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Abstract: The performance of thin-client systems based on TCP depends on network
quality, so it becomes worse in a WAN environment; however, the effects of TCP
mechanisms have not been clarified. In this paper, we first describe the download traffic
of thin-client systems as a two-state model with interactive data flows in response to
keystrokes and bulk data flows related to screen updates. Since users are more sensitive to
the keystroke response time, our next objective is to minimise the latency of interactive
data flows, especially when the network is congested. Through detailed simulation
experiments, we reveal that the main delays are queuing delay in the bottleneck router
and buffering delay in the server. We then enhance two TCP mechanisms: retransmission
timeout calculation and SACK control, which negate the negative impacts of existing
options and increase the interval between occurrences of large delays by about four times.
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1 Introduction

A thin-client system is a server-centric computing
system in which a client terminal transmits user inputs
(keystrokes, mouse clicks, etc.) to a remote server, and
the server returns the corresponding screen updates
to the desktop application interface on the terminal
(Figure 1). This system enables an enterprise’s IT
department to manage its client computing resources in
an integrated fashion and to promote flexibility in the
workplace without leaking corporate information from
client terminals (Sagawa and Koda, 2009).

The thin-client system is generally implemented by
using a remote desktop protocol such as X11 (Scheifler
and Gettys, 1997), Virtual Network Computing

(VNC R©) (Richardson et al., 1998), or Microsoft R©
Remote Desktop Protocol (RDP) (MSDN R©, 2011).
From a transport-layer perspective, each remote desktop
protocol is based on a persistent Transmission Control
Protocol (TCP) connection. The system performance is
thus affected by the TCP configuration. For example, the
use of TCP buffering mechanisms—the Nagle algorithm
(Nagle, 1984) and delayed acknowledgment (Braden,
1989)—could lead to delayed delivery of small packets
in an interactive application (Minshall et al., 1999;
Mogul and Minshall, 2001). Disabling these buffering
mechanisms is therefore appropriate for an application
like X11 (Stevens, 1994). Furthermore, TCP’s slow-start
restart (Jacobson and Karels, 1988), i.e., reinitialisation
of the TCP congestion window (cwnd) after idle periods,
even when there are no dropped packets, loses the
benefit of a persistent connection and reduces the
transmission rate (Heidemann, 1997; Visweswaraiah and
Heidemannk, 1997).

The performance of a thin-client system from the
user’s point of view under various network conditions
has been measured for typical desktop applications like
a word processor or presentation creator (Nieh et al.,
2003; Schlosser et al., 2007). Furthermore, network
latency has been identified as a key factor determining
the performance, especially in a wide area network
(WAN) environment (Lai and Nieh, 2006; Tolia et al.,
2006). According to McCabe (2003), network delay is
the predominant delay for an interactive application
like Telnet, and this type of application is sensitive
to response time. We have identified that such delay
requirements should be met for thin-client systems
because users are very sensitive to delays and jitter in
the response packets when they type on a thin-client
terminal in a remote office. Although it has been shown
that the system response time becomes worse in a WAN
environment, the effects of TCP mechanisms have not
been clarified.

We have therefore been investigating this subject. We
previously described the characteristics of traffic (Ogawa
et al., 2007) and then outlined an approach for improving
the interactive user experience (Ogawa et al., 2009). The
present paper is a revised and expanded version of Ogawa
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Figure 1 Overview of thin-client system

et al. (2009); it provides three contributions. First, on the
basis of actual data traffic analysis, we model download
traffic of thin-client systems by using a two-state model
with interactive data flows in response to keystrokes
and bulk data flows related to screen updates. Since
users are more sensitive to the keystroke response time,
our objective is to minimise the latency of interactive
data flows without increasing that of bulk data flows.
Second, through simulation experiments using real
field data, we investigate the primary delays during
transfers of interactive data flows over a WAN. We then
demonstrate that the primary delays are queuing delay
in the router and TCP buffering delay in the server,
which is caused by interactions between interactive
and bulk data flows. Third, we describe comprehensive
approaches for performance improvement. We first
evaluate the effectiveness of existing options: priority
queuing of interactive data flows and use of the TCP
Selective Acknowledgment (SACK) option. Although
these techniques reduce the probability of short delays
occurring, a packet of an interactive data flow is
sometimes held in the server for more than a second. We
then propose two TCP mechanisms to reduce lengthy
delays without modifying the remote desktop protocol
itself: modifying the retransmission timeout calculation
and enhancing the SACK control.

