
Centralized and distributed heuristic algorithms
for application-level traffic routing

Kazuhito MATSUDA∗, Go HASEGAWA∗, Satoshi KAMEI† and Masayuki MURATA∗
∗Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Email: {k-matuda, hasegawa, murata}@ist.osaka-u.ac.jp

†NTT Service Integration Laboratories, 3-9-11 Midori-cho, Musashino, Tokyo 180-8585, Japan
Email: kamei.satoshi@lab.ntt.co.jp

Abstract—Recent studies have revealed that the adoption of
application-level routing that chooses an end-to-end traffic route
relaying other end-hosts can improve certain user-perceived
performance factors. However, selfish route selection performed
by each application user can lead to a decrease in the route
performance due to route overlaps, as well as an increase in
the inter-ISP transit cost as a result of utilizing more transit
links than in the case of IP routing. In the present paper, we
strictly define an optimization problem for selecting application-
level traffic routes with the aim to improve end-to-end network
performance and reduce transit cost. We then propose central-
ized and distributed heuristic algorithms based on simulated
annealing in order to obtain near-optimal solutions to the
problem. We evaluate the performance of the proposed method by
assuming that the PlanetLab nodes utilize application-level traffic
routing. We show that application-level traffic routing with the
proposed algorithms can result in a considerable improvement
of network performance. In particular, in the case of using
the available bandwidth as the routing metric, the end-to-end
network performance can be improved by 87% on average.

Index Terms—network optimization, overlay network, routing,
inter-ISP transit cost, simulated annealing

I. INTRODUCTION

Application-level traffic routing where end-to-end under-
layer routes are regarded as application-level virtual links,
as shown in Fig. 1, has recently received much attention.
Recent studies have revealed that such routing can improve
user-perceived performance factors such as end-to-end latency,
available bandwidth and packet loss ratio [1-4]. However,
selfish route selection performed by each application user to
improve their own performance can lead to a decrease in
the route performance due to route overlaps. For example, in
[5], a number of overlay networks that are not operated in a
coordinated manner cause oscillations in route selection due to
the concentration of traffic at certain links. Furthermore, route
selection aimed at improving only user-perceived performance
can inflate the monetary cost incurred by Internet Service
Providers (ISPs) as a consequence of increasing the number
of transit links along the route, where monetary cost is
determined according to the amount of traffic traversing the
links (we refer to monetary cost as transit cost in this paper)
[6]. In the rest of this paper, we refer to end-hosts, which can
be senders, relay hosts and destinations, as AL nodes.

In [7], we demonstrated that the number of transit links tra-
versed by user traffic routed by application-level traffic routing
could be controlled by using end-to-end network performance
values as routing metrics. The results showed the possibility of
reducing the transit cost generated by application-level traffic
routing. However, in [7], we did not evaluate the influence of
route overlaps.

When end users utilize application-level routing in a coor-
dinated manner, the route selection process can be controlled

considering the routes utilized by other AL nodes. In general,
there are two candidate of coordinated manner for routing.
One is a centralized algorithm where one supernode gathers
all information needed for route calculation and communicates
the appropriate route to each AL node; the other method is
a distributed algorithm where each AL node calculates each
route used by that node. Both of them have advantages and
disadvantages, and the more appropriate one of them should
be chosen according to the target situation.

