
Master’s Thesis

Title

Bio-inspired autonomous device assignment for cooperative

resource sharing in a wireless sensor and actor network

Supervisor

Professor Masayuki Murata

Author

Takuya IWAI

February 14th, 2012

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Bio-inspired autonomous device assignment for cooperative resource sharing in a wireless

sensor and actor network

Takuya IWAI

Abstract

In the forthcoming information society, users will expect to be provided with various

types of information services and environmental and machinery control which are suited for

time, place, occasion, and people. As a fundamental technology to realize the society, many

researchers focus their interests on a wireless sensor and actor network (WSAN) which

can detect and conjecture environmental and personal condition and provide a user with

various types of information services and environmental and machinery control. Regarding

required type and installation location of nodes, they shapely depend on an application

which they offer their sensing or actuating function. Therefore, an application constructor

deploys dedicated nodes with appropriate sensors and actuators at optimal locations in

advance. Then, these nodes are connected each other in multi-hop communication and

an application is constructed. Although a single application cannot meet diverse require-

ments of different and dynamic situations, it is hard to deploy and configure a variety of

sensors and actuators for each of envisioned applications. In addition, as another prob-

lem, duplicated nodes playing the same role among applications might exist when multiple

applications are constructed. This is not a trivial issue for a WSAN which is required to

strongly save resource consumption. To solve these problems, it is desirable that an appli-

cation is dynamically constructed by combining not dedicated nodes but multi-functional

and common nodes among applications. Furthermore, it is expected to share sensors and

actuators among different applications for decreasing the number of activated nodes. In

general, a complicated and deterministic rule-base mechanism, e.g. the usage of if-then

type of rules, can realize above-mentioned cooperative resource sharing among multiple

applications. However, it might become more difficult to write correct rules as the number

1

of assumed situations or concurrent applications increases. Even if we can write correct

rules, wrong parameter setting also leads to the failure of resource sharing. In this the-

sis, we adopt a mathematical model of division of labors in a colony of social insects

to accomplish autonomous assignment of devices to an application while taking into ac-

count cooperative device sharing among multiple applications. Through simulations, we

confirmed that the proposal can accomplish device assignment where devices are shared

among multiple applications in a fully-distributed and self-organizing manner which does

not require deterministic and complicated rules of existing device assignment mechanisms.

We also showed that the proposal was less sensitive to parameter setting than the existing

mechanism.

Keywords

wireless sensor and actor network

response threshold model

parameter insensitivity

device assignment

resource sharing

2

Contents

1 Introduction 7

2 Related work 10

2.1 Multi-purpose sensor and actor networks . 10

2.2 Resource sharing in sensor and actor networks 11

3 Application scenario 12

3.1 Scenario . 12

3.2 Application examples . 12

4 Response threshold model 15

4.1 Mathematical model . 15

4.2 Characteristic analysis . 16

4.2.1 Metric . 16

4.2.2 Basic behavior . 17

4.2.3 Influence of colony size . 19

4.2.4 Influence of frequent task rotation 20

4.2.5 Influence of demand perturbation . 21

4.2.6 Influence of individual extinction . 23

4.3 Conclusion . 24

5 Response threshold model-based device assignment 25

5.1 Service network . 25

5.2 Basic behavior . 26

5.3 Internal values of nodes . 27

5.4 Node behavior . 28

5.5 Response threshold model-based decision making 32

5.6 Variable Aj for device sharing and energy efficiency 33

6 Performance evaluation 34

6.1 Directed diffusion . 34

3

6.2 Extension of directed diffusion . 35

6.3 Simulation setting . 37

6.4 Evaluation of task assignment . 38

6.5 Evaluation of robustness against parameter setting 42

7 Conclusion and future work 45

Acknowledgements 46

References 47

4

List of Figures

1 Basic behavior . 18

2 Influence of colony size . 19

3 Influence of frequent task rotation . 21

4 Influence of demand perturbation . 22

5 Influence of individual extinction . 23

6 Overview of device assignment . 26

7 Behavior of a node on receiving a request message 31

8 Snapshot of a simulation . 38

9 Number of active member nodes . 39

10 Number of relay nodes . 40

11 Rubustness of our proposal against parameter setting 43

5

List of Tables

1 Example of applications . 14

2 Characteristic of response threshold model 24

3 Internal values of a node . 27

4 Parameters of variable Aj . 34

5 Prioritization rule for reinforcement in directed diffusion 35

6 Parameter setting of performance evaluation 37

6

1 Introduction

In recent years, many researchers have been actively working in the field of wireless sensor

and actuator/actor networks (WSANs) [1, 2]. A WSAN consists of embedded sensors,

e.g. thermometer, hygrometer, and motion sensor, that detect and obtain environmental

and personal conditions and actuators, e.g. heater, cooler, buzzer, light, and switch,

that control environment and machinery. By distributing nodes with appropriate sensors

and/or actuators at appropriate locations in an area, e.g. field, building, and room, and

organizing a network by wireless multi-hop communication, a variety of applications can

be provided in the area. We hereafter call sensors and actuators ‘devices’ and a ‘node’

corresponds to an equipment with CPU, memory, wireless transceiver, and one or more

devices.

In general, WSANs are constructed and managed in an application-oriented manner to

answer specific requirements of an individual application. Therefore, nodes are deployed

for a specific application and they are not shared with others. For example, both of WSANs

for illumination control and intrusion detection employ nodes with a motion sensor to

detect location of people and nodes with a switch to turn on or off a light. Although

applications use the same kind of devices in the same way, their WSANs are made of

dedicated nodes and independent from each other with current form of deployment. It

is apparently redundant and wasteful. Furthermore, an application-oriented deployment

requires previous knowledge about the operational environment and careful planning of

types and locations of nodes to place. However, it is impossible to predict all events that

may occur in the area and make WSANs well prepared for unpredictable events.

Considering above-mentioned issues, interests of researchers are shifting from a special

purpose WSAN to a multi-purpose WSAN where multiple concurrent applications are

running over a single WSAN [3]. In a multi-purpose WSAN, heterogeneous nodes are

deployed in the area and applications employ those nodes with desired devices. The first

challenge exists in the heterogeneity in node architecture [4, 5], which makes application

implementation and interoperation of nodes difficult. As an example of solution of the

challenge, SOA (Service Oriented Architecture) provides an application with a common

interface with nodes having different architecture [4, 6]. Once heterogeneous nodes can

7

be handled through the common interface, another challenge arises in selection of nodes

and devices [7, 8]. For example, in starting an intrusion detection application in the area

where an illumination control application already exists, is it better to use the node with

a motion sensor that the illumination control application is using? If they share the node,

other nodes with a motion sensor can sleep and save energy and network bandwidth. To

share sensors among multiple applications, TinyONet is proposed in [9]. In TinyONet,

a sink manages virtual sensors each of which corresponds to a physical node and groups

them into a slice in accordance with application requirements. Since the authors’ focus

is on reusability of sensing data, TinyONet assumes that sensing data is periodically

collected from all physical sensors to the sink. To keep cached data up-to-date, TinyONet

consumes bandwidth and energy and it does not fit to a WSAN. In [10], the authors

propose VSNs (Virtual Sensor Networks) which are constructed over independent WSNs.

In their proposal, a VSN is constructed of, based on our naming, member nodes and relay

nodes belonging to different WSNs, forming the tree topology. A VSN allows a service-

oriented and inter-WSN overlay, but they do not specify the way to assign nodes and

devices to VSN. A decision on device assignment must be made taking into account a

variety of conditions, e.g. the degree of device sharing and the amount of residual energy,

and it is not trivial. For this challenge, there are several proposals on dynamic device

assignment [11], but they usually employ rule-based mechanisms. As such, as a WSAN

becomes large and the number and heterogeneity of applications increase, they will suffer

from difficulty in making an appropriate set of rules without contradictions.

In this thesis, we presented an idea of autonomous device assignment mechanism

where each node determines whether to offer its own devices to an application in a fully-

distributed and self-organizing manner. Our mechanism cooperates with SPAN [12] to

efficiently share nodes engaged in message relaying among applications. In our proposal,

the minimum connectivity is maintained by SPAN, where a set of coordinator nodes con-

struct a forwarding backbone. Once a need for device assignment occurs, a request message

is disseminated from a request node of an application to all nodes through a forwarding

backbone. On receiving the request, each node determines whether to offer its devices

to the application or not. The decision is sent back to the request node through the for-

warding backbone. For autonomous decision making without deterministic if-then type of

8

rules, we adopt a response threshold model [13], which imitates a mechanism of division

of labors in a colony of social insects. In a colony, each individual decides to be engaged in

a task without any centralized control and the number of workers is dynamically adapted

in accordance with the demand of task. In our proposal, a request message advertised by

a request node expresses the demand intensity to stimulate nodes to offer their devices.

The remainder of this thesis is organized as follows. First, in section 2, we describe re-

lated work. Next, in section 3, we describe application scenario that our proposal assumes

and example of applications. Then, in section 4, we explain a response threshold model

and analyze its characteristic. In section 5, we propose a response threshold model-based

device assignment mechanism. In section 6, we show simulation results to evaluate our

proposal and compare it with an existing mechanism. Finally, in section 7, we provide

concluding remarks and future work.

