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Abstract—A new generation network is expected to keep
operating and providing users and applications with means of
communication while being exposed to dynamic and substantial
change in the operational environment such as network topology,
traffic, and QoS requirement. To establish a highly adaptive
and reliable network, we take an approach to be inspired
by biological systems, which adapt themselves to dynamically
changing and even unexpected environment. In this paper we
show examples of application of bio-inspired models, more
specifically the attractor selection/composition models built on
adaptive behavior of biological systems, to autonomous and
adaptive networking in wireless communication systems. The first
application is MANET routing, where a path connecting a source-
destination pair must be maintained under dynamically changing
environment. The second application is resource allocation among
nodes and applications competing for wireless networks with
heterogeneous characteristics. We further discuss future direction
of bio-inspired adaptive networking.

I. INTRODUCTION

In the forthcoming future, our daily life will be surrounded
by a considerable number of intelligent devices communi-
cating through broadband wired/wireless access networks.
Whereas they provide us with safe, secure, and comfortable
environment, they cause the considerable increase or even ex-
plosion in the following dimensions and bring new challenges
to a new generation network [1].

Scale: The number of nodes connected to a network,
the physical and logical area of a network, the number of
applications running on a network, the number of sessions
and flows going through a network, and the amount of traffic
transmitted over a network affect network performance. As
the scale of network increases, Centralized control technology
becomes infeasible and impossible for maintenance overhead
of up-to-date global information and govern the whole system.
Therefore, a new generation network must employ fully dis-
tributed and autonomous control technologies to achieve the
higher scalability than before.

Heterogeneity: All devices are not the same from view-
points of implemented protocols, communication performance,
processing capability, and embedded functions. A new gener-
ation network must be flexible to accommodate a variety of
nodes with different performance and reliability, while conven-
tional protocols mostly assume that nodes are homogeneous or
their diversity is within a certain range. In addition, different
applications have different traffic characteristics and different
QoS requirements. A new generation network needs to satisfy

their requirements by efficient and effective use of limited
network resources.

Dynamism: Network topology, traffic pattern, and QoS re-
quirements of applications dynamically and drastically change
in a course of operation of a network. Only if the degree
of change is predictable and it remains within the assumed
range, pre-optimization of control parameters, mechanisms,
and algorithms is useful and a network can provide the optimal
performance. However, an optimized network is fragile and
it will easily collapse once assumptions break. The high
level of adaptability is one of indispensable features of a
new generation network to keep providing a reliable and de-
pendable communication vehicle under unexpected operational
condition. Robustness is also highly required since all devices
are not reliable and they often fail without notice.

In recent years, to address substantial need for scalable, flex-
ible, adaptive, and robust new generation networks, interdis-
ciplinary researches have become an active area. Researchers
cross boundaries of academic disciplines and integrate knowl-
edge, theories, models, and methods of other disciplines to
solve problems faced in information networking. Among dis-
ciplines such as mathematics, physics, chemistry, economics,
and sociology, biology is a main source of inspiration because
of the high level of survivability, adaptability, scalability of bi-
ological systems [3]-[5]. Furthermore, biological systems are
self-organizing, where the globally organized pattern emerges
from collective behavior of mutually interacting individuals.
Each individual acts based on simple rules which use locally
available information. Typical examples of self-organizing
behavior of biological systems can be found in the so-called
swarm intelligence [6], such as an ant trail.

In this paper, we introduce our bio-inspired research ac-
tivities for highly adaptive and reliable wireless networking.
As biological algorithms, we adopt nonlinear mathematical
models, i.e. the attractor selection model and the attractor
composition model. We focus on wireless networking, since
the above non-trivial issues are more critical in an access
network, especially which is wireless, than a core network.
Except for the scale, heterogeneity and dynamism can be
mitigated or averaged to some extent at a core network for
statistical multiplexing and the law of large numbers. On the
other hand, a wireless network suffers from unpredictability
and instability of communication which result in frequent
changes in a network topology and quality of communication.



We first describe biological adaptation and the attractor se-
lection and composition models in Section II. Next in Section
III, we show two examples of application of the biological
algorithms to wireless networking, more specifically, MANET
(mobile ad-hoc network) routing and wireless resource alloca-
tion. Then we discuss future direction of bio-inspired adaptive
networking in Section and conclude the paper in Section IV.

