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ABSTRACT
Computer networks have become highly complicated and
less flexible to handle emerging problems which often occur
nowadays. In order to cope with unpredictable problems,
the concept of biologically inspired networks has been in-
troduced, which provides a high degree of robustness and
adaptability to computer networks. However, the perfor-
mance of the network often relies heavily on the configurable
parameters assigned during the deployment process, where
end nodes cannot change these parameters during runtime
to achieve the desirable performance. In this paper, we in-
troduce a new method, called attractor perturbation (AP)
allowing end nodes to influence the average of an observable
performance metric at runtime without directly manipulat-
ing any optimal parameters of underlying protocols. An ex-
ample application in this paper is a traffic distribution over
multi-path routing protocol in MANETs, where the target
variable is end-to-end delay. The approach to solve for the
appropriate amount of management influence and simula-
tion results are shown in this paper.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Performance, Algorithms

1. INTRODUCTION
Computer network architectures and their protocols have

become increasingly sophisticated over time through addi-
tion of many features to support new applications, such as
multimedia streaming, voice-over-IP (VoIP), or online gam-
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ing. These new protocols often require a careful fine-tuning
of parameter values to operate at their best performance.
However, different traffic conditions may require different
settings of protocol parameters that need to be manually
readjusted. Since the total number of possible situations
occurring in the real world is too large to be handled by
preprogrammed sets of definitions, it is necessary that new
networking mechanisms are designed in a flexible and adap-
tive manner to cater for any changes in the environment.
Reliability of the communication channel is particularly im-
portant for wireless networks due to the limited available
wireless spectrum and fluctuating channel characteristics.
Additionally, in mobile ad hoc networks (MANETs), a spe-
cific type of infrastructure-less wireless network, the nodes
can be mobile which leads to sudden changes in connectivity
and network topology.

Beside conventional approaches that have been proposed
to improve adaptability in ad hoc networks, also concepts
based on biological mechanisms have been proposed [3,8] for
self-organized control since they are able to provide greater
robustness and adaptability to external influences. The un-
derlying idea is to derive a protocol that is based on the
model of a natural phenomenon. For example, swarm in-
telligence is a concept where individual agents mimic the
behavior of insect swarms, e.g. ants or bees, during foraging
and it has been successfully applied to routing problems [2].
Firefly groups perform a distributed synchronization of their
flashing behavior and this was applied to synchronization in
sensor networks [11]. Reaction-diffusion describes the chem-
ical dynamics of morphogens in the development of stripes
or spots on animal furs. Based on the reaction-diffusion dy-
namics the coding rate for camera sensor networks can be
controlled [12].

Since biological systems are often described as dynamic
systems, they rely on a mathematical formulation given as
differential equations. In dynamic systems, attractors de-
scribe the states to which the system evolves over time.
In the past, we studied the concept of attractor selection,
which is based on the dynamics found in gene expression [4]
and has been previously also applied to tackling problems
in communication networks [1, 7]. In this paper, we apply
a similar biological mechanism called attractor perturbation
(AP), which is derived from the fluctuation-response rela-
tionship observed in an experiment on the evolution of func-
tional proteins in a cell [10]. A previous application of AP



to wireless networks can be found in [6].
To further demonstrate the effectivity of AP, we consider

in this paper an application of traffic distribution over mul-
tiple paths in MANETs. Our target is to find a method for
minimizing the average end-to-end delays of all packets dur-
ing runtime by smoothly changing the amount of traffic in-
jected into each path. This traffic distribution is performed
adaptively following the dynamics of AP and therefore re-
quires no previous parameter tuning like other network rout-
ing mechanisms.

The rest of this paper is organized as follows. We first
explain the background of the biologically-inspired mecha-
nisms which are used in this study in Section 2. Next, we
describe our problem scenario of traffic distribution in multi-
path routing and the solution steps of the target minimiza-
tion problem in Section 3. Then, the evaluation results from
simulation are presented and discussed in Section 4. Finally,
we conclude this paper and describe future work.

2. ATTRACTOR BASED CONTROL
In this work, we use the concept of attractors to dynami-

cally control our network. In order to provide the necessary
background, we will briefly describe the principles of attrac-
tor selection and attractor perturbation in this section.