In this paper, with the aim to improve end-to-end network
performance, we focus on application-level traffic routing
operated in a coordinated manner by all AL nodes. First,
we formulate the application-level traffic routing and strictly
define an optimization problem for selecting application-level
traffic routes with various route selection metrics. We then
propose centralized and distributed heuristic algorithms that
produce near-optimal solutions for the optimization problem.
We propose two different algorithms to ensure that the require-
ments in a wide range of situations are met. For example, in the
case of the centralized algorithm, we can imagine a situation
where an Application Service Provider (ASP) controlling a
supernode communicates the selected routes to end users.
On the other hand, in the case of the distributed algorithm,
we can imagine a situation where AL nodes are controlled
independently by ISPs and the routes are communicated to
each ISPs’ customers. We evaluate the proposed algorithms
by assuming that the PlanetLab nodes utilize application-level
routing by using the end-to-end measurement results of the
network performance value. First, we evaluate the differences
between the network performance achieved with the optimal
solution and that achieved with the proposed centralized
algorithm to confirm the effectiveness of the proposed heuristic
algorithms. After that, we show the evaluation results for the
network performance and confirm that the performance can be
substantially improved by application-level routing with the
proposed algorithms.

II. APPLICATION-LEVEL ROUTE OPTIMIZATION PROBLEM

In this section, we begin by explaining the network model
assumed in this paper. We then formulate the application-
level routing and define the optimization problem for selecting
application-level routes.

A. Network model
We assume a network model as depicted in Fig. 2. The

underlay IP network is constructed from a number of IP-level
routers, each of which is located at one of the AS. There
is at most one link between each IP-level router pair. IP-level
routers located at the edge of an AS connect to IP-level routers
located at the edge of one or more ASes by transit links or

!"#$%&'(")*

+&),-.,"-'(")*

Fig. 1. Application-level routing

Fig. 2. Network model

peering links. Note that a transit cost is incurred when traffic
traverses transit links. We ignore the hierarchical AS-level
topology since we focus on the total amount of the transit
cost for all the traffic in the network. Application-level (AL)
nodes that utilize AL routing reside on end-hosts connected
to IP-level routers. The AL nodes are connected to each other
by AL links, which constitute the AL network. AL routing is
performed on the AL network and determines the AL network-
level routes (AL routes) between AL node pairs that demand
traffic.

B. Optimization problem
First, we formulate the IP routing in an underlay IP network.

Here, N represents the number of IP-level routers and M
represents the number of links in the underlay network. We
assign an identifier from 1 to M to each link.

Since there are N routers, we can consider (N − 1)N
IP-level routes between all router pairs, and we assign an
identifier from 1 to (N − 1)N to each pair of source and
destination routers. Note that the order of router pairs is
irrelevant to the following discussion. Next, we define the IP
routing matrix AIP as follows. The subscripts and superscripts
assign rows and columns in the order of 1, 2, . . . , (N − 1)N
and 1, 2, . . . ,M , respectively.

AIP =

 IP 1
1 · · · IP

(N−1)N
1

...
. . .

...
IP 1

M · · · IP
(N−1)N
M

 (1)

When link i exists on the route for router pair j, the value of
element IP j

i is one, otherwise zero.
Next, we consider the AL network constructed from AL

nodes and AL links. We assume that end-hosts can be
connected to all IP-level routers, which can be AL nodes.

Therefore, we can consider (N − 1)N AL links between all
possible AL node pairs. Note that we consider the direction
of AL links. We assign an identifier to each AL node pair,
which is the same as the corresponding IP-level router pair
whose source and destination routers connect to the source
and destination AL nodes. The AL network topology E can
be expressed as follows.

E = {eAL
1 , eAL

2 , . . . , eAL
(N−1)N} (2)

where the value of eAL
j is one when the source and destination

AL nodes exist and they are connected through the AL link
between AL node pair j.

Here, we describe an AL route for AL node pair j as rj =
(p1, p2, . . . , ph), which indicates that the AL route utilizes the
AL links between AL node pairs p1, p2, . . . , ph in this order.

The set of available AL routes for AL node pair j in the
AL network, ΓAL

j , is described as follows.

ΓAL
j = {(p1, p2, . . . , ph)|h ≥ 1, sp1 = sj , tph

= tj ,

tk = sk+1 (2 ≤ h, 1 ≤ k ≤ h− 1),

eAL
pk

= 1 (1 ≤ k ≤ h)} (3)

where sj and tj respectively represent the source and the
destination nodes of AL node pair j.