II. BIOLOGICAL ADAPTATION

Biological systems are known to exhibit highly adaptive
behavior against the dynamically changing environment. At
the longer timescale, all species on earth have evolved their
genetic structures, physical structures, organic activities, and
social relationship to fit to their surroundings in order to live,
grow, and reproduce. At the same time, biological systems
always adapt themselves to perturbations in the environment,
such as change in temperature, brightness, pressure, and hu-
midity, as well as physical and mental conditions.

There are two types of adaptation mechanisms in a bio-
logical system, i.e. rule based and non-rule based. Although
there are different levels of adaptation from gene expression to
social behavior, now consider adaptation in a cell, more specif-
ically, in a gene regulatory network. The heat-shock response
is a well conserved mechanism of an adaptive reaction of a
cell to protect itself from the heat shock, i.e. sudden elevation
of temperature. The mechanism is implemented as a series of
chemical reactions, i.e. signal transduction network, and it is
modeled by multiple feedforward and feedback modules [7].
A heat shock denatures proteins from folded to unfolded
and damages them. Although there are HSPs (Heat Shock
Proteins) which repair damaged proteins, their concentrations
in a usual cell are not high enough to refold too many unfolded
proteins. By being exposed to the heat shock, synthesis of heat-
shock transcription factor 032, which governs the heat-shock
response, is activated in a cell. Synthesized o2 reduces the
concentration of RNA polymerase, which inhibits synthesis of
HSPs. As a result, the concentration of HSPs increases and
the number of unfolded proteins decreases. Consequently, a
cell recovers from the heat shock.

On the contrary to the heat-shock response, where a series of
chemical reactions are pre-programmed in a cell, there exists
a non-rule based adaptation mechanism. A mutant E. coli cell
has a metabolic network consisting of two mutually inhibitory
operons. Each of operons corresponds to synthesis of different
nutrient and synthesizing one nutrient suppresses synthesis of
the other. When a cell is in the neutral environment where both
nutrients are sufficient, mRNA expression levels are similar
with each other among the operons in a cell. It means that
a cell can live and grow in the environment independently
of nutrient it synthesizes. Once one of the nutrients becomes
insufficient in the environment, the level of gene expression
of an operon corresponding to the missing nutrient eventually
increases. As a result, a cell can compensate the missing
nutrient and survive. So, there is no embedded adaptation rule
or a signal transduction network, such that the insufficient
nutrient concentration in the environment triggers synthesis
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Fig. 1. Behavior of attractor selection model

of the missing nutrient in a cell. The attractor selection model
imitates the adaptive metabolic synthesis of bacteria to dynam-
ically changing nutrient condition in the environment [8]. The
behavior of cell is formulated as a nonlinear dynamic system
and an attractor is a stable state where a nonlinear dynamic
system reaches after an arbitrary initial state.

A. Attractor Selection Model

In the attractor selection model, mRNA concentrations 171
and my for synthesis of nutrient 1 and 2 dynamically change
based on equations below, respectively.
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« is the cellular activity such as growth rate and it expresses
the goodness of the current behavior, i.e. the state of gene
expression and nutrient synthesis. Functions S(«) and D(«)
are rate coefficients of mRNA synthesis and decomposition,
respectively. In [8], S(a) = ﬁ—"‘a and D(a) = « are used.
From a viewpoint of nonlinear dynamics, the first two terms
of the right side define the potential of attractors. n; (i = 1, 2)
corresponds to inherent noise or fluctuation in gene expression.
The activity « is determined by the following equation.
da P

= ca (3

dt— {(m + IO + 1)

N; and N, are nutrient concentrations in the environment.
N_thry and N_thrg are thresholds and n; and ns are
coefficients of sensitivity. p and ¢ are constants. If a cell
can compensate the insufficient nutrient having small N;
(i = 1,2), the activity a becomes high.