9

2 Related work

2.1 Multi-purpose sensor and actor networks

Today, researchers’ interests are shifting from a special purpose WSAN to a multi-purpose

WSAN where multiple concurrent applications are running over a WSAN. In a multi-

purpose WSAN, various types of applications use common infrastructures and we can

expect the deployment and maintenance cost to be significantly reduced [3]. To realize a

multi-purpose WSAN, there are many critical challenges which need to be solved. Here,

we briefly explain the three basic challenges.

1. heterogeneous node

2. dynamic separation of nodes

3. resource confliction

Distributing multifunctional and common nodes in advance, organizing them as a single

and monolithic WSAN, and accommodating all applications are one of the most realis-

tic solutions to realize a multi-purpose WSAN. To realize this, a mechanism to control

heterogenous nodes is needed. For this challenge, a network virtualization is very useful

for seamless interoperability of different nodes and networks [5]. In addition, the concept

of SOA (Service Oriented Architecture) [4, 6] is very useful for controlling heterogeneous

nodes without concerning differences in node architectures, OS, and programming lan-

guages. As another challenge, if static applications are just organized, it is difficult for

users to be provided with various types of information services and environmental and

machinery control which are suited for time, place, occasion, and people. For this chal-

lenge, we need a mechanism to dynamically group nodes, their sensors, and actuators

for each application while taking into account their status and sharing them is needed

for flexible, efficient, and on-the-fly deployment of multiple applications [7]. However,

nodes cannot always fulfill requests from multiple applications simultaneously [14]. For

this challenge, a mechanism to solve resource contention among multiple applications is

also needed [15, 16, 17]. The final couple of challenges might be able solved by rigorous

rule-based mechanism such as Generic Role Assignment [11]. However, as the network be-

10

comes larger and the number of concurrent applications increases, it becomes impossible

to write appropriate rules without contradictions.

2.2 Resource sharing in sensor and actor networks

To share sensors among multiple applications, TinyONet is proposed in [9]. In TinyONet,

a sink manages virtual sensors each of which corresponds to a physical node and groups

them into a slice in accordance with application requirements. From a viewpoint of an

application, a dedicated sensor network, i.e. a slice, is tailored over heterogeneous sensors.

Since the authors’ focus is on reusability of sensing data, TinyONet assumes that sensing

data is periodically collected from all physical sensors to the sink. On request from an

request, a virtual sensor returns cached sensing data as if it was obtained from a physical

sensor. To keep cached data up-to-date, TinyONet consumes bandwidth and energy and

it does not fit to a WSAN. In [10], the authors propose VSNs (Virtual Sensor Networks)

which are constructed over independent WSANs. In their proposal, a VSN is constructed

of, based on our naming, member nodes and relay nodes belonging to different WSANs,

forming the tree topology. A VSN allows a service-oriented and inter-WSAN overlay, but

they do not specify the way that member nodes is selected. Furthermore, it is inefficient

to make all messages pass through a root node though it benefits from data aggregation.

Regarding on-demand selection of nodes which offer functions to an application, [11] pro-

poses an algorithm for generic role assignment. An application developer provides a role

specification using if-then type rules. It is translated to a role specification message and

distributed to nodes by a gateway. Each node decides whether to become ON or OFF

based on the received message and property information.

11

3 Application scenario

3.1 Scenario

We assume that many nodes with various types of device, i.e. sensors and actuators, are

deployed in the area and organize a WSAN. There are applications operating in the area

or being introduced on demand. Each application has one or more application servers or

control units, such as a home server of a home automation system, which manages the

application. However, a server does not have the complete knowledge of the whole WSAN,

e.g. type and location of nodes and their devices. An application consists of a series of

processes, such as turn on or off the light, which are realized by devices embedded in the

area.

Each process of an application has a priority value, which is determined in advance but

can dynamically change in response to, for example, emergency. Priority helps in solving

an ‘actuator contention’ problem. Sharing a sensor device among multiple application

processes is not harmful as far as the sensor can provide them with requested sensor data at

the desired precision and frequency and it does not lead to energy or bandwidth depletion.

On the contrary, sharing an actuator among multiple application processes sometimes

causes a problem, which we call ‘actuator contention’. Assume that two processes of

different applications need to turn on and off the light using the same switch. When one

process wants to turn on the light while the other has an opposite request, i.e. turning

off the light, the switch cannot simultaneously fulfill requests of the both. The occurrence

of contradicting requests which need different and exclusive actions or operational modes

of an actuator is called ‘activator contention’ in this thesis. The simplest way to solve

activator contention is to assign a requested actuator to a process with the highest priority

and let it operate in the desired mode.

3.2 Application examples

In this section, we give three examples of application, i.e. home theater, home security [18],

and HVAC (heating, venting, and air conditioning) [19], operating in a room. Table 1

summarizes outlines, processes, and their priority of applications. A smaller priority value

means that a corresponding process has the higher priority. Regarding those processes

12

that use a sensor, a priority value is not specified and shown as ‘NA’ in the table.

When there are some people in the room, an HVAC application tries to maintain the

temperature and humidity of the room at the appropriate and comfort level. It needs sev-

eral thermal sensors, humidity sensors, and CO/CO2 sensors to report sensing information

to an HVAC server. Based on the obtained information, the server requests a controller

of an air conditioner to adjust the room temperature and a switch of a ventilation fan to

clean the air. Now, a person begins to watch a movie. A server of a home theater ap-

plication wants to control a ventilation fan, curtains, room lights, a TV monitor, a video

player, and speakers. Then, a WSAN in the room tries to assign actuators corresponding

to those facilities to processes of the home theater application when requested. To avoid

a noise a process of the home theater application intends stopping a ventilation fan, but

it conflicts with a demand of a process of the HVAC application to clean the air. Since

those competing processes have the same priority in Table 1, a switch of a ventilation

fan is assigned to either process which strongly requests a ventilation fan. For purpose of

illustration, we here assume that a switch of a ventilation fan is assigned to a process of

HVAC application. As air gradually clears, the process of home theater application more

strongly requests a ventilation fan in comparison. As a result, a switch of a ventilation

fan is assigned to a process of home theater application and a ventilation fan will stop. At

nightfall, a server of home security application requests a WSAN to close a curtain, turn

on room lights and security lights, and lock a window and a door. Both home theater

and home security applications want to controll room lights. As shown in Table 1, the

priority relating to room lights of home theater application is higher than home security

application. Therefore, switches of room lights is assigned to home theater application

and room lights continue extinction. When the person quits watching a movie, only home

security application requests switches of room lights and room lights are lighting up.

13

Table 1: Example of applications

Home theater

Outline When an user tries to watch a video, it makes the room dim

and quiet and makes the monitor, player and speaker playable.

process (priority) It keeps a ventilation fan off while the user uses the home

theater (3). Next, it keeps the curtain closed (3) and keeps

the light blackout (3). Then, it keeps on a player and the

player is playing (2). After that, it keeps the input of monitor

connected to the player (2), and the input of speaker connected

to the player (2).

Home security

Outline It monitors troubles using various types of sensors. When trou-

bles are detected, it sounds an alarm. At nightfall, it closes

a curtain and turns on a room light and a security light for

security.

process (priority) It steadily collects sensing information from sensors (NA). At

nightfall, it keeps windows and doors locked (4), keeps cur-

tains closed (4), and keeps on room lights and security lights

(4). When it detects a trouble, it keeps the input of speaker

connected to the home security (1) and sounds an alarm (1).

HVAC

Outline In response to personal condition, room temperature, and air

pollution, it ventilates a room and adjusts room temperature.

process (priority) It steadily collects sensing information from sensors (NA).

When room temperature is higher than target temperature,

it keeps on a heater and cools the room (3). When room tem-

perature is lower, it keeps on a cooler and heats the room (3).

When concentration of CO/CO2 is high, it keeps on a ventila-

tion fan and ventilates the room (3).

14

4 Response threshold model

In this section, we firstly explain the mathematical model of the division of labors in social

insects. Then, we verify characteristics of the model through some simulations.

4.1 Mathematical model

A response threshold model [13] is a mathematical model which imitates a mechanism of

adaptive division of labors in a colony of social insects. A colony is divided into two groups

of workers and non-workers based on autonomous decision of individuals using a simple

rule. The size of groups is well adjusted based on the task-associated intensity of stimuli.

As to the basic behavior of the model, please look at section 4.2.2. In the following, we

consider there is one task to be performed in the colony for the sake of simplicity.

Let s (0 ≤ s) be the task-associated stimulus intensity, which gradually increases over

time and decreases as individuals work as formulated by the following equation.

s(t) = s(t− 1) + δ − αNact

M
,

where δ (0 ≤ δ ≤ 1) is the increasing rate of the stimulus intensity. α (0 < α) is the

impact of a worker on the task. Nact is the number of workers among N individuals which

are capable of performing the task. In the model, each individual stochastically decides on

whether to perform the task or not. Individual i has a state value Xi ∈ {0, 1}. Individual

i with Xi = 0 does not perform the task and the other performs the task.