As for the AL links, we can consider (N − 1)N AL routes
and use the same identifiers for AL node pairs of AL routes
as for AL links. Note that in this paper we assume that the
AL routing determines the AL routes only for AL node pairs
that demand traffic. Here, we define the AL routing matrix as
follows.

AAL =

AL1

1 · · · AL
(N−1)N
1

...
. . .

...
AL1

(N−1)N · · · AL
(N−1)N
(N−1)N

 (4)

When the AL link between AL node pair i exists on the AL
route for AL node pair j, the value of element ALj

i is one,
otherwise zero. Note that the value of the element becomes
zero if node pair j does not demand traffic.

We divide traffic traversing the entire network into two
parts: traffic only carried by IP routing and traffic carried by
AL routing. We describe the traffic demands on router pairs
carried by IP routing as X IP = (xIP

1 xIP
2 · · ·xIP

(N−1)N) and
the traffic demands on AL node pairs carried by AL routing
as XAL = (xAL

1 xAL
2 · · ·xAL

(N−1)N). Here, xIP
j and xAL

j denote
the traffic demand corresponding to router pair j and AL node
pair j, respectively. Then, we can calculate the matrix Y ,
which represents the loads on the links between routers, as
follows.

Y = AIPX IP +AIPAALXAL (5)

We introduce a function fD, which calculates the laten-
cies of all AL links by using Y . Then, we can calcu-
late the latencies of all AL routes. The matrix DAL =
(dAL

1 dAL
2 · · · dAL

(N−1)N), where the latencies of the AL routes
are set in rows, can be described as follows. Note that each
element dAL

j represents the latency of the AL route between
AL node pair j.

DAL = fD(Y)AAL (6)

For the available bandwidth, we define a function fB ,
which calculates the available bandwidths for all AL routes

by using Y and AAL. Note that fB directly calculates the
available bandwidths for the AL routes, because the available
bandwidths are determined not by the sum of values of the
used AL links but by the value of the narrowest AL link.
Using fB , we can express BAL = (bAL

1 bAL
2 · · · bAL

(N−1)N) as
follows.

BAL = fB(Y, AAL) (7)

We assume that the transit cost of an AL route is determined
by the traffic load and the number of transit links on the
route. Based on that assumption, in the case of the transit cost,
CAL = (cAL

1 cAL
2 · · · cAL

(N−1)N) can be expressed as follows in
the same way as the latency.

CAL = fC(Y)AAL (8)

As mentioned above, the AL routing determines AL routes
only for AL node pairs that demand traffic. When we describe
the set of identifiers of AL node pairs that demand traffic as Θ,
the problem of minimizing the average of the latencies of the
AL routes between AL nodes that demand traffic is described
as follows, where the AL routes between AL nodes rj(j ∈ Θ)
are treated as variables.

minimize : (
∑

j∈Θ
dAL
j)/|Θ|

subject to : rj ∈ ΓAL
j (∀j|j ∈ Θ)

(9)

We can also describe the maximization problem for the
available bandwidth as follows.

maximize : (
∑

j∈Θ
bAL
j)/|Θ|

subject to : rj ∈ ΓAL
j (∀j|j ∈ Θ)

(10)

Similarly, the minimization problem for the transit cost can
be described as follows. Note that the targets of this problem
are not the AL routes but all the AL links.

minimize : (
∑(N−1)N

j=1
cALj)/((N − 1)N)

subject to : rj ∈ ΓAL
j (∀j|j ∈ Θ)

(11)

III. PROPOSED METHOD

In this section, we propose centralized and distributed
heuristic algorithms for obtaining near-optimal solutions to the
problem described in Section II. For this purpose, we utilize
a popular heuristic algorithm known as simulated annealing
(SA).

