loss,” in Proceedings of the 2009 Fifth International Conference on
Networking and Services, pp. 228–234, 2009.

[10] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(RTSP),” Request for Comments (RFC) 2326, Apr. 1998.

[11] “Real-time messaging protocol (RTMP) specification.” available at http:
//www.adobe.com/devnet/rtmp.html.

[12] “The web100 project.” available at http://www.web100.org/.
[13] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New

techniques for congestion detection and avoidance,” in Proceedings of
ACM SIGCOMM ’94, pp. 24–35, Oct. 1994.

83