The probability P (Xi = 0 → Xi = 1) that individual i begins performing the task at

time t is given by the following equation.

P (Xi = 0 → Xi = 1) =
s(t)2

s(t)2 + θi(t)2
,

where θi(t) (θmin ≤ θi(t) ≤ θmax) is a threshold that corresponds to hesitation of individual

i in performing the task at time t. The probability P (Xi = 1 → Xi = 0) that individual i

quits the task is given by a constant p (0 ≤ p ≤ 1).

P (Xi = 1 → Xi = 0) = p

This enables rotation of performing the task among individuals. The average duration

that an individual performs the task is 1/p. When the number of idle individuals occa-

sionally increases for perturbation, the stimulus intensity increases accordingly and those

15

individuals with high threshold become workers based on the increased stimulus intensity.

As a result, the ratio of workers is maintained at the same level.

Threshold θi(t) can be identical or different among individuals. Individuals with

smaller threshold are more likely to become workers. In the response threshold model

proposed in [13], there is a mechanism of reinforcement, which differentiates workers from

non-workers and makes them specialists. Threshold θi is adapted by the following equa-

tions.

θi(t) =

 θi(t− 1)− ξ, if individual i performs a task

θi(t− 1) + φ, otherwise

where ξ (0 < ξ) and φ (0 < φ) are related to the speed of differentiation. By reinforcement,

an individual performing the task becomes a worker more often than one that does not

work. Eventually the colony is divided into distinct groups of workers and non-workers.

4.2 Characteristic analysis

4.2.1 Metric

In characteristic analysis, we analyze the effect of parameter setting on the behavior of

response threshold model. We define worker specialist ratio Rwork (0 ≤ Rwork ≤ 1) which

represents the propotion of worker specialists to individuals and non-worker specialist

ratio Rnwork (0 ≤ Rnwork ≤ 1) which represents the propotion of non-worker specialists to

individuals. Here, a worker specialist corresponds to a node with θi(t) < θmin +∆a and a

non-worker specialist corresponds to a node with θi(t) > θmax −∆i, where ∆a and ∆i are

a constant.

Rwork(t) =
|{i ∈ I | θi(t) < θmin +∆a}|

M

Rnwork(t) =
|{i ∈ I | θi(t) > θmax −∆i}|

M

Here, i is an identifier of an individual. I is a set of identifiers of individuals. M is the

total number of individuals.

To analyze the stability of response threshold model, we calculate the coefficient of

variation (c.v.) Cn of the number of workers. The average number N of workers from

16

time T (0 < T) to time T + k − 1 (1 ≤ k) in discrete time step is calculated as below.

N =
1

k

T+k−1∑
t=T

N (t)

Using the average number of workersN , the variance of the number of workers σ2
w (0 ≤ σ2

w)

from time T to time T + k − 1 in discrete time step is calculated as below.

σ2
w =

1

k

T+k−1∑
t=T

(
N (t)−N

)2
Using the average number of workers N and the variance of the number of workers σ2

w,

the c.v. Cn of the number of workers is derived as below.

Cn =

√
σ2
w

N

Larger Cn means that the number of workers is more fluctuating from time T to time

T + k − 1. Similarly, we can calculate the average worker specialist ratio Rwork, the

average non-worker specialist ratio Rnwork, the average stimulus intensity s, and the c.v.

Cs of stimulus intensity.

4.2.2 Basic behavior

We briefly describe the behavior of response threshold model. Here, the total number

M of individuals is 1,280. The impact α of a worker is 1. The increasing ratio δ of

stimulus intensity is 0.5. The maximum θmax of threshold is 1,000 and the minimum θmin

of threshold is 1. ∆a and ∆i are 50. The probability p that a worker becomes a non-worker

is 0.002. The initial stimulus intensity s(0) is 0 and the initial threshold θ(0) is 500.

Figures 1(a), 1(b), and 1(c) illustrate variation in the number of workers, the stimulus

intensity, and the specialist ratio, respectively. Figures 1(d) and 1(e) are a histogram

representing individual distribution in time ratio staying a worker specialist and a non-

worker specialist during the whole simulation, respectively.

As illustrated in Fig. 1(a), the initial number of workers is 0 and a sufficient number

of individuals are not workers. Therefore, as shown in Fig. 1(b), the stimulus intensity

increases to about 60. As the stimulus intensity increases, the probability that a non-

worker becomes a worker increases and the number of workers increases. Figure 1(c) shows

17

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4000 8000 12000 16000 20000

th
e

nu
m

be
r

of
 w

or
ke

rs

time

(a) the number of workers

 0

 10

 20

 30

 40

 50

 60

 0 4000 8000 12000 16000 20000

st
im

ul
us

 in
te

ns
ity

time

(b) the stimulus intensity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 4000 8000 12000 16000 20000

sp
ec

ia
lis

t r
at

io

time

worker
non-worker

(c) the specialist ratio

 0

 100

 200

 300

 400

 500

 600

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

fr
eq

ue
nc

y

class value

worker specialist

(d) the histogram of worker specialist

 0

 100

 200

 300

 400

 500

 600

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

fr
eq

ue
nc

y

class value

non-worker specialist

(e) the histogram of non-worker spe-

cialist

Figure 1: Basic behavior

that the number of worker specialists increases due to the reinforcement mechanism. In

the parameter setting of this simulation, constant ξ which corresponds to the speed of

becoming a worker specialist is larger than constant φ which corresponds to the speed of

becoming a non-worker specialist. Therefore, worker specialist ratio increases in advance

of non-worker specialist ratio. Once a sufficient number δM/α = 640 of individuals become

workers (Fig. 1(a)), the stimulus intensity starts to gradually decrease (Fig. 1(b)). While

the stimulus intensity is 0, a new non-worker does not become a worker. In addition,

a worker becomes a non-worker with probability p. As a result, the number of workers

gradually decreases to less 640 (Fig. 1(a)) and the demand intensity starts to increase

18

 0

 100

 200

 300

 400

 500

 600

 700

20 40 80 160 320 640 1280

th
e

nu
m

be
r

of
 w

or
ke

rs

the total number of workers

(a) the number of workers

 0

 0.008

 0.016

 0.024

20 40 80 160 320 640 1280

c.
v.

 o
f t

he
 n

um
be

r
of

 w
or

ke
rs

the total number of workers

(b) the c.v. of the number of workers

 0

 0.05

 0.1

 0.15

 0.2

20 40 80 160 320 640 1280

c.
v.

 o
f s

tim
ul

us
 in

te
ns

ity

the total number of workers

(c) the c.v. of stimulus intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 80 160 320 640 1280

sp
ec

ia
lis

t r
at

io

the total number of workers

worker
non-worker

(d) the specialist ratio

Figure 2: Influence of colony size

again (Fig. 1(b)). While the demand intensity is more than 0, a non-worker stochastically

becomes a worker and the number of workers will increase. The reinforcement mechanism

divides individuals into worker specialists or non-worker specialists as shown in Figs. 1(d)

and 1(e). Even if a worker specialist temporarily becomes an non-worker, it immediately

becomes a worker again in response to the increase in the demand intensity. The increase

in the number of workers decrease the demand intensity. Once individuals are divided into

two groups, the fluctuation of the number of workers becomes small and the number of

workers is kept at 640 in the parameter setting.

4.2.3 Influence of colony size

To analyze the influence of the number of individuals, we vary the number of individuals

from 20 to 1,280. Other parameters are the same as a simulation in section 4.2.2. Results

19

are the average of 1,000 simulation runs.

Figures 2(a), 2(b), 2(c), 2(d) illustrate variation in the average number N of workers,

the c.v. Cn of the number of workers, the c.v. Cs of the stimulus intensity, and the

specialist ratio Rwork and Rnwork, respectively. Here, T is 19,900 and k is 100. Figure 2(a)

shows that the average number of workers is roughly equal to the target value, i.e. δM/α.

However, Fig. 2(b) shows that the c.v. of the number of workers decreases as the number of

individuals increases. As the number of individuals is more, the impact per worker on the

stimulus intensity becomes smaller. When the number of workers is less than the target

value, the degree of increases in the stimulus intensity becomes larger. On the contrary,

when the number of workers is more than the target value, the decreases in the stimulus

intensity becomes larger. Therefore, as illustrated in Fig. 2(c), the stimulus intensity more

fluctuates and the probability that a non-worker becomes a worker also fluctuates. As a

result, the number of workers fluctuates and the c.v. of the number of workers becomes

larger. In this parameter setting, constant ξ is larger then constant φ. Threshold θ is

more likely to decrease and a non-worker is more likely to quit a non-worker specialist.

As a result, as shown in Fig. 2(d), the specialist ratio of non-workers is lower than the

specialist ratio of workers as the number of individuals decreases.

4.2.4 Influence of frequent task rotation

To analyze the influence of frequency of task rotation, we vary the probability that a

worker becomes a non-worker from 0.002 to 0.128. Other parameters are the same as a

simulation in section 4.2.2. Results are the average of 1,000 simulation runs.