A. Centralized algorithm
We show the centralized algorithm utilizing SA in Algo-

rithm 1, and the definitions of symbols and functions used
in the algorithm are shown in Table I. The process of SA
progresses as it decides whether to change the current state to
its neighbor state. For the proposed algorithm, the state is the
set of AL routes selected for all AL node pairs that demand
traffic.

The parameters required for Algorithm 1 are the initial
state Sinit, the neighbor state generation function Neighbor(),
the cost function Cost(), the transition probability function
Probability(), the initial temperature Tinit and the cooling
schedule function Cooling(). We explain these parameters in
detail below.
Initial state

TABLE I
NOTATIONS FOR CENTRALIZED AND DISTRIBUTED SA ALGORITHMS

I iteration count of simulated annealing
T temperature of simulated annealing
S state of simulated annealing

Neighbor(S) function that returns a neighbor state of S
Cost(S) function that returns the cost of S

Random(x, y) function that returns a value between x and y
Probability(T, S, Stmp) function that returns the probability of

transition in the direction of reducing the cost
Cooling(T) function that returns the temperature

of the subsequent iteration
Update(S) function that updates the state

with information about other AL nodes
received until the present time

Neighbordsai (S) function that returns a neighbor state
of S, changing only the AL routes

related to AL node i
SendNeighbor(S) function that sends the state S

to neighbor AL nodes

Algorithm 1 Centralized algorithm
1: I ← 0, T ← Tinit, , S ← Sinit

2: while T > 0 do
3: Stmp ← Neighbor(S)
4: if Cost(S) ≥ Cost(Stmp) then
5: S ← Stmp

6: else
7: r ← Random(0, 1)
8: if r < Probability(T,Cost(S),Cost(Stmp)) then
9: S ← Stmp

10: end if
11: end if
12: I ← I + 1
13: T ← Cooling(T, I)
14: end while

In the initial state, all AL node pairs that demand traffic
select routes identical to that without AL routing; the selected
routes correspond to one-hop routes in the AL network,
because we believe the network performance of the routes
to be identical to the case without AL routing, which is the
network performance baseline for AL node pairs.
Neighbor state generation function

A neighbor state of state S is defined to be where some
of the AL routes are changed, and as a result the function
generates a state that is slightly different from S for SA
process.
Cost function

We use Eqs. (9)–(11) for the cost function.
Transition probability function

We utilize the general equation used for SA. The equation
is described as follows.

Probability(T, S, Stmp) = e−
Cost(Stmp)−Cost(S)

T (12)

where T , S and Stmp are the current temperature, the current
state and the neighbor state of the current state, respectively.
Initial temperature and cooling schedule function

In the general SA algorithm, the initial temperature must be
set sufficiently high to induce a transition from the current state
to its neighbor state regardless of the cost of the neighbor state
[8]. The actual value of the initial temperature should be set
according to the target situation. We use the following general
cooling schedule function for SA.

Cooling(T, I) = γT (0 < γ < 1) (13)

Algorithm 2 Distributed algorithm for AL node i

1: Ii ← 0, Ti ← Tiinit , Si ← Siinit

2: while Ti > 0 do
3: Update(Si)
4: Sitmp

← Neighbordsai(Si)
5: if Cost(Si) ≥ Cost(Sitmp) then
6: Si ← Sitmp

7: else
8: ri ← Random(0, 1)
9: if ri < Probability(Ti,Cost(Si),Cost(Sitmp))

then
10: Si ← Sitmp

11: end if
12: end if
13: Ii ← Ii + 1
14: Ti ← Cooling(Ti, Ii)
15: if Si has been updated then
16: SendNeighbor(Si)
17: end if
18: end while