The rest of this paper is organised as follows. We
introduce our traffic model in Sec. 2. Then we evaluate
the end-to-end delays without modifications in Sec. 3,
with the existing options in Sec. 4, and with the addition
of our improved TCP mechanisms in Sec. 5. We also
evaluate the effect of WAN propagation delay in Sec. 6.
We conclude and discuss remaining issues in Sec. 7.

2 Modelling of Thin-Client Traffic

To improve the performance related to keystrokes, we
begin by identifying the data flows corresponding to

Copyright c© 2009 Inderscience Enterprises Ltd.
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them and by defining a metric of the flow performance.
In this section, we therefore introduce a traffic model for
the thin-client data flows and configure the input data
for performing the simulation experiments described in
following sections. We also define the usability metric for
evaluating the experimental results.

2.1 Two-State Modelling

This section is based on a one-month observation
of our test system (Figure 1). The system was
composed of about 200 thin-client/server pairs and their
communication traffic aggregated at the core switch
of the data centre was monitored using a network
protocol analyser (Wireshark R©, 2011). Each server,

implemented by a blade PC, ran Microsoft R©Windows R©
XP. Each client had access to the corresponding server
via Microsoft R© RDP. Most of the applications executed
in the servers were typical desktop applications such as
email clients, web browsers, and Microsoft R© Office.

We constructed the model by targeting only response
packets from the servers, not request packets to them,
because the traffic due to request packets is much lower
than the response packet traffic. Network congestion
therefore arises when there are many response packets.
Although the request packets may be delayed because
of background traffic, this consideration is outside the
scope of this paper. Furthermore, to investigate the effect
of network latency, we started with a model of response
packets not affected by network latency, i.e., the delay of
the TCP ACK response, but sent directly corresponding
to the user’s usual keyboard/mouse input rate (as if users
were using traditional fat clients). We therefore analysed
only packets traversing the intranet, where almost all
connections had a round-trip time (RTT) in milliseconds
and an end-to-end bandwidth of nearly 100 Mbps.

Observation of data traffic revealed that response
packet transfers could be classified roughly into two
types, as shown in Figure 2. Interactive data transfer
is used mainly for character information delivery. An
interactive data flow is defined here to carry a single
response packet of character information in response to
a keystroke (like Telnet traffic). Meanwhile, bulk data
transfer is used mainly for screen update information
delivery. A bulk data flow is defined to be composed
of a block of less than about 100 response packets
representing screen updates (like HTTP (web) traffic).
In our test system, we found that whatever desktop
application programs the server was executing, data
flows of response packets could be expressed as a mixture
of these two types of data flows, although the frequency
of each flow depended on the application program used.
We therefore considered that the data flows could be
modelled using a two-state system, as shown in Figure
3, where α is the state transition probability of changing
from sending an interactive data flow to sending a bulk
data flow and β is that of the opposite change. In
addition, pI is the probability of sending an interactive
data flow and pB is that of sending a bulk data flow.
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Figure 2 Two types of data transfer in thin-client system
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Figure 3 Two-state model of data flows

Figure 4 Interarrival time distributions of request and
response packets

Moreover, tII , tIB , tBI , and tBB are respectively the
intervals between sending an interactive data flow and
the next flow, between sending an interactive data flow
and a successive bulk data flow, between sending a bulk
data flow and a successive interactive data flow, and
between sending a bulk data flow and the next flow.

To identify the two types of data flows, we analysed
the interarrival time distributions for response packets
as well as request packets, as shown in Figure 4. The
maximum time interval between two adjacent packets
was set to 60 s. Furthermore, TCP acknowledgment
(ACK) packets were excluded. The response packet
distribution has roughly two peaks. The peak centred
around 10−1 s overlaps with that of the request packet
distribution, which should be related to the average
frequency of up-and-down keystrokes. Meanwhile, the
peak at 10−4 s is related to the interarrival time of two
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Table 1 Transition probability and interval of response
traffic (average for 100-sample data, each 300 s
long)

next data flow
current data flow interactive bulk

interactive 0.91 0.09 (α)
0.27 s (tII) 0.22 s (tIB)

bulk 0.42 (β) 0.58
0.24 s (tBI) 0.11 s (tBB) *

* Average interval between two packets in a block was 0.36 ms.