2.1 Attractor Selection
The attractor selection mechanism is modeled after the

behavior of E. coli cells, which are capable of adapting to
dynamically changing nutrient conditions in the environ-
ment without any predefined adaptation rules [4]. A mu-
tant E. coli cell has a gene regulatory network consisting
of two mutually inhibitory sequences of chemical reactions
which synthesize two corresponding nutrients. When one
of the nutrients becomes scarce, the protein concentration
activating a sequence for the missing nutrient increases to
return the cell to a stable gene expression. However, there is
no explicit rule based mechanism to switch between the se-
quences of chemical reactions. In [4], a mathematical model
describing this bistable behavior of protein concentrations
m1 and m2 is proposed as

dm1

dt
=

s(α)

1 +m2
2

− d(α)m1 + η1

dm2

dt
=

s(α)

1 +m2
1

− d(α)m2 + η2

(1)

where s(α) and d(α) are the rate coefficients of protein syn-
thesis and decomposition, respectively. Both of them de-
pend on α which represents the cell activity or cell volume
growth. The terms ηi are independent white noise that ex-
ists in gene expression.

The essential point in Eqn. (1) is the interaction between
activity α and noise terms ηi. If the ratio between activity
and noise is sufficiently large, the system’s behavior remains
rather unaffected by noise. On the other hand, if activity
approaches zero, the dynamics of the system states m1 and
m2 become entirely determined by noise, i.e., they perform
a random walk. When the state randomly approaches a new
attractor, activity α will increase which results in the state
being locked at the new attractor.

2.2 Attractor Perturbation
The attractor perturbation model is derived from obser-

vations of fluctuation and response in biological systems, in
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Figure 1: Dynamics of attractor perturbation

particular, an experiment on the evolution of functional pro-
teins in a clone bacteria cell. In [10], it was found that the
fluctuation, which is expressed by the variance of the fluo-
rescence of a bacterial protein, and its response, which is the
average change in this fluorescence, have a linear relation-
ship modeled as follows when a force is introduced:

x̄a+∆a − x̄a = b∆a σ2
a (2)

where b is a scalar constant, x is a time dependent measur-
able variable in the system with mean x̄ and variance σ2

a,
and a is a controllable parameter.

There are two major assumptions underlying the model
formulation of AP. First, the variable xmust have a Gaussian-
like distribution which is often observed in biology. Second,
the variable x and the parameter a are closely associated,
in other words, a change in the parameter a would strongly
affect the distribution of the variable x.

Equation (2) reveals that the difference in the average of
the variable x before and after applying a change to the pa-
rameter a is linearly proportional to the amount of change
in a and the variance of the variable x prior to the change.
Since the amount of change in a, called force can be seen as
controllable, it is possible to adjust the difference in average
of x, called perturbation, by taking the current variance of
x into consideration. Obviously, using the same amount of
force ∆a to perturb the average of x when the variance σ2

a

is large will also lead to a larger perturbation, as shown in
Fig. 1. This figure also shows the attractor basins corre-
sponding to each empirical distribution of x.

3. MULTI-PATH TRAFFIC DISTRIBUTION
WITH ATTRACTOR PERTURBATION

Let us now show the applicability of attractor pertur-
bation as adaptive method for traffic distribution. First,
we will briefly describe the multi-path routing scenario and
some of the challenges that are involved. Then, we will ex-
plain our proposed mechanism for minimizing the packet
delays by utilizing the attractor perturbation concept.

3.1 Multi-Path Routing Scenario
We consider a situation as depicted in Fig. 2(a). A source

node S is connected to the destination node D via multiple
paths. The advantage of using multiple paths is that if one
path breaks due to failures at intermediate links or nodes,
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Figure 2: Overview of Traffic Distribution over Mul-
tiple Paths

the other path can still be maintained. Furthermore, using
multiple paths permits a better balancing of loads by dis-
tributing traffic more evenly in the network. Especially, if
nodes in an ad hoc scenario are operated by batteries, this
may lead to reduced energy consumption.

First, the source node needs to determine the set of paths
to the destination. This can be performed through AODV-
like probing for path computation. Once the source node has
found its paths for reaching the destination, it can split up
its traffic among these paths following an allocation strategy
to achieve a certain objective, depending on user-specific cri-
teria. The allocation granularity, which describes the unit
of information allocated to each path, is also of great impor-
tance [9]. Coarse granularities, such as per-connection or
per-flow, tend to reduce the management overhead, but are
not as flexible as small granularities, e.g., per-packet, since
these permit a better distribution of traffic. However, per-
packet granularity may require reordering at the destination,
if the latencies differ too much among paths.