B. Distributed algorithm

We present the distributed algorithm in Algorithm 2, which
is based on the algorithm proposed in [9]. The symbols in
Algorithm 2 are the same as those in Algorithm 1, although we
attach a subscript i indicating that the algorithm is run on AL
node i. Each AL node runs the algorithm independently, where
the term “independently” signifies that each AL node measures
the network performance values only for AL links related to
itself, and each AL node can perform state transition only with
respect to AL routes related to itself. Due to these features
of the distributed algorithm, each AL node must gather the
network performance values and the AL routes determined
by the other AL nodes. In addition, we must transform the
neighbor generation function into a form that is appropriate to
the distributed algorithm. Although the distributed algorithm
enables each AL node to determine the AL routes related to
its own self, the AL nodes must gather information related to
the other AL nodes, and doing so generates communication
overhead. However, decreasing the frequency of gathering
information related to the other AL nodes in order to reduce
the communication overhead leads to an increase in the gap
between the actual current state and the current state used by
each AL node. In other words, the distributed algorithm has
a trade-off between communication overhead and accuracy of
the current state for SA.

Based on these features of the distributed algorithm, the
parameters required for Algorithm 2 are the update func-
tion Update(), which updates the state according to infor-
mation about the other AL nodes, the notification function
SendNeighbor(), which communicates the AL route to the
other AL nodes, and the neighbor state generation function
Neighbordsai(), which is appropriately modified to the dis-
tributed algorithm.
Update function

The update function gathers the network performance values
and the AL routes determined by the other AL nodes, after
which it updates the current state of the own node with the
gathered information.
Notification function

The notification function sends information about the AL
route related to own AL node to the other AL nodes. In this
paper, the AL routes related an AL node indicate the AL
routes containing that AL node as the source node. Although
the cost function requires the current state of all AL nodes
to calculate the cost accurately, the communication overhead
becomes high if the AL routes are gathered from the other AL
nodes on each update of the state of each AL node. For this
reason, the frequency of notification of AL routes to other AL
nodes should be determined by considering the communication
overhead due to notification.
Modified function for neighbor state generation

The modified function for neighbor state generation targets
only the AL routes related to the own AL node, unlike the case
of the centralized algorithm, where the neighbor generation
function targets all AL routes.

IV. EVALUATION

In this section, we show the results of evaluating the
proposed algorithms described in Section III by assuming that
the PlanetLab nodes constitute an AL network and conduct
AL routing.

A. Dataset and settings
1) Dataset: For the evaluation, we used the results of

measuring the network performance values for the 657 Plan-
etLab nodes. Below, we describe the process of obtaining the
network performance values.
End-to-end latencies, IP-level routes

We conducted traceroute commands for all PlanetLab
nodes and used the traceroute results obtained on October
19, 2010.
Available bandwidths and physical capacities

We obtained the available bandwidths and physical capac-
ities between all PlanetLab nodes from the Scalable Sensing
Service (S3) [10]. S3 provides a summary of the measurement
results among PlanetLab nodes every 4 hours. In this paper, we
used the measurement results obtained on October 19, 2010.
AS-level routes

We converted the IP-level routes to AS-level routes by using
the relationships between IP address prefixes and AS numbers,
which are made available at the Route Views Project [11]. We
used the data obtained on April 16, 2009. Although the data
of AS numbers is rather older than other data, we think it does
not affect the evaluation results because attached AS numbers
are not changed frequently.
Information about the relationships between ASes

We utilized the information about the relationships between
ASes as provided by CAIDA [12] on January 20, 2010.

2) Settings for cost functions: In the evaluation, we deter-
mined the functions fD, fB and fC in Eqs. (6)–(8) as follows.
The function fD calculates the sum of propagation delays
and queuing delays at the routers to obtain the end-to-end
latency. We adopted the M/M/1 queuing model in calculating
the queuing delays with the following assumptions.

• None of the AL links share any IP links.
• The tight link for the available bandwidth and the narrow

link for the physical capacity are identical, and we
can measure these values with end-to-end measurement
methods.

• The queuing delay at an AL link occurs mainly at the
tight IP link, and queuing delays at other IP links are
negligible.