Figures 3(a), 3(b), 3(c), 3(d) illustrate variation in the average number of workers N ,

the c.v. of the number of workers Cn, the average stimulus intensity s, and the specialist

ratio Rwork and Rnwork, respectively. Here, T is 19,900 and k is 100. Figure 3(a) shows that

the average number of workers is roughly equal to the target value, i.e. δM/α. However,

Fig. 3(b) shows that the c.v. of the number of workers increases as the probability p

increases. It is apparently because a worker more frequently becomes a non-worker with

higher probability p and the number of workers is more fluctuating. As the probability

p increases, workers more frequently become non-workers and an insufficient number of

workers exist. In order to cover the deficiency of workers, Fig. 3(c) shows that the stimulus

20

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

th
e

nu
m

be
r

of
 w

or
ke

rs

the probability of becoming a non-worker

(a) the number of workers

 0

 0.004

 0.008

 0.012

 0.016

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

c.
v.

 o
f t

he
 n

um
be

r
of

 w
or

ke
rs

the probability of becoming a non-worker

(b) the c.v. of the number of workers

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

st
im

ul
us

 in
te

ns
ity

the probability of becoming a non-worker

(c) the stimulus intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

sp
ec

ia
lis

t r
at

io

the probability of becoming a non-worker

worker
non-worker

(d) the specialist ratio

Figure 3: Influence of frequent task rotation

intensity increases and more individuals are inclined to become a worker. In addition,

constant ξ is larger then constant φ. Therefore, threshold θ is more likely to decrease

and a non-worker is more likely to quit a non-worker specialist. As a result, as shown in

Fig. 3(d), the specialist ratio of non-workers is lower than the specialist ratio of workers

as the probability increases.

4.2.5 Influence of demand perturbation

To analyze robustness of response threshold model to instantaneous noise, we add gauss-

noise to stimulus intensity as follows.

s(t+ 1) = s(t) + δ − αN(t)

M
+ η(t+ 1)

Here, s(t) is stimulus intensity at time t. δ is the increasing ratio of stimulus intensity. α

is the impact of a worker. N(t) is the number of workers at time t. M is the number of

21

 0

 80

 160

 240

 320

 400

 480

 560

 640

 720

0 0.0001 0.001 0.01 0.1 1.0

th
e

nu
m

be
r

of
 w

or
ke

rs

σ2

(a) the number of workers

 0

 0.004

 0.008

 0.012

0 0.0001 0.001 0.01 0.1 1.0

c.
v.

 o
f t

he
 n

um
be

r
of

 w
or

ke
rs

σ2

(b) the c.v. of the number of workers

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 0.0001 0.001 0.01 0.1 1.0

st
im

ul
us

 in
te

ns
ity

σ2

(c) the stimulus intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.0001 0.001 0.01 0.1 1.0

sp
ec

ia
lis

t r
at

io

σ2

worker
non-worker

(d) the specialist ratio

Figure 4: Influence of demand perturbation

individuals. η(t+1) is a gauss-noise at time t+1 where the average is 0 and the variance

σ2
s . In order to change the impact of noise, we change the variance σ2

s from 0.0 to 1.0.

Other parameter settings are the same as a simulation in section 4.2.2. Results are the

average of 1,000 simulation runs.

Figures 4(a), 4(b), 4(c), 4(d) illustrate variation in the average number N of workers,

the c.v. Cn of the number of workers, the c.v. of the stimulus intensity Cs, and the average

specialist ratio Rwork and Rnwork, respectively. Figure 4(a) shows that the average number

of workers in σ2
s = 0, 0.0001, 0.001, 0.01 and 0.1 are roughly equal to the target value.

However, when σ2
s is 1.0, the number of workers increases by about 80. However, the size of

noise with σ2
s = 1.0 is too large. The increasing ratio δ of the demand intensity is ranging

from 0 to 1. In case of σ2
s = 1.0, the noise with about more 30 is often added to stimulus

intensity. Therefore, this situation is not realistic and we can ignore the result. Fig. 4(b)

22

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5000 10000 15000 20000

th
e

nu
m

be
r

of
 w

or
ke

rs

time

(a) the number of workers

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000

st
im

ul
us

 in
te

ns
ity

time

(b) the stimulus intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

sp
ec

ia
lis

t r
at

io

time

worker
non-worker

(c) the specialist ratio

Figure 5: Influence of individual extinction

shows that the c.v. of the number of workers increases as the variance σ2
s increases and we

can find the stability of the number of works decreases as the size of noise becomes larger.

On the contrary, the average number of works is not influenced by noise. Therefore, we

conclude that response threshold model is highly robust to noise.

4.2.6 Influence of individual extinction

To analyze the influence of individual extinction, we remove a worker with probability 0.6

from colony at time 10,000. Other parameters are the same as a simulation in section

4.2.2. In the simulation, we dose not change parameter δ of the response threshold model

around the time of death of works. Results are the average of 1,000 simulation runs.

Figure 5(a) shows that the number of workers suddenly decreases at time 10, 000 due

to individual extinction. However, the number of works increases in the very short term.

23

Table 2: Characteristic of response threshold model

scale optimality robustness resilience

response threshold model larger is better average high high

It is because demand intensity increases due to the deficiency of works and the probability

that a non-worker becomes a worker also increases. In the simulation, parameter δ does

not adaptively change in response to the change of the number of individuals. Therefore,

the number of workers decreases to about 450 until stabilization. In addition, as shown

in the Fig. 5(c), the specialist ratio of workers and non-workers recovers and maintained

at 0.5. This means that a response threshold model is highly resilient.

4.3 Conclusion

We organize characteristics of response threshold model as Table 2. From section 4.2.3,

we can find that the stability which is represented by the c.v. of the number of workers

advances as the number of individuals increases. However, the average number of works

is not influenced by the number of individuals, the probability that a worker becomes a

non-worker, and the demand perturbation based on the results in sections 4.2.3, 4.2.4, and

4.2.5. Therefore, we can conclude that the more is better as to the scale which means the

number of individuals. Then, the optimality which means a sufficient number of individuals

become a worker is averagely achieved. Therefore, we put ‘average’ in optimality of the

table. Finally, as described in sections 4.2.5 and 4.2.6, this model is highly robust to noise

and resilient to individuals extinction. Therefore, we put ‘high’ in both ‘rubustness’ and

‘resilience’.

24

5 Response threshold model-based device assignment

The proposal adopts a response threshold model of division of labors in a colony of social

insects [13] to accomplish autonomous and fully distributed decision making of nodes on

whether to assign embedded devices to an application.

5.1 Service network

An application is realized by devices which are selected by our decision making algorithm.

We call a network consisting of nodes contributing to an application a ‘service network’,

which is logically laid on a physical WSAN. Nodes constituting a service network are a

‘request node’ that initiates organization of the service network, ‘member nodes’ that are

equipped with devices which can satisfy application requirements, and ‘relay nodes’ that

deliver messages among a request node and member nodes. In addition, there are two

types of member nodes, i.e. ‘active member nodes’ and ‘idle member nodes’. A role of a

node is determined per application and changes in the course of operation. For example,

a node is an active member node of application A, a relay node of application B, and a

non-member node of application C.

An active member node assigns devices to one or more applications. We call a device

which provides a sensing or actuation function to an application an ‘active device’. On

the contrary, an idle member node is equipped with devices which can answer application

requirements, but it does not assign them to any application. We call an unassigned device

an ‘idle device’. An active member node has one or mode active device and some idle

devices, but an idle member node has only idle devices. A decision whether to become an

active or not is made by a node taking into account several conditions such as application

requirements, the degree that devices are shared among applications, and the residual

energy, to efficiently share active member nodes among applications and balance energy

consumption of member nodes.

When there is no operating application, no node is active in a WSAN. Device assign-

ment is initiated by a request node, e.g. an application server or a getaway node between

a WSAN and an outside application server. We should note here that our proposal can

be applied to both of a static and dynamic application. In the case of a static application,

25

Step2: Decide whether to
assign devices or not

Step3: Report the decision Step4: Application messages
 are exchanged

Step1: Flood a request message

Coordinator

Request node

Request
message

Notification
message

Application
message

Active member
node

Idle member
node

Figure 6: Overview of device assignment

a request node is a sink of data of periodic monitoring, for example. In the case of a

dynamic application, a node detecting an event becomes a request node, for example.

5.2 Basic behavior

A request node first disseminates a request message which specifies necessary devices and

their desired operational mode to all nodes (step 1 in Fig. 6). The minimum connectivity

of a WSAN is maintained by SPAN [12]. SPAN forms the forwarding backbone, which

consists of coordinator nodes. A coordinator node is a node which stays awake to main-

tain connectivity of neighbor nodes. Nodes which are not a coordinator can sleep and

communicate with each other through the forwarding backbone when needed. Decision to

become a coordinator is made locally by a node. A request message is sent to all nodes

in the whole area or nodes in the specified area of interest when location information is

available, through the forwarding backbone [20, 21].

When a node receive a request message, it first examines whether its devices can

answer the request. If the node is equipped with such devices, it becomes a member node.