When the activity « is high, the nonlinear system formulated
by the above equations has one attractor where mq = ma =
m. Here, m is a constant and larger than one. It means
that a cell stays at the attractor and generates either of two
nutrient when there are sufficient nutrients and the growth
rate is high. When the concentration of either of nutrients
becomes insufficient, the activity decreases and there appear
two attractors, i.e. my = m and ms = 1/m or my = 1/m
and ms = m. Since the first two terms of the right side of
Egs. (1) and (2) are multiplied by the activity «, potential of
attractors becomes shallow and the dynamics becomes driven



by the noise terms as shown in Fig. 1. Consequently, m; and
ms change at random. When the mRNA concentration, i.e.
my Or my, of the missing nutrient occasionally becomes large,
the activity « slightly increases as a cell can live better. The
increase in the activity makes the potential of attractor deeper
and their force of entrainment stronger. Then, the state of cell
begins to move toward the attractor. Consequently the activity
further increases and the influence of noise becomes smaller.
Eventually the state of a cell reaches an appropriate attractor
and remains there stably.

The attractor selection model is a metaheuristic to find a
solution under some criteria, which change during optimiza-
tion processes. The solution space is defined by temporal
differential equations and attractors are possible solutions. The
objective to maximize is expressed as an activity, which is a
function of the state of a dynamic system. In the biological
case, the state of bacteria is expressed by two mRNA concen-
trations and bacteria adaptively choose one of solutions, i.e.
synthesis of either of two nutrients, so that it can increase the
growth rate given the environmental nutrient condition.

From a view point of control algorithm, the attractor selec-
tion model is a combination of deterministic control expressed
by a potential function and random control realized by a noise
term. It balances those two control mechanisms with mediation
of the activity term, which introduces a feedback loop to
a system. When we apply the attractor selection model to
adaptive and autonomous network control, parameters defining
the state of a dynamic system, e.g. m4 and ms in the biological
model, correspond to control parameters or control policies.
The activity is a scalar metric reflecting the goodness of
control such as throughput or delay, which cannot be explicitly
formulated in most cases and should be obtained by observa-
tion. When the current control is appropriate for the current
operational environment, deterministic control dominates the
system behavior. Once the environmental condition changes
and control becomes inappropriate, the system looks for new
appropriate state, i.e. a good attractor, by being driven by ran-
dom and stochastic control. Eventually the system approaches
a new appropriate attractor by reinforcing the current control.

B. Emergence of Symbiosis

The attractor selection model describes adaptive behavior
of a single entity. However, there are multiple entities, i.e.
bacteria, in the same shared environment, i.e. the culture in a
reactor, in an actual situation. Although there is no mechanism
of direct communication among cells, they indirectly affect
each other through the environment. Nutrients generated in
a cell permeate the cell membrane and change the nutrient
condition of the reactor. The change in the environment affects
the activity of other cells and further causes their adaptive
reaction. Such interaction through environmental changes is
called Stigmergy [6]. Based on adaptive nutrient synthesis and
indirect mutual interaction, the system eventually reaches the
good symbiotic condition as a whole, where all cells live
comfortably. However, local optimization of a single entity
does not necessarily lead to the global optimization. There

are two alternatives to extend the attractor selection model for
better global optimization.

The first extension is to explicitly formulate cellular inter-
action mediated by the environment. For example, dynamic
change of concentration of nutrient 1 in the environment can
be formulated as,

% =k(F) — N,) + Xi:vi(mm — uoy;) (4)
k is the dilution rate and F7 is the nutrient concentration of the
fresh culture fed into the reactor, i.e. turbidostat experiment. v;
and «; are the volume and the activity of cell ¢, respectively.
m;1 is the concentration of nutrient 1 in cell i. u is the
consumption rate. As the equation indicates, the nutrient con-
centration in a reactor dynamically changes through membrane
permeation. Other equations for dynamics of volume and
population of bacteria are not shown for space limitation. The
model can express a variety of symbiosis, such as mutualism
where bacteria help each other and commensalism where
nutrients flow in only one direction. However, in applying this
model to network control, there is difficulty in formulating the
dynamics of environment as Eq. (4).