Table 2 Features of response traffic (average for
100-sample data, each 300 s long)

interactive bulk
no. of flows 934.1 (82% (pI)) 198.4 (18% (pB))
no. of pkts 934.1 (39%) 1,467.0 (61%)

〈1.0/flow〉 〈7.4/flow (cB)〉
bytes 128,189 (8.5%) 1,373,366 (91.5%)

〈137.2/flow〉 〈6922.2/flow〉
〈〈137.2/pkt〉〉 〈〈936.2/pkt〉〉

consecutive packets in a block of response packets, i.e.,
a bulk data flow. We could therefore identify interactive
and bulk data flows by setting a threshold for the
interarrival time of response packets. If the interarrival
time was longer than the threshold, the packet was
judged to be an interactive data flow or the head of a bulk
data flow. We set the threshold to 10−2.2 s (6.3 ms) on
the basis of the correspondence between the request and
response packet distributions. By using the threshold, we
classified one-month observed response packets into the
two data flow types; this revealed that the average state
transition probabilities were α = 0.09 and β = 0.42.

To perform simulation experiments, we extracted the
top hundred 300-s-long series of response packets whose
state transition probabilities (α and β) were closest to
the overall average probabilities. The average features
of the extracted data are shown in Tables 1 and 2. An
overview of the traffic feature is that interactive data
flows predominated in terms of the number of flows while
bulk data flows predominated in terms of bytes. The
parameters in the tables, tII , tIB , tBI , tBB , pI , pB , and
cB (where cB is the average number of packets included
in a bulk data flow), which were calculated from the
extracted data, were used to calculate Eq. (4) in Sec. 2.2.

2.2 Usability Metric

According to Tolia et al. (2006), thin-client users notice
the response time when it exceeds 150 ms, which
corresponds to the human response time (McCabe,
2003); furthermore, they become frustrated and less
productive when it exceeds 1 s. We therefore set two
thresholds for packet delay in an interactive data flow:

Unnoticeable : < (150− t0) ms (1)

Productivity degrading : > (1000− t0) ms, (2)

where t0 is the time for transferring a request packet from
a client to a server. With these thresholds, two usability
metrics for evaluating the performance of interactive
data flows are defined as the ratio of the number of
packets whose delays are longer than each threshold to
the total number of packets in all the interactive data
flows tested; these ratios are called rI150 for Threshold
(1) and rI1000 for Threshold (2).

Furthermore, by using the two-state model, we can
convert each metric to the average cycle of time during
which the response time threshold is exceeded in order
to understand the evaluation results intuitively. After
a long enough period has elapsed, pI = β/(α+ β) and
pB = α/(α+ β), respectively. The relationship between
the number of interactive data flows, fI , which includes
nI packets, and the number of bulk data flows, fB ,
which includes nB packets, becomes fI : fB ' pI : pB ,
fI = nI , and fB = nB/cB . The average cycle of time T
for completely sending fI interactive data flows and fB
bulk data flows in the steady state is

T =(1− α)fItII+αfItIB+βfBtBI+(1− β)fBtBB .(3)

Consequently, the average cycle of time exceeding the
threshold, TI150 or TI1000 , can be expressed as a function
of the rI150 or rI1000 , respectively, as follows.

TIk =
(1− α)tII

rIk
+
αtIB
rIk

+
βpBtBI

cBpIrIk
+
(1− β)pBtBB

cBpIrIk
(4)

(Ik = I150 or I1000)

3 End-to-End Delay Analysis

Using the traffic model in Sec. 2, we evaluated the delay
of the current system through simulation experiments
using ns-2 (release 2.33) (ns-2, 2011).

3.1 Network and System Model in Experiments

Our target system has a typical architecture for a Japan-
wide intra-firm system (Figure 1). It is reasonable to
assume that network traffic over the wide-area intranet
comprises only traffic between the servers and thin
clients since the communication area for the traffic to and
from other servers, such as web/mail servers, is mostly
limited to the data centre and other logical links. Given
these considerations, we chose to use the simulation
model shown in Figure 5. This model consists of 100
pairs of a server (sender) and a thin client (receiver)
plus two routers and links between them. The networks
in the data centre and in the remote office had a link
bandwidth of 100 Mbps and a propagation delay of 1
ms. The bandwidth of the link between the two routers,
i.e., the bottleneck link corresponding to the wide-area
intranet such as one between Tokyo and Osaka, was set
at 10 Mbps, and its propagation delay was 20 ms. An ns-
2 FullTCP agent running on each server simultaneously
transmitted a 300-s-long series of response packets
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Figure 5 Network and system model in simulation
experiments

extracted in Sec. 2.1 to a corresponding agent running
on each client over a TCP Reno connection. A tail-drop
(FIFO) discipline was used at the router’s buffer. The
buffer size was set to two different values: the bandwidth-
delay product, i.e., 25 Kbytes, or a sufficiently large
value of 2500 Kbytes. We repeated the 300-s simulation
seven times with the transmission start time of each
sender agent shifted at 0.25-ms intervals because we
expected the simulation result to change depending
on the degree of synchronisation between packets from
different senders in the router buffer.