Next, a member node decides whether to assign devices to a requesting application or not

by using the response threshold model-based decision making algorithm (step 2). Then

active member nodes report the decision to the request node by sending a notification

message. Nodes where notification messages traverse become a relay node and they adjust

26

Table 3: Internal values of a node

Notations Default Description

D ϕ set of devices

Oj set of possible operational modes of device j

S ϕ set of requirements of applications

X ϕ set of Xi,j

Y ϕ set of Yj

Θ ϕ set of θi,j

Xi,j false boolean flag of assignment of device j to application i

Yj default

mode

operational mode of device j

θi,j 5 threshold of assignment of device j to application i

the sleep scheduling if necessary (step 3). A member node of a certain application can be

a relay node of the same application. A coordinator node is likely to become a relay node.

Finally, application messages including sensing and control information are exchanged

among active member nodes and a request node through relay nodes until the next timing

of periodic dissemination of a request message (step4).

Above-mentioned steps are repeated while an application is running. A request node

can change contents of a request message to perform a different process of the application.

It also is possible for a member node to issue a new request message for the application.

At the end of application, a request node stops sending request messages. Those internal

values that a node holds for the application is removed when a timer expires without

receiving a request message for a predetermined duration.

5.3 Internal values of nodes

In our proposal, a node maintains a set of information summarized in Table 3. Details of

each information is given in the followings.

A node is equipped with a set D of devices. A node also has a set Oj of operational

modes of device j ∈ D. A setOj is represented by the following expression, where n = |Oj |,

i.e. the number of operational modes.

27

Oj = {mode1, · · · , moden−1, moden}

A device cannot operate in different operational modes simultaneously. ‘moden’ is a ‘de-

fault mode’ of a device and an idle device is in moden. When device j is a sensor, a typical

set is Oj = {sensing, sleep}. In the case of an ON/OFF switch, Oj = {ON, OFF}. In

general, a default mode is an operational mode where a device and a facility can save

energy.

A node also maintains a set X of Xi,j , a set Y of Yj , and a set Θ of θi,j (i ∈ I

and j ∈ D), which are used by the response threshold model-based decision making

algorithm. I is a set of identifiers of application for which a node received a request

message. Xi,j ∈ {true, false} represents whether device j is assigned to application i

(Xi,j = true) or not (Xi,j = false). Yj ∈ Oj represents the operational mode device j.

θi,j (0 < θi,j ≤ θmax) is a threshold representing hesitation of node in assigning device j

to application i.

A node maintains a set S of 7-tuples (i, j,m, k, h, si(t), ri). These values are updated

on receiving the t-th request message of application i ∈ I, where the identifier i which is

unique in the whole network can be generated as concatenation of a node identifier and a

sequence number of application it initiates. j is an identifier of a device which application

i requires. When application i requires multiple devices, the tuple is generated for each

of devices. m is an operational mode which application i request to device j. k is a

sequence number of the last request message. h is an identifier of a neighbor node where

it received the request message. si(t) is the demand intensity representing the degree that

the request node wants its request to be satisfied. si(t) is calculated by the request node in

accordance with the number of devices assigned to application i. Finally, ri is the priority

of application i or its process.

5.4 Node behavior

A request node sends a request message at regular intervals of Idemand s. We call an interval

between successive emissions of a request message a ‘round’. As a simple example, assume

an application performs a process for a periodic data gathering which requires a motion

28

sensor to report the condition at coordinates (x, y) every Idata s. In this case, a request

message emitted at the t-th round is a pair of attributes in the form (i, k, si(t), ri) and a

request body in the form (motion sensor, sensing, (x, y), Idata). Content information can

be extended by using an XML-based method [22].

When a node other than a request node of an application receives a request message,

it behaves following a flow chart shown in Fig. 7. First, if a node is a coordinator of

SPAN, it forwards the request message to neighbor nodes and it becomes a candidate of

a relay node. Next, if it does not have an element of application i in set S, it generates

a new 7-tuple element. If the corresponding tuple exists, it is updated. Then, a node

checks the priority of the requesting application and examines whether it has a device

which satisfy the request. If it has, the node becomes a member node. A member node

initializes elements Xi,j , Yj , and θi,j of application i in sets X, Y, and Θ, respectively, if

not exist. If the priority of the application is the highest in all applications in set S or not

assigned, values Xi,j , Yj , and θi,j are updated by a decision making algorithm explained

in section 5.5. A request message requesting assignment of an actuator, to help solving

actuator contention, a priority is assigned. On the contrary, a request message requesting

assignment of a sensor, a sensor can be shared among multiple applications and priority

is not assigned. After decision making, if all applications with the highest priority in a

set S, device j is not assigned to any application and the state of device j will be set

at ‘default mode’. When Xi,j is true and application i has the highest priority in all

applications, the state is set at the mode requested by application i. Otherwise, the state

is not updated. Then, if the node assigns device j to application i, the decision is reported

to the request node by sending a notification message which contains an identifier of the

node, an identifier of the application and Xi,j . A notification message is sent to neighbor

h, from which a node received the corresponding request message. Following a reverse

path, a notification message reaches the request node.

An assigned device operates in the decided operational mode. In the above example,

an active member node sends sensing data of a point (x, y) obtained by a motion sensor

to the request node at regular intervals of Idata s. Every time a member node receives

a request message, the above steps are conducted. If a member node does not receive

a request message for Ei s, it considers the corresponding application terminates and it

29

removes corresponding information from the memory.

A request node receives notification messages from active member nodes. In the pro-

posal, a request node uses a scalar value, called the demand intensity, to control the

number of active member nodes while leaving decision making to nodes. The demand

intensity is calculated from the number of notification messages by the following equation,

where the initial demand intensity si(0) is set at 0.

si(t+ 1) = si(t) + δi −Ni(t) (1)

Here, δi (0 ≤ δi) is an increasing rate of demand intensity of application i. Ni(t) (0 ≤ Ni(t))

is the number of active member nodes which is equal to the number of notification messages

stating Xi,j = true received in response to the t-th request message. The equation means

that, when the number of active member nodes is less than δi, the demand intensity

gradually increases and the request node requests more member nodes to become an

active member node. On the other hand, when the number is greater than δi, the demand

intensity gradually decreases and active member nodes become inactive. The updated

demand intensity is notified to member nodes by a request message at the beginning of

the next round. Until the next round, a request node exchanges messages with active

member nodes.

30

send a notification message

node receives a request message
of application i

update the tuple with the latest request
message

perform the response threshold model-based
decision making

the tuple of
application i set S

yes

generate the tuple and add it to set S

no

 Have a device
satisfying the

request?

become a member node

yes

Finish

no

Xi,j ☎X, Yj,☎Y, and

✂i,j☎

yes generate Xi,j ,Yj, ✂i,j and add them to sets X, Y,

no

yes

Is coordinator ?

become a candidate of a relay node

no

yes

forward the request message

Is the priority
the highest

no

yes

Is Xi,j true

Finish

no

yes

update the state of device j

Figure 7: Behavior of a node on receiving a request message

31

5.5 Response threshold model-based decision making

It is known that a colony of social insects is divided into two groups of workers and non-

workers based on autonomous decision of individuals using a simple rule. The size of

group is well adjusted based on the task-associated intensity of stimuli [23]. A response

threshold model is a mathematical model of the division of labors of social insects [13].

We adopt the model as an algorithm for a member node to decide whether it assigns a

device to an application or not. For details of the response threshold model, refer to [13]

or Appendix.

The probability P (Xi,j = false → Xi,j = true) that an idle node (Xi,j = false)

assigns device j to application i is derived by the following equation.

P (Xi,j = false → Xi,j = true) =
si(t)

2

si(t)2 +Ajθi,j(t)2
(2)

Here, si(t) (0 ≤ si(t)) is the demand intensity of application i at the t-th round. θi,j (0 <

θi,j ≤ θmax) is a threshold which corresponds to hesitation of the node in assigning device j

to application i. The equation is extended from the basic model by introducing variable Aj .

Aj (1 ≤ Aj) is a variable related to the degree that device j is shared among application,

and the residual energy of the node. Derivation of Aj will be explained in section 5.6.

The probability P (Xi,j = true → Xi,j = false) that an active member node (Xi,j =

true) quits assigning device j to application i is derived by the following equation.

P (Xi,j = true → Xi,j = false) = pj (3)

Here, pj (0 ≤ pj ≤ 1) is a constant defined per device. This enables rotation of task among

member nodes and prevents active member nodes from redundant device assignment. The

average duration that an active member node assigns device j an application is 1/pj

rounds.

Similarly to the basic response threshold model, our proposal also has a mechanism of

reinforcement which makes specialists. Threshold θi,j is adjusted as follows.

θi,j =

 θi,j − ξj , if Xi,j is true

θi,j + φj , if Xi,j is false
(4)

32

where ξj (0 < ξj) and φj (0 < φj) are parameters of the speed of differentiation. With

the threshold adjustment, an active member node is more likely to become active again

than an inactive member node.

5.6 Variable Aj for device sharing and energy efficiency

In the proposal, variable Aj (1 ≤ Aj) is derived by the following equation from the degree

that device j is shared among applications for efficient device sharing and the residual

energy for balancing energy consumption among member nodes for longer lifetime.