With the above assumptions, we calculated the queuing delay
of the AL link between AL node pair j, dqj , as follows.

dqj =

cj−aj+xj

cj

1− cj−aj+xj

cj

× P

cj
(14)

where cj , aj and xj are the physical capacity, the available
bandwidth and the traffic demand of the AL link between AL
node pair j, respectively. Here, P is the average packet size.
The end-to-end latency of the AL link between AL node pair
j, dj , was calculated as follows by using dqj , which is obtained
from Eq. (14), and the measured propagation delay dpj .

dj = dqj + dpj (15)

The function fB determines the available bandwidths of AL
links. We utilized a simple max-min discipline to calculate the
available bandwidths. In other words, when we calculated the
following values fB(i) (0 ≤ i ≤ (N − 1)N) for the AL links,
the AL routes shared the available bandwidths of the AL links
in ascending order of the values of the AL links.

fB(i) = (ai −
∑

j∈Si
bAL
j)/|{k|bAL

k = 0, k ∈ Si}| (16)

where ai represents the available bandwidth of the AL link
between AL node pair j and Si represents the set of node
pairs that utilize the AL link between AL node pair i.

The function fC calculates the transit costs of the AL
links based on the amount of traffic demand and inter-AS
relationships (transit or peering). We calculated the transit cost
of the AL link between AL node pair j, cAL

j , as follows.

cAL
j = βjxj (17)

where xj represents the traffic demand on the AL link between
AL node pair j. Here, βj determines the transit cost per unit
amount of traffic, which is calculated as the sum of transit
costs of all IP links traversed by the AL link between AL
node pair j. In the evaluation, we used the following function
to determine the transit cost of IP link i on the AL link between
AL node pair j, vji .

vji =

1 (IP j

i = 1 and i is a transit link)
0.05 (IP j

i = 1 and i is a peering link)
0 (IP j

i = 1 and i is not a AS-level link)
0 (IP j

i = 0)

(18)

The value of βj was calculated from Eq. (19) as follows.

βj =
∑M

i=1
vji (19)

Note that in cases where we were unable to obtain the
measurement results of the network performance values and
thus could not calculate the end-to-end latencies and the
available bandwidths of AL links with the methods described
above, we regarded the end-to-end latencies as infinite and the
available bandwidths as zero. As a result, we did not use those
AL links in AL routing.

3) Other settings: In the proposed algorithms, we normal-
ized the state cost by the initial state cost. The proposed
algorithms completed when the temperature became lower
than 10−6. The initial temperature was 0.15, and the parameter
γ for the cooling schedule function was 0.999. The traffic
demand on the AL node pairs, which were used to calculate
end-to-end latency and transit cost, was 1000 kbps. Also, the

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 1.5 n/a for SA

C
D

F
 o

f
n
o
d
e
 p

a
ir
s

ratio of SA performance to optimal performance

(a) End-to-end latency

0.2

0.4

0.6

0.8

1.0

n/a for SA 0.5 1.0 1.5 2.0

C
D

F
 o

f
n
o
d
e
 p

a
ir
s

ratio of SA performance to optimal performance

(b) Available bandwidth

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 n/a for SA

C
D

F
 o

f
n
o
d
e
 p

a
ir
s

ratio of SA performance to optimal performance

(c) Transit cost

Fig. 3. Comparison with optimal solutions

average packet size used in Eq. (14) was 770 bytes, which is
the average value calculated with the general maximal packet
size of 1500 bytes and the TCP ACK packet size of 40
bytes. In addition, we considered only one-hop and two-hop
AL routes because AL routes with more than two AL links
do not contribute to the improvement of end-to-end network
performance [13]. The neighbor generation function randomly
selected AL routes from among the one-hop and two-hop AL
route candidates for 1% of the AL node pairs demanding
traffic.

For the distributed algorithm, we assumed that all AL nodes
exchanged all of the measured network performance values
and all information about AL routes every 100 iterations of
the SA process.