Note that the FullTCP agent was used because it
counts a sequence in bytes rather than in packets. For
convenience in our experiments, the agent on the server
labelled packets as “interactive” or “bulk” on the basis
of the sending interval. We shall abbreviate the buffer
size as “bs” in the figures. We shall also call the router
connected to the bottleneck link the “bottleneck router”
or simply the “router” here. In addition, to make the
model simple, we set the TCP settings so as to turn
off the Nagle algorithm, delayed acknowledgments, and
slow-start restart. Furthermore, additional experiments
with several WAN propagation delays other than 20 ms
were executed, as mentioned in Sec. 6.

3.2 Factors of End-to-End Delay

Let us enumerate the factors contributing to the end-
to-end delay of a response packet. The end-to-end delay
is defined here as the one-way trip time from when
an application program on the server sends a response
packet to when the application program on a client
receives it. This delay consists of delays related to the
server, router, client, retransmission, and propagation in
each link. The delay in the server is considered to be
the sum of the packet buffering and transmission delays
in the server because the processing delay is relatively
small in our model. The delay in the router is similarly
defined as the sum of the packet buffering (queuing) and
transmission delays in the router. The delay in the client
is buffering delay, which is the time during which the
packet is buffered in the TCP layer before being sent

to the application layer. We also analysed the delay for
packet retransmission initiated by TCP, which is the
time from when a packet is dropped at the router to
when a copy of the packet reaches the router. The delay
in the client is called “head-of-line blocking” and does
not occur unless the packet receiving order is switched
owing to subsequent packets leaving earlier the router.
This can be simply regarded as the movement of the
delay source from the router to the client and does not
increase the end-to-end delay. Therefore, we did not try
to reduce it in this study.

3.3 Delay Distribution without Modifications

One set of the typical simulation results is shown in
Figure 6. It is plotted in the form of complementary
cumulative distribution functions, i.e., ratio of the count
of packets whose delays are larger than the value
indicated on the horizontal axis to the total packet count.
Graphs (a) and (b) show the distributions for the end-
to-end delay, the delay in the server, the delay in the
(bottleneck) router, the delay in the client, and the
retransmission delay for a buffer size of 2500 Kbytes
(large buffer case). Graphs (c) and (d) are for a buffer
size of 25 Kbytes (small buffer case). Furthermore,
graphs (a) and (c) are for interactive data flows, while
graphs (b) and (d) are for bulk data flows. In graphs
(a) and (c), Thresholds (1) and (2) for interactive data
flows, i.e., 130 ms and 980 ms (which have had the time
for transferring a request packet across WAN subtracted
from them), are specified. Moreover, two ratios rI150 (the
ratio of end-to-end delays exceeding 130 ms) and rI1000
(the ratio of ones exceeding 980 ms) are presented below
in the from of average values for seven experiments.

Large Buffer Case. The changes in queue length at
the router indicate that bursty traffic continuing for
several hundred milliseconds (up to about 1 s) occurred
periodically. This change rate was rapid for packets sent
at average intervals of about 300 ms (see Table 1).
The maximum queue length during the 300-s simulation
period was about 400 Kbytes; this means that the
maximum queuing delay was around 300 ms. The
average utilisation of the bottleneck link over the entire
simulation period was 54%, while that for interactive
data flows was 3.5%.

For interactive data flows, rI150 was 3.6× 10−2 and
rI1000 was 1.7× 10−3. As shown in Figure 6(a), at the
threshold of 130 ms, the end-to-end delay was mainly the
delay in the router. Meanwhile, around 980 ms, the delay
in the server was predominant. As shown in Figure 6(b),
the delay in the server was larger for bulk data flows
than for interactive data flows. The main component of
the end-to-end delays exceeding 100 ms was the delay in
the server. This delay was caused by the input of large
blocks of packets into the TCP buffer; this made the
buffering delay so large that the following bulk data flows
as well as interactive data flows experienced possible
delays. This type of delay seems reasonable because users
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(a) bs: 2500 KB, interactive (b) bs: 2500 KB, bulk

(c) bs: 25 KB, interactive (d) bs: 25 KB, bulk

Figure 6 Delay distributions without modifications

sometimes experience non-smooth text display on thin-
client terminals in a high-network-latency environment
when they simultaneously start application programs for
showing moving pictures and cause the screens to be
updated frequently. Moreover, the delay in the server
was even longer because TCP retransmission timeouts
occurred without packet being dropped. Details are given
in the next section.