Aj = (Sj − Fj)
m +

(
Pfull

Pres

)n

− 1 (5)

Parameters are summarized in Table 4. Here, the first term of right side is used for device

sharing among applications. Variable Sj (1 ≤ Sj) represents the number of applications

where a node is a member regarding device j. Sj is derived as Sj = |{Xi,j ∈ X | i ∈ L}|

where L is a set of identifiers of application where a node is a member node. Variable

Fj (0 ≤ Fj) represents the number of applications where a node is an active member node.

Fj is derived as Fj = |{Xi,j ∈ X | i ∈ I,Xi,j = true}| and Fj ≤ Sj − 1. Exponent m (1 ≤

m) influences the sensitivity to the degree of sharing. The second term is used for balancing

energy consumption. Pfull/Pres is the ratio of the battery capacity Pfull (0 < Pfull) to

the residual energy Pres (0 < P ≤ Pfull). Exponent n (1 ≤ n) influences the sensitivity

to the residual energy. The third term is used for shifting minimum value of valuable Aj

from 2 to 1. Variable Aj becomes smaller and probability P (Xi,j = false → Xi,j = true)

becomes higher on a node which is engaged in more applications as an active member

node and has more residual energy.

33

Table 4: Parameters of variable Aj

Notations Description

m exponent regulating the sensitivity to the degree of sharing

n exponent regulating the sensitivity to the residual energy

Sj number of applications where a node is a member for device j

Fj number of applications where a node is an active member node for

device j

Pres amount of residual energy of a node

Pfull total capacity of battery of a node

6 Performance evaluation

In this section, we evaluate our proposal through comparison with directed diffusion [24]

and our former proposal [25]. We first briefly explain directed diffusion and its extension

made for comparison purposes. Then, we will show results of evaluation from viewpoints

of efficiency of device assignment and robustness against parameter setting errors. Our

proposal is also designed with actuator contention. We are sure that our proposal can solve

actuator contention when each process of applications is given an appropriate priority [17].

Therefore, we do not evaluate this issue in this paper.

6.1 Directed diffusion

Directed diffusion is a data-centric information gathering mechanism [24]. A sink which

corresponds to a request node in our proposal first disseminates an interest message. An

interest message specifies a required sensing task and a reporting interval. Initially, a

reporting interval is set longer than one that an application requires.

When a node receives an interest message, it sets an entry called gradient, which

consists of the information about a task, an identifier of a link with a neighbor node

from which it received the interest message as a precursor, and a report interval specified

in the message. If a node can perform the requested sensing task, it becomes a source

node, which we call member node in our proposal, and begins to send sensing data as

data messages at the specified report interval. Data messages reach the sink by following

34

Table 5: Prioritization rule for reinforcement in directed diffusion

Renergy

≥ Tenergy < Tenergy

Rshare

≤ Tshare 1 3

> Tshare 2 4

gradients. The first data message is called an exploratory data message.

A sink would receive multiple exploratory messages from different sources. Among

them, it selects one based on a reinforcement rule, for example, to select an exploratory

data message received first. Then, the sink sends an interest message, called a reinforce-

ment message to a neighbor node from which the selected exploratory data message comes.

A reinforcement message is in the same format as an interest message, but it specifies an

application-specific reporting interval which is shorter than a reporting interval written in

an interest message. A reinforcement message is sent to a source node following gradients

in the reverse direction while updating gradients on the route with the new reporting

interval. The gradient does not hold information about a source node. Therefore, when

there are two or more source nodes in the downstream of the selected neighbor node,

a reinforcement message does not necessarily reach a source node which sent the corre-

sponding exploratory data message. A sink keeps sending both of interest messages and

reinforcement messages at regular intervals to maintain and update gradients.

6.2 Extension of directed diffusion

In our proposal, a request node can control the number of devices which contribute to

an application by the demand intensity as will be verified in section 6.4, while device as-

signment relies on an autonomous decision of each node. On the other hand, the number

of sources is uncontrollable and it would dynamically change in directed diffusion. Since

gradient on a node does not have information about either of a sink or a source, interest

messages and reinforcement messages do not always reach the same set of sources. There-

fore, for comparison, we extended directed diffusion for controlling the number of nodes

or devices which contributes to an application as follows.

First, for a sink to obtain information of a source, we extend a data message to have ad-

35

ditional fields for an identifier idsink of a sink, idsrc of a source, the amount Pres (0 < Pres ≤

Pfull) of residual energy, the battery capacity Pfull (0 < Pfull), the number Mdd (1 ≤ Mdd)

of sinks from which it receives interest or reinforcement messages, and the numberNdd (0 ≤

Ndd) of sinks from which it receives reinforcement messages. Consequently, the extended

data message takes the form of [type, data, idsink, idsrc, Pres, Pfull,Mdd, Ndd, time-stamp].

Please refer to [24] for details of other fields than those newly introduced. Next, to iden-

tify a path between a specific sink and a specific source, we add a field of an identifier

idsink of a sink and idsrc of a source to the gradient. First time when a node receives

an interest message, it makes a gradient while leaving idsrc empty. It fills in the field

when a data message is received. Consequently, the extended gradient has the form of

[type, region, data rate, time stamp, expired-AT, idsink, idsrc]. While leaving the form

of an interest message as it is, i.e. [type, region, interval, time-stamp, expired-AT], we

extended the form of a reinforcement message to have a new field for an identifier idsink

of a sink node and idsrc of a source node. As a result, the reinforcement message has

the form of [type, region, interval, idsink, idsrc, time-stamp, expired-AT]. As example of

message exchange, an interest message is flooded and generates gradient with a field idsrc

empty. Then, a data message is forwarded to a sink following gradient and fills in a field

idsrc of gradient. Then, a reinforcement message from a specific sink to a specific source

is forwarded based-on data-caches.

A sink in the extended directed diffusion first disseminates an interest message to all

nodes. Next sources begin to send data messages. A data message sent by a source contains

information about its energy, Pres and Pfull and its task Mdd and Ndd. After receiving the

sufficient number of data messages, a sink evaluates Renergy which is derived as Pres/Pfull

and Rshare which is derived as (Mdd−Ndd)/Mdd for each source node. Then, it determines

priority of the node in reinforcement. For the sake of simplicity, we use threshold-based

prioritization summarized in Table 5, where Tenergy and Tshare are thresholds. Numbers

show priority values. For example, if a source has plenty of energy, i.e. large Renergy, and

is contributing to many sinks, i.e. small Rshare, it is the best source to reinforce. Finally,

following an ascending order of priority value, a sink selects the required number N of

sources and send reinforcement messages to them. In the following, we call a source which

receives a reinforcement message an active source.

36

Table 6: Parameter setting of performance evaluation

Notations Description Value

pj probability of quitting task in Eq. (3) 0.01

ξj threshold adaptation parameter in Eq. (4) 0.1

φj threshold adaptation parameter in Eq. (4) 1

m influence of degree of sharing devices in Eq. (5) 3

n influence of residual energy in Eq. (5) 3

L interval for collecting exploratory data messages 0.5

Tshare threshold of reinforcement rule 0.5

Tenergy threshold of reinforcement rule 0.5

Idemand interval of request message 10

6.3 Simulation setting

We used OMNet++ [26] for simulation. 25 nodes are placed in the area of 25 m × 25 m. 5

nodes, A, B, C, D, and E, among them are located at the edge of the area, while remaining

20 nodes are randomly distributed. Figure 8 illustrates an example of node layout where

the x and y axes are coordinates filled circles, open circles, crosses, and triangles indicate

nodes. Each line corresponds to a path between an active member node and a request

node to exchange application messages.

Nodes are identical in battery capacity, embedded device, and communication capabil-

ity. They operate on two AA batteries of 3.3 V. Based on the data sheet of MICAz [27],

a transceiver module consumes 18.8 mA in listening a channel and receiving a message,

17.4 mA in transmitting a message, and 0.021 µA in a sleep mode. A node is equipped

with a sensing device with identifier j. A sensing device can obtain information about a

certain point in the diameter of 15 m. We assume that energy consumption of the device

in sensing is negligible in evaluation.

The communication range is 15 m on the IEEE 802.15.4 non-beacon mode MAC/PHY

protocol. The length of a request message, an interest message, and a reinforce message is

set at 36 byte without a 6 byte header. Regarding a notification message, an exploratory

message, and a data message, the length is set at 64 byte without a 6 byte header. Pa-

37

A B

C

D

E

Sensing area of (25,25)

Relay node

Request node

Active member node
5 10 15 20 25

5

10

15

20

25

Figure 8: Snapshot of a simulation

rameters used in the simulation experiments are summarized in Table 6, which are chosen

based on preliminary experiments.

6.4 Evaluation of task assignment

Since self-organization does not always achieve the optimal result due to its autonomous

behavior, in this section, we first verify that our proposal can accomplish as good de-

vice assignment as directed diffusion which employs deterministic rules. Evaluation is

conducted, from a viewpoint of the number of active member nodes and relay nodes.