The other extension is called the attractor composition
model, where entities share the same activity. In the general-
ized form of the attractor selection model, each of two entities
i and j, for example, uses different activity o; and a.

i = filmi)oy + 17;, drm;

dt
where m; = (m;1,...) and M; = (m;q,...) are vectors of
entities ¢ and j, respectively. f;(m;) and f;(11;) are potential
functions and 7j; and 7; are noise terms. In the attractor
selection model, each of entities ¢ and j tries to maximize
its activity a; or a; while directly or indirectly interact with
each other. As a consequence of mutual interaction, the whole
system reaches the stable condition where both of «; and o
are sufficiently large. In the attractor composition model, on
the other hand, their dynamics are formulated as,

= fi(mj)ay +13;  (5)
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Here, entities ¢ and j share the same activity a as the
objective of maximization. With such coupling, entities can
cooperatively optimize the system, but at the same time,
behavior of an entity directly affects others and the system
can be driven to the unstable condition.

= fi(ms) o + 1, = fi(mj)a +1; (6)

III. APPLICATIONS OF BIO-INSPIRED ALGORITHMS TO
AUTONOMOUS AND ADAPTIVE WIRELESS NETWORKING

In this section, we show applications of the attractor selec-
tion model to MANET routing and the attractor composition
model to resource allocation in vehicular networking.

A. MANET routing

MANET is a field of networking which most suffers from
dynamic and frequent change in the operational environment.
A network consists of mobile nodes which can freely join
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and leave. A pair of nodes is connected by a wireless and bi-
directional link in general, if they are within the range of radio
signals. Since communication is wireless, a link is unreliable
and unstable. Therefore, it is a challenging task to establish
and maintain a path from a source to a destination to achieve
high delivery ratio and low delay in packet transmission. As
such, routing in MANET has been an active research area and
many protocols have been proposed [9].

In applying the attractor selection model to MANET rout-
ing, a cell corresponds to a node and selection is to choose one
of neighbor nodes as a next hop node. Each node maintains
a routing vector of m;, called state value, for a certain
destination. On receiving a packet for the destination, a node
chooses a next hop node stochastically according to state
values. For this purpose, the model first needs to be extended
to be multidimensional as [10],

dm; s(a@)
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where i is an identifier of a neighbor node (1 < i < M).
M is the dimension and equal to the number of neighbors
of a node. Myee = max;—1 _ yrmj, s(a) = a(fa” + ¢*),
d(a) = a, and ¢* = 1/+/2. The equation has M attractors at
the equilibrium, where one m; has a high value and the other
M —1 mys (j # i) have low values, indicating the goodness
of nodes for a next hop to a destination. Neighbor node i is
chosen as a next-hop with probability m;/ 37, ;<5 ™.

When a packet arrives at a destination, a feedback packet
is generated. While it is transferred to the source, the number
of hops that it traveled is counted. On receiving a feedback
packet, an intermediate node first calculates the activity by
using the following equation.

ming, r<i<t, w(t)
w(to) ’
where to is time when it received the feedback packet and T
is a constant. w(t) is the number of hops to the destination of
a feedback packet received at ¢t. When the number of hops
becomes larger, it implies that the current path is getting
worse for dynamic change in the topology and a better path
should be found. Therefore, by Eq. (8) the activity decreases.
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Consequently, the noise term in Eq. (7) begins to affect the
next-hop selection probability and a random walk is induced.
When there is no feedback from a destination, it implies that
the current path is no longer useful or it is under instantaneous
congestion. To avoid using the old and non-updated informa-
tion, the activity automatically decays at regular intervals, e.g.
1.0 s, regardless of feedback packet arrival. For further details
of the attractor selection-based MANET routing, which we
call MARAS, please refer to [11].

We compare MARAS with AODV [12] and AntHocNet [13]
by using QualNet 4.0. AODV is a well-known reactive routing
protocol and it uses local route repair and intermediate node
reply features. AntHocNet is used as an example of adaptive
routing protocol which is also bio-inspired. It is based on
ACO (Ant Colony Optimization) and combines reactive route
establishment and recovery with proactive route maintenance.
We distributed 256 nodes in the area of 1500times1500 m2.
Each node can communicate with a node within the distance
of 510 m (free-space model without fading) at the data rate of
2 Mbps by using IEEE 802.11b. We placed two source nodes
at the lower left corner and two destination nodes at the upper
right corner to set up two diagonal sessions. Each of source
nodes sends out 10 packets per second at the rate of 8 kbps.