B. Comparison with optimal solutions

First, we evaluated the differences between the end-to-end
network performance achieved with the optimal solution and
that achieved with the proposed centralized algorithm. Here,
the optimal solution was obtained by exhaustive search. We
randomly chose 10 PlanetLab nodes as AL nodes and assumed
that 7 AL node pairs demanded traffic. We selected 10 AL
nodes and 10 AL node pairs, after which we performed 100
evaluation trials for each network performance metric. For
the evaluation metric, we utilized the ratio of the end-to-end
network performance achieved with the proposed algorithm to
that achieved with the optimal solution, I , as follows.

I = δsa/δopt (20)

where δsa and δopt represent the end-to-end network perfor-
mance achieved with the proposed algorithm and that achieved
with the optimal solution, respectively.

Fig. 3 shows the distribution of the values of I . The results
for the end-to-end latency, the available bandwidth and the
transit cost utilized as routing metric are shown in Figs.
3(a), 3(b) and 3(c), respectively. Note that in the proposed
algorithm, a portion of the AL node pairs exhibit performance
higher than that obtained with the optimal solution since
the proposed algorithm utilizes the object functions, which
minimize/maximize the average value of the metrics. Fig. 3
shows that the end-to-end network performance achieved with
the optimal solution and that achieved with the proposed
algorithm are almost the same in more than 70% of the AL

0

0.2

0.4

0.6

0.8

1.0

10 100 1000 n/a

C
D

F
 o

f
n

o
d

e
 p

a
ir

s

latency (ms)

initial state
final state (SA)

final state (DSA)

(a) End-to-end latency

0

0.2

0.4

0.6

0.8

1.0

n/a 1 10 100 1000

C
D

F
 o

f
n

o
d

e
 p

a
ir

s

available bandwidth (Mbps)

initial state
final state (SA)

final state (DSA)

(b) Available bandwidth

0

0.2

0.4

0.6

0.8

1.0

 0 1000 2000 3000 4000 5000 6000

C
D

F
 o

f
n

o
d

e
 p

a
ir

s

transitcost

initial state
final state (SA)

final state (DSA)

(c) Transit cost

Fig. 4. End-to-end network performance achieved by the proposed algorithms

node pairs. From this result, we can conclude that the proposed
algorithm can produce near-optimal solutions.

C. Performance evaluation for the centralized and distributed
algorithms

Next, we assessed the end-to-end performance improvement
achieved with the proposed algorithms. We randomly chose 30
PlanetLab nodes as AL nodes and assumed that 10% of the
AL node pairs demanded traffic. We conducted 100 trials, as
in the previous subsection.

Fig. 4 shows the distribution of the end-to-end network per-
formance of the initial state and final states for the centralized
and the distributed algorithm. The results for the end-to-end
latency, the available bandwidth and the transit cost utilized
as routing metric are shown in Figs. 4(a), 4(b), and 4(c),
respectively. Note that the initial states for both algorithms
were identical. Below, we explain the results for the centralized
algorithm and the distributed algorithm, in this order.

1) Centralized algorithm: From Fig. 4(a), AL routing re-
sults in almost no improvement in the end-to-end latency,
which has been pointed out in the literature [7, 13]. In
contrast, for the available bandwidth (Fig. 4(b)), a substantial
improvement by 84% on average was achieved, which mirrors
the tendency in [7, 13]. Also, the transit cost (Fig. 4(c)) was
reduced by 27% on average, which clearly shows that the
transit cost can be reduced with the centralized algorithm,
even though the AL routing generally increases the number
of traversed IP links by detouring.

2) Distributed algorithm: We focus on a comparison be-
tween the centralized and the distributed algorithm. From the
results shown in Fig. 4, the distributed algorithm achieves
almost the same performance as the centralized algorithm.
This indicates that the distributed algorithm, which changes
the AL routes independently on each AL node, can produce
almost the same results as the centralized algorithm.