Small Buffer Case. For interactive data flows, rI150 was
1.2× 10−2 and rI1000 was 9.0× 10−4. Because a smaller
buffer in the router caused less delay but more drops,
the buffering delay in the router was smaller and that
in the server was larger compared with the large buffer
case, as shown in Figures 6(c) and 6(d). When a server
transmitted large bulk data flows composed of more
than a few dozen packets or more than a few hundred
packets in some cases, many packets were dropped in less
than a second. Furthermore, such bursty drops prevented
packets sent by other servers from entering the router
buffer. As a result, the server transmitting the large bulk
data flows shrank its TCP cwnd repeatedly, and other
servers shrank theirs as well. This increased the buffering
delay in the servers of the bulk data flows and subsequent
interactive data flows.

4 Existing Options and Problems

In this section, we present appropriate options developed
from the existing techniques and evaluate them in the
same manner as in the previous section.

4.1 Existing Techniques

Prioritising Interactive Data Flows. The delay in the
router described in large buffer case in Sec. 3.3

can be reduced by implementing priority queuing in
the router. This means using two buffers that share
the available buffer size: a higher-priority buffer for
processing interactive data flows and a lower-priority
buffer for processing bulk data flows. Packets in the
higher-priority buffer are always processed ahead of
packets in the lower-priority buffer. Accordingly, packets
of interactive data flows are forwarded with a minimal
delay at the router. The holding time of packets in
bulk data flows in the lower-priority buffer increases by
only a few milliseconds because of the small volume of
interactive data flows. Moreover, when the router does
not have a large buffer, an interactive data flow can be
sent without any possibility of its packets being dropped.

TCP SACK Option. As explained in the small buffer
case in Sec. 3.3, if the router does not have a large
buffer, multiple packets of a large bulk data flow may be
dropped at the router, which in turn causes a delay in
the server. This delay can be reduced by applying the
TCP SACK option to the server so that it can recover
dropped packets quickly and keep cwnd large (Mathis
et al., 1996).

4.2 Evaluation Results

Large Buffer Case. For interactive data flows, rI150
decreased to 6.1× 10−3 because the buffering delay
in the router was reduced by priority processing.
In contrast, rI1000 was 5.5× 10−4, where the average
value was slightly improved but some values became
much worse. This sort of delay was mainly buffering
delay in the server, as shown in Figure 7(a), and it
was further increased by retransmission timeouts in
spite of no packets being dropped. Figure 8 shows a
server’s behaviour when it invoked such a retransmission
timeout. The upper graph shows changes in the sequence
number of packets sent by the server and changes in
the server’s cwnd. The lower graph shows changes in
the parameters used for calculating the retransmission
timeout value RTO, i.e., rtt, srtt, rtttvar (see Eqs.
(5)–(7) in Sec. 5.1), and the changes in the router’s
queue length. This sort of timeout occurred (A in Figure
8), because srtt and rttvar, and hence RTO, did not
quickly become sufficiently large when large bulk data
flows entered the router’s buffer and the router’s queue
length increased (B in Figure 8). Moreover, the RTT
changed abruptly as a result of interactive data flow
prioritisation when bulk data flows were switched to
interactive ones (C in Figure 8). These timeouts were
concentrated on several servers sending bulk data flows
at that time because the bulk data flows were always
placed at the end of the router’s queue. Such timeouts
sometimes affected a server more than five times within
a few seconds.

Small Buffer Case. For interactive data flows, rI150
decreased to 6.4× 10−3 because the delay in the servers
was reduced by using the TCP SACK option. In contrast,
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(a) bs: 2500 KB, interactive (b) bs: 2500 KB, bulk

(c) bs: 25 KB, interactive (d) bs: 25 KB, bulk

Figure 7 Delay distributions with prioritised interactive
data flows and TCP SACK option

Figure 8 Retransmission timeout occurred without
packet drops: changes in the sequence number of
packets sent by a server and in the server’s cwnd
(upper) and changes in the server’s RTO
parameters and in router queue length (lower)

rI1000 increased to 2.2× 10−3 as a result of the significant
delays for buffering the preceding bulk data flows at
the server, as shown in Figure 7(c). These buffering
delays occurred because the servers sending large bulk
data flows experienced bursty drops (hundreds of drops
in some cases) at the router. These packet drops were
concentrated at a few servers sending bulk data flows at
that time.

