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Optical-Layer Traffic Engineering with Link Load
Estimation for Large-Scale Optical Networks

Yuya Tarutani, Yuichi Ohsita, Shin’ichi Arakawa, and Masayuki Murata

Abstract—Traffic information is required to perform
optical-layer traffic engineering (TE). However, as the num-
ber of nodes in optical networks increases, the overhead
for collecting the traffic volume information becomes large.
In this paper, we develop a method that reduces the over-
head for collecting traffic volume information by selecting
a subset of nodes and by only collecting the traffic volume
information from the selected nodes. Then, we estimate the
traffic volume using the information gathered from the se-
lected nodes. According to the simulation results, we clarify
that our method can accurately identify the congested links
in real ISP topologies, where the number of traffic demands
passing through some links is large; however, the estimation
errors of our method become large when the number of traf-
fic demands passing each link is small. Furthermore, optical-
layer TE can sufficiently mitigate congestion by using the
traffic volume estimated by our method from the information
of 50% of all nodes in the case of Japan topology and 30% of
all nodes in the case of AT&T topology.

Index Terms—Estimation; Selection of Source Nodes; Traf-
fic Engineering; Optical Network;

I. INTRODUCTION

In recent years, various new applications, such as peer-
to-peer and video on demand have been deployed over the
Internet, leading to sudden and significant changes in traffic
volume. Network providers must cost-effectively handle such
significant traffic changes. Optical-layer traffic engineering
(TE) [1-7] is one approach for handling traffic changes in
a cost-effective manner. In optical-layer TE, in response to
the changes of traffic volume in a network, a virtual network
topology (VNT) is dynamically configured by setting up op-
tical paths through optical cross-connects. The optical path
is considered a directly connected high-capacity link for edge
nodes. The traffic between two edge nodes is conveyed over
the VNT by IP-layer routing. By reconfiguring the VNT to
suit the current traffic, optical-layer TE handles significant
traffic changes and mitigates the congestion caused by traffic
changes. In optical-layer TE, the VNT and the traffic route
are calculated and controlled with a centralized server.

To perform optical-layer TE, the centralized server needs
to collect traffic information from the network. However, the
granularity of the traffic information may differ depending
on the required optimality and the overhead introduced by
TE. For example, when we apply optimization techniques
to determine the VNT and the traffic route, we need a
traffic matrix that expresses the traffic demands between
edge-to-edge nodes. However, collecting all traffic demands
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requires monitoring overheads at each node; i.e., a packet-
header inspection is necessary to identify the destination
node. In addition, because the centralized server needs to
collect information about the traffic demand from every
node, a collecting overhead is required. The CPU loads and
the bandwidth required for collecting the traffic demands
increase with the number of nodes in the network [8]. One
reason for this is that the centralized server must query all
nodes to retrieve the traffic information.

One of the approaches for reducing the monitoring over-
head is to perform TE by using the traffic volume infor-
mation on each link. The traffic volume information can be
easily counted at the node. Juva [9] calculated the range of
each traffic demand by using the traffic volume information
on each link and optimized the traffic routes to minimize the
worst case of link utilization. Roughan et al. [1] and Ohsita
et al. [2, 3] calculated the VNT and/or the traffic routes
by estimating the traffic demand matrices from the traffic
volume information on each link. However, these studies are
not concerned with the collecting overhead at the centralized
server. Even when we only use the traffic volume information
on each link, the centralized server has to collect the traffic
information from all nodes. Thus, in this case, the collecting
overhead remains large. To avoid the large CPU loads of
the centralized server or bandwidths required to collect the
traffic demands, the collecting interval needs to be set to a
large value. However, the large collecting interval prevents
optical-layer TE from handling unpredictable traffic changes
that occur in a short period of time (e.g., less than a minute
[10]).

In this paper, we develop a method to reduce the overhead
for collecting the necessary traffic information for optical-
layer TE by estimating the traffic matrix from the traffic
information collected from a subset of nodes. First, we select
the nodes and collect the traffic volume information on each
link from the selected nodes. Then, we estimate the traffic
matrix by using the information collected from the selected
nodes. In this paper, the selected nodes are referred to as
source nodes .