We configure 5 edge nodes as request nodes of 5 independent applications. All request

nodes require the information about the corner point at (25, 25). In the other words,

they require assignment of a sensor device within a circular area centered at (25, 25) with

radius 15 m, which is illustrated as a shaded quadrant in Fig. 8. Each request node sends a

request message at a regular interval of Idemand, which is 10 s in the experiments. Timings

of emission of the first request message from request nodes are randomly distributed in

1 sec to avoid collision. We conducted 100 simulation runs for each of 30 combinations

of simulation parameters by changing the number of request nodes which send request

messages from 1 to 5, the increase rate δi from 0.1 to 2.1, and the required number N of

active sources from 1 to 3.

Figures 9 and 10 summarize results of the number of active member nodes or active

38

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5

nu
m

be
r

of
 a

ct
iv

e
m

em
be

r
no

de
s

number of request nodes

PROP-FLOOD (δ=0.1)
PROP-FLOOD (δ=1.1)
PROP-FLOOD (δ=2.1)

PROP-SPAN (δ=0.1)
PROP-SPAN (δ=1.1)
PROP-SPAN (δ=2.1)

(a) our proposal

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5

nu
m

be
r

of
 a

ct
iv

e
m

em
be

r
no

de
s

number of request nodes

DD-FLOOD (N=1)
DD-FLOOD (N=2)
DD-FLOOD (N=3)

DD-SPAN (N=1)
DD-SPAN (N=2)
DD-SPAN (N=3)

(b) directed diffusion

Figure 9: Number of active member nodes

sources and the number of relay nodes in the network at the end of a simulation run of

20000 s, respectively. The number of active member or source nodes can be controlled by

adjusting δ in our proposal and N in directed diffusion. Each point is an average of 100

simulation runs. In the figures, PROP-SPAN means that our proposal is adopted, while

PROP-FLOOD, that is our former proposal, employs our proposed scheme but without

SPAN. Instead, a request node use simple flooding to disseminate a request message in

PROP-FLOOD. We also consider combination of directed diffusion with flooding and

SPAN as DD-FLOOD and DD-SPAN, respectively.

Figure 9(a) shows that both of variations of the proposal, i.e. PROP-SPAN and PROP-

FLOOD, keep the number of active member nodes constant even if the number of request

39

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

nu
m

be
r

of
 r

el
ay

 n
od

es

number of request nodes

PROP-FLOOD (δ=0.1)
PROP-FLOOD (δ=1.1)
PROP-FLOOD (δ=2.1)

PROP-SPAN (δ=0.1)
PROP-SPAN (δ=1.1)
PROP-SPAN (δ=2.1)

(a) our proposal

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

nu
m

be
r

of
 r

el
ay

 n
od

es

number of request nodes

DD-FLOOD (N=1)
DD-FLOOD (N=2)
DD-FLOOD (N=3)

DD-SPAN (N=1)
DD-SPAN (N=2)
DD-SPAN (N=3)

(b) directed diffusion

Figure 10: Number of relay nodes

nodes increases. Although not shown in the figure, the average number of active member

nodes per application is one, two, and three with δ = 0.1, 1.1, and 2.1.

This implies that our proposal can share active member nodes among applications

without involving redundant devices. In addition, we also observe that the same δi results

in the same number of active member nodes independently of the number of applications,

while different δi results in the different number of active member nodes. When parameter

δi is 0.1, the number of active member nodes stays 1. If there is no active member node,

the demand intensity si gradually increases. Consequently, the probability P (Xi,j =

false → Xi,j = true) in Eq. (2) becomes large at an idle member node. Once some idle

member nodes become active, the demand intensity gradually decreases to 0. It prevents

40

other idle member nodes from becoming an active member node. At the beginning, the

number of idle member nodes that are stimulated to become active is more than one.

However, an active member node eventually becomes idle with probability pj . If all active

member nodes change to idle occasionally, the demand intensity increases again. Through

the course, threshold θi,j is adjusted. Consequently there appears a node which has the

smallest threshold among all. As a result, the number of active member nodes converges

to 1. Similarly, when parameter δi are 1.1 and 2.1, the number of active member nodes

per application converges to 2 and 3, respectively.

In both of variations of directed diffusion, i.e. DD-SPAN and DD-FLOOD, the num-

ber of active source nodes is kept constant as shown in Fig. 9(b). A sink selects the pre-

determined number N of source nodes based on the algorithm explained in section 6.2.

Then, it sends reinforcement messages to those nodes. By receiving a reinforcement mes-

sage, Rshare increases and the priority of the source node becomes higher. Consequently,

a source node selected by a sink node is likely to be selected by other sink. As a re-

sult, the desired number of source nodes, which are engaged in data reporting at the

application-specific rate, are well shared among applications.

Regarding relay nodes, Fig. 10(a) shows that incorporation with SPAN results in the

smaller number of relay nodes than with flooding except for the case of δ = 0.1 and the

number of applications is 1. Being incorporated with SPAN, messages traverses the for-

warding backbone between a request node and an active member node. Since there is only

one forwarding backbone in the network and it is shared by nodes, a path between them

is not necessary the shortest. On the contrary, a message disseminated by flooding follows

the shortest path from a request node to a member node. As a result, the average number

of relay nodes becomes larger with SPAN than with flooding, whereas the difference is

only 0.2. When there are two or more applications or δ is set at a larger value to have two

or more active member nodes, the proposal results in the smaller number of relay nodes.

With flooding, in the worst case scenario, there exist the same number of independent

and disjoint paths between all pairs of a request node and an active member node. On

the other hand, the forwarding backbone is always shared among paths with SPAN. This

apparently contributes to reduction in the number of relay nodes and the lifetime of a

network can be prolonged. As shown in Fig. 10(b), directed diffusion also benefits from

41

SPAN. Comparing the proposal and directed diffusion, the number of relay nodes is simi-

lar, since the number of active member nodes and the number of active source nodes are

the same.

From the above results, we can conclude that the proposal can effectively share active

member nodes and relay nodes among applications and keep the number of active member

nodes constant independently of the number of applications in the current simulation

setting. Since directed diffusion is a centralized protocol, where a sink decides source

nodes to reinforce, with rule-based decision making, it is not surprising that the number

of nodes is kept as intended. On the other hand, each member node has the right to

make a decision of device assignment in our proposal. Nevertheless, a response threshold

model-based decision making algorithm brings results similar to directed diffusion’s. That

is, our proposal accomplishes self-organizing device assignment which is as optimal as a

centralized and deterministic scheme.

6.5 Evaluation of robustness against parameter setting

We discuss advantages of the self-organization based proposal over the deterministic and

complicated rule-based directed diffusion in regard to the robustness against parameter

setting. In this section, we assume that three applications are operating in the area. Three

nodes at coordinates (0, 0), (12.5, 0), and (0, 12.5) are their request nodes as illustrated

in Fig. 8. The requested number N of active source nodes per application is set at 1 and

parameter δi of the proposal is set at 0.1. To make nodes heterogenous in energy condition,

the initial residual energy of each node is set at random value ranging from 25% to 80%.

In general, a response threshold model is less sensitive to parameter setting similarly

to other bio-inspired mechanisms [28]. To confirm this, we changed m and n in Eq. (5)

from 3 (Table 6) to 6. With larger m and n, it becomes more difficult for a member

node to become an active member node and the sufficient number of active member nodes

might not be achieved. To examine the robustness of a decision making algorithm against

parameter setting, we also change thresholds Tshare and Tenergy from 0.5 in Table 6 to

0.1 and 0.9, respectively. Since Renergy ranges from 0.75 to 0.80 from the beginning of

a simulation run and Rshare is always equal to or larger than (3 − 2)/3 ≃ 0.33 because

in reinforcement of each sink a node with most sharing its device is requested from three

42

 0

 1

 2

 3

 4

 5

 6

RS-T
4+FLOOD

RS-4E+FLOOD

DD-T
4+FLOOD

DD-4E+FLOOD

DD+FLOOD

RS-T
4+SPAN

RS-4E+SPAN

DD-T
4+SPAN

DD-4E+SPAN

DD+SPAN

nu
m

be
r

of
 a

ct
iv

e
m

em
be

r
no

de
s

 scheme

our proposal
directed diffusion

(a) Number of active member nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

RS-T
4+FLOOD

RS-4E+FLOOD

DD-T
4+FLOOD

DD-4E+FLOOD

DD+FLOOD

RS-T
4+SPAN

RS-4E+SPAN

DD-T
4+SPAN

DD-4E+SPAN

DD+SPAN

av
er

ag
e

ra
tio

 o
f r

es
id

ua
l e

ne
rg

y

 scheme

(b) Residual energy

Figure 11: Rubustness of our proposal against parameter setting

applications (Mdd = 3) and has already provided two applications (Ndd = 2) with the

device. As a result, all source nodes have the same priority of 4 in Table 5. That is,

directed diffusion cannot take into account the heterogeneity of nodes in device assignment

for inappropriate parameter setting for conditions of a WSAN.