Figure 2 shows results of simulation experiments. On the x-
axis, the number of failure occurrence is shown. During each
of intervals given by dividing the simulation time of 1000
seconds by the number of failure occurrence, randomly chosen
25% of nodes stop operating. Therefore, a larger number of
failure occurrence implies that the topology changes more
frequently. As shown in the figure, MARAS achieves higher
delivery ratio, defined as the ratio of successfully delivered
packets to the total packets sent from sources, than AODV
for all cases. AntHocNet provides even higher delivery ratio
under less dynamic conditions, but the performance drastically
decreases as the number of failure occurrence increases. It
is because that AntHocNet introduces excessive overhead in
route maintenance and it cannot promptly update routing
information to adapt to changes. Figure 3 also supports the
superiority of MARAS to AODV and AntHocNet, where the
node density is changed. Error bars show the confidence inter-



vals of 99.95%. Although MARAS provides a slightly lower
delivery ratio than AntHocNet in the sparse environment, the
performance remains high against the increased node density.

B. Vehicular networking

Nowadays, various means of wireless communication are
available to mobile users and applications to support our
daily life everywhere. Wireless networks, such as cellular,
Wi-Fi, and WiMAX have heterogeneous characteristics in
terms of, e.g. availability, capacity, delay, connectivity, and
cost. Furthermore, most characteristics dynamically change
due to instability of wireless communication and competition
among users and applications for wireless network resources.
Therefore, it is necessary for a node to choose a wireless
network resource dynamically to use for each of applications
taking into account the condition of wireless networks and
QoS requirements of applications.

Such resource allocation can be formulated as an opti-
mization problem to maximize the degree of satisfaction per
node and per application, once information about the current
condition of available wireless networks and QoS requirements
of all applications is given. However, such optimization re-
quires for a central node, e.g. an access point, to maintain
the up-to-date information by frequent and aggressive mes-
sage exchanges with nodes in the area. Even if the task of
derivation of optimal resource allocation is distributed among
nodes, nodes need to frequently exchange messages with other
nodes to obtain latest information about the current status of
applications running on the other nodes. From a viewpoint of
dynamic features of wireless networks and cost, e.g. bandwidth
and energy, spent in message exchanges, such mechanisms are
not feasible at all in the new generation network environment,
where various wireless networks are available to a large
number of networked applications.

Therefore, in this section, we show adaptive and au-
tonomous resource allocation in vehicular networking as an
example of application scenarios of the attractor composition
model, although details are not shown for space limitation.
A car, whose control is now fully governed by information
technology, is one of dominant mobile users of ubiquitous
wireless networks. With a help of sufficient energy resource
and significant capacity of computing, a variety of applications
such as road navigation, automobile condition reporting, video
streaming, VoIP, e-mail, and web browsing are operating and
they have different QoS requirements. In the scenario, cars
compete for wireless networks available in the region to satisfy
QoS requirements of applications.

In applying the attractor composition model to resource
allocation among cars and among applications, there are two
alternatives different in interpretation of the global activity
« shared among entities. When we define the activity a as
the goodness of resource allocation in a certain region where
multiple cars exist, entity ¢ corresponds to a car. Such a
mechanism requires all cars or a central node of the region
to know the degree of satisfaction of all cars to derive the
activity. It apparently is bandwidth expensive and not feasible.
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On the other hand, to define the activity a per car is
more practical. In this case, entities competing for resources
correspond to applications. Application ¢ running on a car
autonomously decides a wireless network to use by using
Eq. (6), where the size of n7; is equal to the number of
available wireless networks. Since the activity « shared among
applications is derived from the degree of satisfaction of
all applications running on a car, applications behave in a
cooperative manner to maximize the degree of satisfaction of
the car. Cars further behave in a cooperative manner through
indirect interaction among cars by sharing network resources.

At regular control intervals, empirically set at 1 s, each
application running on a node, i.e. a car, declares its QoS
requirements in terms of the required bandwidth, tolerable
delay jitter, and affordable transmission cost, for example, to
a node. At the same time, a node obtains the information
about available wireless networks, e.g. the available band-
width, delay jitter, and transmission cost by using a cognitive
radio technology. Next the node evaluates the degree that
QoS requirements of each application are satisfied with an
allocated network. Then, from the degree of satisfaction of all
applications, the degree of satisfaction of node is calculated,
from which the activity of node is further derived. Based on the
activity, a vector of state value of each application is updated
by Eq. (6). Finally, to each of applications, a wireless network
with the largest state value is allocated. If the current allocation
can satisfy QoS requirements of applications, the activity is
high and resource allocation does not change. Otherwise, the
noise term drives resource allocation to find better allocation.