V. CONCLUSION

In this paper, we proposed centralized and distributed
heuristic algorithms for application-level traffic routing. First,
we formulated the application-level routing and defined an
optimization problem for selecting AL routes, after which
we introduced centralized and distributed heuristic algorithms
based on simulated annealing. Assuming that PlanetLab nodes
perform AL routing, we confirmed that the proposed al-
gorithms could achieve near-optimal solutions as well as
considerable improvement in end-to-end network performance.
Furthermore, we showed that the distributed algorithm could
provide almost the same results as the centralized algorithm.

In future research, we will evaluate the proposed method
with more than one metrics such as minimizing end-to-end
latency under a constraint on transit cost. In addition, we

intend to evaluate the distributed algorithm in the case of
limited information exchange, which can occur, for instance,
when ISPs operate AL nodes and each AL node runs the
distributed algorithm independently. In such situations, infor-
mation exchange might be limited due to control exerted by
each ISP. We will also aim to extend the proposed algorithms
appropriately to the protocol developed by Application-Layer
Traffic Optimization (ALTO), which is an architecture where
ISPs control the application user traffic by communicating
network information through a server-client model. We believe
that the proposed algorithms can achieve high compatibility
with the ALTO protocol and can realize traffic optimization
across a number of ISPs which are not considered in ALTO
at present.

ACKNOWLEDGMENTS

This work is supported in part by the Ministry of Internal
Affairs and Communications (MIC), Japan, under the Promo-
tion program for Reducing global Environmental loaD through
ICT innovation (PREDICT).

REFERENCES

[1] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller,
“Construction of an efficient overlay multicast infrastructure for real-
time applications,” in Proceedings of INFOCOM 2003, Apr. 2003.

[2] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs.
multi-path overlay routing,” in Proceedings of IMC 2003, Oct. 2003.

[3] C. L. T. Man, G. Hasegawa, and M. Murata, “Monitoring overlay path
bandwidth using an inline measurement technique,” IARIA International
Journal on Advances in Systems and Measurements, vol. 1, pp. 50–60,
Feb. 2008.

[4] Y. Zhu, C. Dovrolis, and M. Ammar, “Dynamic overlay routing based
on available bandwidth estimation: A simulation study,” Computer
Networks Journal, vol. 50, pp. 739–876, Apr. 2006.

[5] R. Keralapura, N. Taft, C. nee Chuah, and G. Iannaccone, “Can ISPs
take the heat from overlay networks,” in Proceedings of HotNets-III
Workshop, Nov. 2004.

[6] S. Seetharaman and M. Ammar, “Exit policy violations in multi-hop
overlay routes: Analysis and mitigation,” in Proceedings of GLOBECOM
2007, pp. 87–92, Nov. 2007.

[7] K. Matsuda, G. Hasegawa, S. Kamei, and M. Murata, “Performance
evaluation of a method to reduce inter-ISP transit cost caused by overlay
routing,” in NETWORKS 2010, pp. 250–255, Sept. 2010.

[8] J. Hromkovic, Algorighmics for Hard Problems. Springer, 2005.
[9] M. Arshad and M. C. Silaghi, “Distributed simulated annealing and

comparison to DSA,” in Proceedings of the Fourth Workshop on DCR,
Aug. 2003.

[10] Hewlett-Packard Laboratories Scalable Sensing Service. available at
http://networking.hpl.hp.com/s-cube/.

[11] University of Oregon Route Views Project. available at http://www.
routeviews.org/.

[12] University of California CAIDA. available at http://www.caida.org/
home/.

[13] G. Hasegawa, Y. Hiraoka, and M. Murata, “Effectiveness of overlay
routing based on delay and bandwidth information,” IEICE Transactions
on Communications, vol. E92-B, pp. 1222–1232, Apr. 2009.