The server using the TCP SACK option
quickly retransmitted such dropped packets. When
retransmitted packets were also dropped, the
retransmission timeout triggered their retransmissions
because the TCP fast retransmission mechanism is

Figure 9 Server buffering delays of several seconds caused
by bursty packet drops: magnified view of changes
in the sequence number of packets sent and
received by a server and changes in the server’s
cwnd (left) and their overall view (right)

(Packets sent and received are plotted once every 10 packets)

not applied to lost retransmissions. Figure 9 illustrates
two problems causing several-second delays after the
retransmission timeout. The left graph shows changes
in the sequence number of packets sent and received
by the server and changes in the server’s cwnd from
92.5 s to 95.0 s, which indicates the retransmission
timeout. The right graph shows those from 90 s to
125 s; this is an overview of the several-second delays
in the server. In the graphs, the packets are plotted
once every ten packets for clarity. These problems
were due to the TCP SACK implementation (ns-2’s
FullTCP is similar to 4.x BSD TCP (ns-2, 2011)). The
first problem occurred when the server received three
duplicate ACKs and entered fast recovery mode (C in
Figure 9). The server did not increase cwnd when it
received an ACK whose value was lower than recover in
fast recovery mode (D in Figure 9), where recover was
the highest sequence number transmitted by the server
when the first timeout occurred (A in Figure 9). The
second problem happened after that. When the server
received an ACK whose value was lower than recover,
it determined which packet to retransmit by comparing
h seqno with the SACK blocks reported by the paired
client, where h seqno is the highest sequence number
indicating a hole that has not yet been filled by the fast
retransmissions when the first timeout occurred. The
server sent the packet pointed to by the ACK when the
h seqno was higher than all SACK blocks (B in Figure
9). Furthermore, the server would have sent the packet
corresponding to the h seqno when the h seqno was
lower than a hole reported by the SACK blocks, but
it could not do so because cwnd was not large enough
to accommodate h seqno at that time. As a result, the
server waited for extra timeouts (E in Figure 9).
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5 Proposed Mechanisms and Evaluation

The problems described in the previous section are due
to the traffic balance between interactive and bulk data
flows shown in Tables 1 and 2. We thus developed several
mechanisms and evaluated them in the same way.

5.1 Mechanisms for Reducing Delay in Server

Modifying the Retransmission Timeout Value
Calculation. The buffering delay in the server described
in the large buffer case in Sec. 4.2 can be decreased
by keeping the server’s cwnd large enough. This can
be done by preventing the retransmission timer from
expiring. The timer expires when RTO does not follow
a rapid increase in the delay of the router’s buffer owing
to bulk data flows. Here, RTO is calculated on the basis
of the measured RTT for the given connection as follows
(Stevens and Wright, 1995).

srtt← (1− g)srtt+ g · rtt (5)

rttvar ← (1− h)rttvar + h|rtt− srtt| (6)

RTO ← srttt+ 4 · rttvar, (7)

where rtt is the latest measured RTT, srtt is the
current smoothed RTT estimator, and rttvar is the
smoothed mean deviation estimator. The gains g and
h are usually set to 1/8 and 1/4, respectively. In the
proposed mechanism, srtt is updated by using g:

g =

{
7/8 (rtt ≥ srtt)
1/8 (rtt < srtt).

(8)

As a result, RTO reflects the latest RTT, and it keeps
pace with any rapid increase in the router queue when
large bulk data flows are input. Moreover, RTO does not
become too small when data flows switch from bulk to
interactive under the interactive data flow prioritisation
setting.

Furthermore, the server initialises RTO after the idle
period in order to match the change in queue length
after a long interval between two data flows. We use the
time when the server invokes TCP’s slow-start restart
to determine the idle period. At that time, the server
initialises srtt and rttvar, but not cwnd.