We consider the torus region of 300 m x 300 m large with
two roads crossing at the center. One road has four lanes and
cars move at the speed of 40 km/s and the other has two
lanes with the speed of 20 km/h. DSRC, Wi-Fi, WiIMAX,
and cellular networks are available and they have different
characteristics in terms of the capacity, delay jitter, and cost.
Each of DSRC, WiMAX, and cellular networks covers the
whole region, while the access area of Wi-Fi network is
limited within the radius 100 m from the center of the
region. For simplicity, the distance between a node and a base
station or an access point does not affect the communication



speed. Therefore, dynamic change is mainly caused by a car
moving across a Wi-Fi access area and resource allocation.
We consider Web, VoIP, and Video applications which have
different QoS requirements. All nodes use Web. One-tenth
of nodes additionally use either of VoIP or Video and one-
twentieth of nodes use all of three applications.

For a purpose of comparison, we consider another method
where each node adopts the optimal allocation using the
locally available information, i.e. characteristics of wireless
networks. At regular intervals identical to the proposal, a node
obtains the information about the remaining bandwidth, delay
jitter, and cost of networks available to the node. Then, the
node decides resource allocation by solving the optimization
problem to maximize the degree of satisfaction of node under
given conditions of wireless networks.

We change the number of nodes from 10 to 120. If there
are more than more than 99 nodes, there is no resource
allocation which satisfies all nodes for the shortage of network
resources. Figure 4 shows the mean degree of satisfaction
of node and its mean variance. When the mean degree of
satisfaction of node is 1.0, all applications on all nodes in the
region are fully satisfied with resource allocation. As shown
in the figure, the compared method achieves the mean degree
of satisfaction of node higher than 0.9 when the number of
nodes is small. However, once the number of nodes exceeds
60, the performance considerably and suddenly deteriorates to
about 0.28. On the other hand, our proposal can sustain the
mean degree of satisfaction of node at the moderate level even
when there are 120 nodes in the region. Since our proposal
takes a probabilistic approach in finding a good solution as
biological systems do, an application is occasionally allocated
the second best network. Such allocation results in the sub-
optimal resource allocation as indicated by the lower mean
degree of satisfaction of node for the small number of nodes.
However, it enables nodes to find the moderate solution at
the sacrifice of the degree of satisfaction of applications to
some extent in the environment where the optimal solution to
satisfy all applications does not exist. It is also a reason why
the mean variance of degree of satisfaction of node increases
as the number of nodes increases with our proposal.

IV. DISCUSSION AND CONCLUSION

Intuitively speaking, biological organisms are scalable,
adaptive, flexible, and robust systems. By being based on
fundamental principles behind those characteristics of biolog-
ical systems, we can build a new generation network with
the higher scalability, adaptability, flexibility, and robustness
than ever before. Thanks to development of various fields of
biology, such as mathematical biology and molecular biology,
we can utilize biological mathematical models in the form of
stochastic differential equation to design a networking tech-
nology which is not a mere imitation of biological systems.

Such an approach makes it possible for us to understand the
source of adaptability and theoretically discuss advantages and
disadvantages of a bio-inspired method. However, there are
some limitations in bio-inspired methods. First, bio-inspired

methods are often slower in reaction and adaptation than
conventional control methods. The high level of adaptability
comes from the stochastic nature of biological systems. Their
adaptation is often driven by fluctuations and not determin-
istically directed to a certain goal. Second, because of self-
organization, the optimality of control is not guaranteed. In a
sense, the optimality is exchanged for the other *-ties.

Therefore, it is of great importance to thoroughly understand
both of characteristics of biological algorithm and require-
ments of networking problem before application. We are now
trying to establish the taxonomy which answer such questions:
what kind of bio-inspired algorithms are applicable to network
control, what kind of networking problems can be solved by
bio-inspired algorithms, and how a bio-inspired algorithm can
be applied to a networking problem.
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