3.2 Traffic Distribution with Attractor Pertur-
bation

Since AP observes only the average and variance of the
variable x, it is unnecessary to learn the actual details of
the underlying protocols. In short, traffic distribution with
AP can be made by looking at the system as a black box
with the parameter a as input and variable x as output,
which is fed back to the system, see Fig. 2(b). With this
simplified view, it is possible to perform various types of
network control with ease. As example of network control,
this paper’s target is to minimize the average end-to-end
delay of all packets by only observing the fluctuations of end-
to-end delay x and applying traffic rate change a whenever
necessary.

3.2.1 Definition and Notation
The targeted multi-path situation consists of n paths. For

the sake of simplicity, we consider n = 2 in this study, where
each path i has the following characteristics:

• Current traffic rate: ai

• Traffic rate change: ∆ai

• Average end-to-end delay prior applying ∆ai: x̄i

• Average end-to-end delay after applying ∆ai: x̄
′
i

3.2.2 Problem Formulation
In this section, we formulate the minimization problem of

the average end-to-end delay of all packets. According to
the notation defined in Section 3.2.1 and Eqn. (2), in case
of two paths, we have:

x̄′1 = x̄1 + b1 ∆a1 σ
2
1 (3)

x̄′2 = x̄2 + b2 ∆a2 σ
2
2 (4)

The average delay of all packets on each path is defined by
the product of the traffic rate ai and the average per-packet
delay x̄i. Therefore, the estimation of the average delay after
applying traffic rate change ∆ai can be made as follows.

f(∆a1,∆a2)

= (a1 + ∆a1) x̄′1 + (a2 + ∆a2) x̄′2

= (a1x̄1 + a2x̄2) +
(
x̄1 + a1b1σ

2
1

)
∆a1

+
(
x̄2 + a2b2σ

2
2

)
∆a2 + b1σ

2
1∆a2

1 + b2σ
2
2∆a2

2

(5)

Given that c′ = (a1x̄1 + a2x̄2), c1 =
(
x̄1 + a1b1σ

2
1

)
, c2 =(

x̄2 + a2b2σ
2
2

)
, k1 = b1σ

2
1 , and k2 = b2σ

2
2 , Eqn. (5) can

be formulated as a constrained optimization (minimization)
problem as follows:

Minimize

f(∆a1,∆a2) = c′ + c1∆a1 + c2∆a2 + k1∆a2
1 + k2∆a2

2

subject to ∆a1 + ∆a2 = 0

(6)

The solution of the minimization problem in Eqn. (6) is the
amount of the change in traffic rate to be applied to each
path in order to achieve minimal average end-to-end delay
of all packets. The subject to condition holds since the total
amount of traffic prior and after change has to be the same.

3.2.3 Lagrangian Optimization
The minimization problem which has the form as in Eqn. (6)

can be solved using Lagrangian Optimization.
The Lagrangian has the general form of

L(x∗, λ∗) = f(x) − Σi[λi(gi(x) − bi)]

where x∗ is the optimal solution of x and λ∗ is the penalizing
Lagrangian multiplier.

The associated Lagrangian of Eqn. (6) is:

L(∆a∗1,∆a
∗
2, λ
∗) = c′ + c1∆a∗1 + c2∆a∗2 + k1∆a∗21

+ k2∆a∗22 − λ∗ (∆a∗1 + ∆a∗2)
(7)

∂L

∂∆a∗1
= c1 + 2k1∆a∗1 − λ = 0 (8)

∂L

∂∆a∗2
= c2 + 2k2∆a∗2 − λ = 0 (9)

∂L

∂λ∗
= − (∆a∗1 + ∆a∗2) = 0 (10)



In the three Eqns. (7)–(9), there are three unknown vari-
ables ∆a∗1, ∆a∗2, and λ∗. Therefore, this optimization prob-
lem can be solved and we obtain the optimal amount of
traffic ∆ai for each path i to minimize the sum of average
delays. Note that although we only considered n = 2, the
problem formulation and Lagrangian optimization can be
extended to multiple paths case, i.e., n > 2, with little effort
by using matrix and row elimination.

3.2.4 Optimal Solution
According to steps taken in Section 3.2.3, the optimal so-

lution in case of two paths is as follows.