Temporarily Turning Off TCP SACK Control.
Significant buffering delays in the server described in
small buffer case in Sec. 4.2 can be avoided by having the
server recover from bursty drops as quickly as possible.
This can be achieved by steadily increasing cwnd and
not invoking any extra timeouts. Some studies have
developed SACKmechanisms to detect and recover a lost
retransmission (Lin and Kung, 1998; Kim et al., 2005).
However, they are not appropriate for recovering bursty
packet drops in the present case because they consider
random multiple drops. We therefore temporarily turn
off the TCP SACK control after a timeout occurs and
do not turn it back on until the dropped packets have
been recovered, as follows.

• To enable the server to increment cwnd when
it receives an ACK whose value is lower than
recover after the timeout, the server is configured
to not enter fast recovery mode if it receives three
duplicate ACKs after the timeout.

• To prevent the server from becoming incapable of
sending a packet after the timeout, the server is
configured to send the packet pointed to by an
ACK, rather than selecting one by comparing the
h seqno and the SACK blocks, if the ACK value is
lower than recover after the timeout.

Since these modified processes are similar to those of
TCP Reno, traffic burstiness during the modified period
is considered to be equivalent to that of TCP Reno.
Furthermore, an increase in burstiness is related to bulk
data flows. The bulk data flows are given lower priority
and thus do not affect the simultaneous interactive data
flows at the router buffer.

5.2 Evaluation of Proposed Mechanisms

The underlying cause of the server delay described
in Sec. 4.2 is that interactive and bulk data flows
coexist in a TCP connection. We therefore additionally
propose separating the TCP connection and evaluate the
proposed mechanisms for two cases. Case 1: a single TCP
connection is shared between interactive and bulk data
flows; this is the current specification. Case 2: the TCP
connection for interactive data flows is separated from
that for bulk; this means the application protocols need
to be modified. Note that Case 2 is impractical when the
thin-client system is based on a proprietary application
protocol (as in the case of this paper), whereas Case 1
with the proposed mechanisms can be applied by using
a transport-layer proxy mechanism (Yamanegi et al.,
2005). The results for Case 2 are therefore used for
clarifying the limitations of Case 1.

5.2.1 Case 1: Shared TCP Connection

Large Buffer Case. For interactive data flows, rI150 was
5.0× 10−3, which means that this ratio was slightly
improved by applying only priority queuing. Moreover,
rI1000 decreased to 2.1× 10−4, where the negative effect
of the existing option disappeared. Figure 11 depicts
an example of avoiding TCP timeouts without packet
drops, which was obtained under the same experimental
conditions as in Figure 8. As shown in the lower graph,
srtt quickly coped with its rapid increase for bulk data
flows in the router buffer (A in Figure 11). Subsequently,
it decreased slowly even though rtt suddenly dropped
owing to the switch to interactive data flows (B in
Figure 11). These mechanisms prevented the server’s
retransmission timer from expiring and stopped its
cwnd from shrinking. They thus reduced the number of
timeouts experienced by all servers. The average number
of timeouts over the 300-s simulation period was 3.1
per connection when we used priority queuing for the
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(a) bs: 2500 KB, interactive (b) bs: 2500 KB, bulk

(c) bs: 25 KB, interactive (d) bs: 25 KB, bulk

Figure 10 Delay distributions with prioritised interactive
data flows, TCP SACK option, and proposed
mechanisms for shared TCP connections

Figure 11 Avoidance of retransmission timeout shown in
Figure 8: changes in sequence number of packets
sent by a server and in the server’s cwnd (upper)
and changes in the server’s RTO parameters and
in router’s queue length (lower)

interactive data flows and the TCP SACK option, and
this value decreased to 1.9 per connection when the
proposed mechanisms were used as well. As a result, the
ratio of end-to-end delays exceeding 980 ms for bulk data
flows in the servers fell to the level before the priority
queuing was configured in the router, as shown in Figure
10(b), which decreased rI1000 as shown in Figure 10(a).

Small Buffer Case. For interactive data flows, rI150
slightly decreased to 4.6× 10−3 from the value for the
case where only the TCP SACK option was applied.
Furthermore, rI1000 greatly decreased to 4.0× 10−4. The
left graph of Figure 12 shows a faster recovery from

Figure 12 Faster recovery from bursty packet drops
shown in Figure 9 by using the TCP SACK option
and proposed mechanisms (left) and by using
TCP Reno (right)

(Packets sent and received are plotted once every 10 packets)

bursty packet drops, under the same setting as in Figure
9. The recovery speed, i.e., burstiness, with this sequence
was nearly as high as when using TCP Reno in the server,
as shown in the right graph of Figure 12. As a result, the
several-second delays in the servers for transmitting bulk
data flows were eliminated, as shown in Figure 10(d).
This reduced the over-980-ms delays in the server and
thus the end-to-end delays for interactive data flows, as
shown in Figure 10(c).