Simulation results averaged over 100 runs are depicted in Fig. 11. We considered 10

different schemes in the experiments. Their names are in the form of ‘scheme-parameter+

dissemination’. First, ‘scheme’ is either of RS or DD, where RS corresponds to our proposal

and DD is directed diffusion. Second, ‘parameter’ is either of ‘T4’ or ‘4E’. ‘T4’ uses

parameters summarized in Table 6, whereas ‘4E’ uses parameters in section 6.5. Finally,

43

‘dissemination’ corresponds to a method used for message dissemination and it is either of

‘FLOOD’ or ‘SPAN’. ‘DD-FLOOD’ is the original directed diffusion, to which no extension

is applied. ‘DD-SPAN’ uses SPAN instead of flooding. In Fig. 11(a), the x-axis indicates

schemes and the y-axis is the average number of active member nodes or active sources

at 20000 s. In Fig. 11(b), the x-axis is the same as Fig. 11(a) and the y-axis indicates

the averaged ratio of residual energy of member nodes. Each cross show an average ratio

of residual energy of active member nodes. The top of each bar indicates the maximum

value of member nodes. The bottom of each bar indicates the minimum value of member

nodes.

As shown in Fig. 11(a), from a view point of the number of active member nodes,

the change of parameter setting does not strong impact on our proposal. On the con-

trary, it impacts on directed diffusion and the number of active sources increases. This

is because, as mentioned above, thresholds in reinforcement rule is not appropriate to

the current condition and all sources are categorized into one. As a result, similarly

to DD-FLOOD/SPAN, a source nearer a sink is more likely to be selected as an active

source. In this simulation, each sink is separately placed. Therefore, the number of ac-

tive sources in DD-4E-SPAN/FLOOD are more than the number of active sources in

DD-T4-SPAN/FLOOD. Finally, Fig. 11(b) shows RS-T4+FLOOD/SPAN can construct

applications from nodes with higher residual energy similarly to DD-T4+FLOOD/SPAN.

From the results, in appropriate parameter setting, our proposal can achieve compa-

rable performance with deterministic and complicated rule-based directed diffusion. Even

if parameter setting is changed, its impact is less sensitive than directed diffusion. In

general, in a rule-based mechanism like directed diffusion, it is difficult to draw up an ap-

propriate rule as the number of metrics we have to take into account increases and decide

on accurate parameter setting such as priorities and thresholds described in section 6.2.

In addition, based on the above-mentioned simulation results, if parameters are not ap-

propriate, it might lead to the decrease in the performance. On the contrary, our proposal

can achieve efficient device assignment with very simple mechanism described in section

5.6 and this leads to the robustness against parameter setting.

44

7 Conclusion and future work

In this thesis, we proposed a mechanism for self-organizing device assignment mechanism.

Results of simulation support the proposal, but there still remains room for further eval-

uation and improvement. First we need to consider how to solve actuator contention

among processes with the same priority in our proposal. Evaluation from a viewpoint of

robustness, scalability, and adaptability is one of future work as well.

45

Acknowledgments

I gratefully acknowledge the continuous support, tremendous advice, and encouragement

from my supervisor, Professor Masayuki Murata of Osaka University. I sincerely appreciate

Professor Naoki Wakamiya of Osaka University. All of my work would not be achieved

without his support. He gave me invaluable help on my research experiments. And also I

would express my sincere appreciation to Professors Koso Murakami, Makoto Imase, Teruo

Higashino, and Hirotaka Nakano of Osaka University, for their invaluable advice. I am

also grateful to Associate Professor Shin’ichi Arakawa, Assistant Professor Yuichi Oshita

of Osaka University. They gave me helpful comments and feedback. Finally, I truly thank

my friends and colleagues in the Department of Information Networking, Graduate School

of Information Science and Technology of Osaka University for their support.

46

References

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research

challenges,” Ad Hoc Networks, vol. 2, pp. 351 – 367, May 2004.

[2] F. Xia, Y. Tian, Y. Li, and Y. Sung, “Wireless sensor/actuator network design for

mobile control applications,” Sensors, vol. 7, pp. 2157–2173, June 2007.

[3] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann, “Towards multi-purpose wireless

sensor networks,” in Proceedings of the International Conference on Systems Com-

munications, pp. 336–341, Aug. 2005.

[4] E. Avilés-López and J. Garćıa-Maćıas, “TinySOA: a service-oriented architecture

for wireless sensor networks,” Service Oriented Computing and Applications, vol. 3,

pp. 99–108, June 2009.

[5] H. Lim, M. Iqbal, and T. Ng, “A virtualization framework for heterogeneous sensor

network platforms,” in Proceedings of the ACM Conference on Embedded Networked

Sensor Systems, pp. 319–320, Nov. 2009.

[6] N. Mohamed and J. Al-Jaroodi, “A survey on service-oriented middleware for wireless

sensor networks,” Service Oriented Computing and Applications, vol. 5, pp. 71–85,

June 2011.

[7] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting concurrent applica-

tions in wireless sensor networks,” in Proceedings of the International Conference on

Embedded Networked Sensor Systems, pp. 139–152, Oct. 2006.

[8] A. Majeed and T. Zia, “Multi-set architecture for multi-applications running on wire-

less sensor networks,” in Proceedings of the International Conference on Advanced

Information Networking and Applications Workshops, pp. 299–304, Apr. 2010.

[9] E. H. Jung and Y. J. Park, “TinyONet: A cache-based sensor network bridge enabling

sensing data reusability and customized wireless sensor network services,” Sensors,

vol. 8, pp. 7930–7950, Dec. 2008.

47

[10] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare, “Cluster tree

based self-organization of virtual sensor networks,” in Proceedings of the International

Workshops on Wireless Mesh and Sensor Networks, pp. 1–6, Nov. 2008.

[11] C. Frank and K. Romer, “Algorithms for generic role assignment in wireless sensor

networks,” in Proceedings of the International Conference on Embedded Networked

Sensor Systems, pp. 230–242, Oct. 2005.

[12] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-efficient

coordination algorithm for topology maintenance in ad hoc wireless networks,” Wire-

less Networks, vol. 8, pp. 481–494, Sept. 2002.

[13] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J. L. Deneubourg, “Adaptive task

allocation inspired by a model of division of labor in social insects,” in Proceedings of

the International Conference on Biocomputing and Emergent Computation, pp. 36–

45, Jan. 1997.

[14] P. del Cid Garcia, D. Hughes, S. Michiels, and W. Joosen, “Middleware for resource

sharing in multi-purpose wireless sensor networks,” in Proceedings of the International

Conference on Networked Embedded Systems for Enterprise Applications, pp. 20–28,

Nov. 2010.

[15] C. Shin and W. Woo, “Service conflict management framework for multi-user inhab-

ited smart home,” Journal of Universal Computer Science, vol. 15, pp. 2330–2352,

Dec. 2009.

[16] S. Baek, H. Lee, S. Lim, and J. Huh, “Managing mechanism for service compatibility

and interaction issues in context-aware ubiquitous home,” IEEE Transactions on

Consumer Electronics, vol. 51, pp. 524–528, May 2005.

[17] M. Kolberg, E. Magill, and M. Wilson, “Compatibility issues between services sup-

porting networked appliances,” IEEE Communications Magazine, vol. 41, pp. 136–

147, Nov. 2003.

[18] K. Gill, S. Yang, F. Yao, and X. Lu, “A zigbee-based home automation system,”

IEEE Transactions on Consumer Electronics, vol. 55, pp. 422–430, May 2009.

48

[19] C. Gomez and J. Paradells, “Wireless home automation networks: A survey of ar-

chitectures and technologies,” IEEE Communications Magazine, vol. 48, pp. 92–101,

June 2010.

[20] J. Bruck, J. Gao, and A. Jiang, “Localization and routing in sensor networks by local

angle information,” ACM Transactions on Sensor Networks, vol. 5, pp. 7:1–7:31, Feb.

2009.

[21] Y. Ko and N. Vaidya, “Flooding-based geocasting protocols for mobile ad hoc net-

works,” Mobile Networks and Applications, vol. 7, pp. 471–480, Dec. 2002.

[22] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, D. Boeckmann, and V. Linnemann,

“Efficient XML usage within wireless sensor networks,” in Proceedings of International

Conference on Wireless Internet, pp. 1–10, Oct. 2008.

[23] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from natural to

artificial systems. Oxford University Press, 1999.

[24] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and

robust communication paradigm for sensor networks,” in Proceedings of the Interna-

tional Conference on Mobile Computing and Networking, pp. 56–67, Aug. 2000.

[25] T. Iwai, N. Wakamiya, and M. Murata, “Proposal for dynamic organization of ser-

vice networks over a wireless sensor and actuator network,” in Proceedings of the

International Conference on Ambient Systems, networks and Technologies, vol. 5,

pp. 240–247, Sept. 2011.

[26] A. Varga et al., “The OMNeT++ discrete event simulation system,” in Proceedings

of the European Simulation Multiconference, pp. 319–324, June 2001.

[27] Crossbow Technology, “MICAz Datasheet.” http://www.xbow.com.

[28] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, “Media streaming on P2P

networks with bio-inspired cache replacement algorithm,” in Proceedings of the In-

ternational Workshop on Biologically Inspired Approaches to Advanced Information

Technology, vol. 3141, pp. 380–395, Jan. 2004.

49