∆a∗1 =
c2 − c1

2(k1 + k2)

=
(x̄2 + a2b2σ

2
2) − (x̄1 + a1b1σ

2
1)

2(b1σ2
1 + b2σ2

2)

(11)

∆a∗2 = −∆a∗1 (12)

4. SIMULATION RESULTS
In this section, we first perform a numerical verification of

the AP model by evaluation of stochastic differential equa-
tions. Next, we study the behavior of AP based proposal in
ad hoc network simulations.

4.1 Evaluation of Linearity between Fluctua-
tion and Response

For our numerical evaluation we first show that this at-
tractor perturbation principle actually holds in theory. To
do this, we define a simple theoretical attractor model like
the one in [5]:

dx

dt
= −ρ (x− x0) + η (13)

where x is the state variable, ρ is the speed of adaptation,
x0 is the attractor, and η is noise. Fig. 3(a) shows how the
initial black histogram at x0 = 0 gets perturbed by the same
force, but to different offsets for ρ = 0.1 and ρ = 1.0. The
term ρ controls the softness of adaptation in the dynamic
system and represent the internal fluctuations. A smaller ρ
leads to slower adaptation of x in Eqn. (13) and therefore
to a larger variance. Repeating this experiment for different
force values (1 and 5) and random ρ shows us the expected
linear behavior, when we plot variance of x on the x-axis
and average perturbation on the y-axis of Fig. 3(b).

We can see from Fig. 3 that the linear relationship exists
and we can exploit this for our traffic distribution method
in multi-path networks. Note that the slope of the lines in
Fig. 3(b) corresponds to the constant b term in Eqn. (2).

4.2 Simulation of Network Traffic
To demonstrate the validity of AP based traffic distribu-

tion, we performed simulations of a mobile ad hoc network
using the QualNet network simulator. The scenario consists
of an area of 1000 × 1000 m2, where 25 nodes are uniformly
distributed. The simulation duration is 1000 s for each run.
There are 5 traffic sessions starting at 1 s: 1 CBR session
with packet size of 250 Bytes and 100 ms sending interval,
and 4 random traffic sessions with the same packet sizes and
exponentially distributed sending intervals with average of
1000 ms serving as background traffic. The underlying rout-
ing protocol is MARAS [1].
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Figure 3: Numerically simulated fluctuation and re-
sponse of dynamic system

In order to clearly observe the effect of AP, we change the
sending interval of CBR packets from 100 ms to 50 ms at
half of the simulation time (500 s) and the results are shown
in Fig. 4. For several randomly seeded trials, we observe
that the variance σ2 of end-to-end delays during the first
500 s varied depending on the random initial configuration
and we could categorize two cases, one with high variance
and one with low variance. In Fig. 4(a) the high variance
case is shown and the initial average and variance of end-to-
end delay before the traffic rate change were 1.653 · 10−2 s
and 1.176 · 10−4 s2, respectively. After applying the force to
the system through the traffic rate change, the new average
delay became 2.009 · 10−2 s. On the other hand, in the case
of Fig. 4(b) which has much lower variance of 1.581 · 10−5 s2

than in the high variance case, the average delay changes
from 1.108 · 10−2 s to 1.391 · 10−2 s. In summary, it can
be seen that (i) the average delay can be influenced by the
change in traffic rate, and (ii) the perturbation is larger in
the case of larger variance.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced attractor perturbation (AP),

a novel biologically inspired approach which can perform a
simplified control of an underlying system. With AP, it is
possible to regard the whole underlying system as a black
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Figure 4: Histogram of packet delays when doubling
the traffic rate at 500 s

box and perform control based on observed average and vari-
ance of the time series of the considered performance metric.
According to our evaluation, it can be seen that the concept
of AP is feasible for network control in ad hoc networks.
Simulation results showed for a single path as well as nu-
merical evaluations of the theoretical differential equation
reveal that the fluctuation-response relationship is visible.
As a result, this relationship can be used to estimate the
optimal amount of traffic change to achieve minimal aver-
age end-to-end delays for all packets in order to distribute
traffic over multi-path routing as proposed in this paper.

This paper reported on the first steps of our research on
traffic distribution in a multi-path ad hoc network. Even
though our simplified network simulations were made over
only a single-path routing protocol, we can expect similar re-
sults in case of multi-path routing if disjoint paths are used.
As our future work, we are planning on extending MARAS
to a multi-path routing protocol and re-evaluate the pro-
posed traffic distribution method over it. Since MARAS, as
well as AP are driven by noise, we are convinced that this
approach will lead to an improved routing protocol that is
adaptive and robust without requiring any fine-tuning of pa-
rameters.
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