5.2.2 Case 2: Separate TCP Connections

We assumed that the client application did not have
to maintain the packet order between the interactive
and bulk data flows sent by the server application. In
both buffer cases, the end-to-end delays for interactive
data flows were almost completely due to propagation
delay; these delays were much lower than 130 ms, as
shown in Figure 13. Since interactive data flows were
transferred using a dedicated TCP connection, the delay
for interactive data flows was independent of that for
bulk data flows.

6 Effect of WAN Propagation Delay

Finally, we evaluate the effect of WAN propagation delay
on the results for a single TCP connection shared by
interactive and bulk data flows without modifications
(Sec. 3.3) with the existing techniques (Sec. 4.2) and
with the proposed mechanisms (Sec. 5.2.1). Here, we
clarify the improvements among these three approaches.
For each case, we performed additional experiments
with several WAN propagation delays ranging from 7
to 70 ms. The evaluation results were converted into
the average intervals between delays exceeding either
Threshold (1) or (2), i.e., TI150 and TI1000 by using Eq.
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(a) bs: 2500 KB, interactive (b) bs: 2500 KB, bulk

(c) bs: 25 KB, interactive (d) bs: 25 KB, bulk

Figure 13 Delay distributions with prioritised interactive
data flows, TCP SACK option, and proposed
mechanism for separate TCP connections

(4). This means that the longer the interval becomes the
less often users notice the delay and get frustrated. Note
that the probability of delays exceeding the threshold,
and hence the intervals as well, is shared by all users in
the system, rather than entirely affecting each user.

Figure 14 shows changes in the intervals for
interactive data flows, where each marker specifies the
mean and each error-bar specifies the maximum and
minimum values for seven experimental runs for each
setting. When the WAN propagation delay increased,
its effect was not so obvious in the large buffer case;
meanwhile, the intervals became shorter along with the
delay in the small buffer case. In the large and small
buffer cases, average TI150 values with the proposed
mechanism were 55 and 67 s; these were 6.5 and
2.8 times longer, respectively, than those for without
modification. Moreover, they both slightly increased the
improvement obtained by applying only the existing
techniques. Furthermore, average TI1000 values with the
proposed mechanism were 1.7× 103 and 1.0× 103 s;
these were 3.6 and 3.9 times longer, respectively, than
those for with only the existing techniques. In addition,
the variation in TI1000 without modification in the large
buffer case and that with the existing techniques at
less than 20 ms in the small buffer case were both
considerably large if large bulk data flows from some
servers reached the router in a highly synchronised
manner for a few milliseconds. Meanwhile, with the
proposed mechanisms, the variation was relatively small.
These results show that the proposed mechanisms negate
the shortcomings of the existing approaches and improve
upon them. In addition, for bulk data flows, the intervals
obtained with the proposed mechanisms were equivalent
to other results.

(a) bs: 2500 KB, interactive (b) bs: 25 KB, interactive

Figure 14 Interval between delays exceeding threshold
(TI150 : solid lines and TI1000 : dashed lines (Eq.
(4)))

(Horizontal positions are adjusted for error bars visibility.)

7 Conclusion

The thin-client system has a particular traffic pattern
involving a mixture of interactive and bulk data flows.
This study aimed to improve the performance of
interactive data flows while not influencing bulk data
flows. We found that the average end-to-end delay of
the interactive data flows could be reduced by applying
priority queuing and utilising the TCP SACK option.
The occurrences of lengthy delays exceeding about 1000
ms resulting from the buffering delay in the server could
be further reduced by modifying the retransmission
timeout calculation and temporarily halting the TCP
SACK control. Nevertheless, to completely eliminate
the effect of bulk data flows on interactive data flows,
it is necessary to establish separate TCP connections
for these two types of data flows. The remote desktop
protocol can change its setting and reduce the traffic
volume of bulk data flows to cope with a low-bandwidth
environment. Researchers have previously attempted to
improve performance by caching screen updates (Yang
and Tiow, 2007; Vankeirsbilck et al., 2008). However,
these measures do not reduce the bulk data flow volume
to the level of the interactive data flow volume. Thus,
delays caused by interactions between interactive and
bulk data flows will still occur as long as the two
flow types share a TCP connection. In the future, we
would like to investigate network architectures for cloud
computing using thin-client technology.
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