The rest of this paper is organized as follows. Section II
provides an overview of the traffic matrix estimation. In Sec-
tion III, we introduce a method to estimate the traffic matrix
by using the information collected from the source nodes and
evaluate the accuracy of the estimation. In Section IV, to
improve the accuracy of the estimation, we develop a method
for selecting source nodes in order to obtain the traffic infor-
mation required to accurately estimate the traffic matrix.
In Section V, we evaluate our method by using multiple
traffic patterns, topologies, and optical-layer TE methods and
clarify the environments in which our method can estimate
the traffic matrix accurately enough to perform optical-layer
TE. Then, in Section VI, we evaluate our method by using a
large-scale topology to clarify that it can efficiently estimate
the traffic matrix even in a large-scale network. Finally,
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Section VII provides a conclusion.

II. TRAFFIC MATRIX ESTIMATION

A. Overview
Traffic matrix is the matrix of Ts,d that represents the

traffic volume from nodes s to d. Let N be the number of
nodes in the network. Then the traffic matrix is represented
as follows:

T =


T1,1

T1.2
...

TN,N

 . (1)

As this equation indicates, for obtaining the traffic matrix,
the traffic information between all nodes is required. The
overhead to collect the traffic information increases it as the
number of nodes. Therefore methods have been investigated
to estimate a traffic matrix from the traffic volume on each
link, which is determined from routing information A, and
traffic matrix T . Routing information A is known to the
network administrator and traffic matrix T is unknown. The
following equation holds:

AT = X, (2)

where X is a matrix of Xi that represents the traffic volume
passing through link i:

X =


X1
...

XL

 . (3)

In the above equation, L is the number of links in the net-
works. A is a routing matrix with element As,d,l representing
the route of traffic between nodes s and d; when the traffic
passes through link l, As,d,l is one, otherwise it is zero. A is
represented as follows:

A =


A1,1,1 A1,2,1 · · · AN,N,1

A1,1,2 A1,2,2 · · · AN,N,2
...

...
. . .

...

A1,1,L A1,2,L · · · AN,N,L

 . (4)

Note that when we consider the splittable flow, As,d,l is the
rate of traffic demand Ts,d conveyed through link l.

Traffic matrix estimation is an approach to estimate T
satisfying Eq. 2 on the basis of matrix X and routing matrix
A. Therefore, we collect the traffic volume on each link
to create matrix X. We cannot estimate the unique traffic
matrix satisfying Eq. 2 because the number of equations in
Eq. 2 is usually lesser than the number of elements in T that
is, several traffic matrix candidates satisfy Eq. 2. Therefore,
the traffic matrix estimation methods [11-16] obtain the
estimated traffic matrix that is close to the true traffic matrix
from the candidates by using a model of the traffic matrix.

One of the challenges of traffic matrix estimation is to
accurately estimate the traffic matrix from as little traffic
information volume as possible. We can reduce the collecting
overhead by reducing the traffic information volume as much
as possible without degrading the performance of optical-
layer TE using the estimated traffic matrix. However, the
traffic information volume used by traffic matrix estimation
has rarely been discussed. In this paper, we develop a method
for estimating the traffic matrix from the information of a

subset of nodes and discuss the traffic information volume
required to estimate the traffic matrix accurately enough to
perform optical-layer TE.

B. Related Work

Many approaches have estimated the traffic matrix us-
ing a traffic matrix model [11-16]. For example, Zhang et
al. [15] developed an estimation scheme called the tomo-
gravity method that estimates traffic matrices by following a
gravity model in which the traffic volume between two nodes
is proportional to the product of their traffic. The tomogravity
method works as follows. First, it estimates traffic demand
T grav

s,d on the basis of the monitored traffic in the ingress
and egress links in order to follow the gravity model by the
following equations:

T grav
s,d = Xlins

Xlout
d∑

k Xlout
k

, (5)

where lin
s is the ingress link at node s and lout

d is the egress
link at node d. We denote T grav as the matrix in which each
entry is T grav

s,d . Then the tomogravity method estimates traffic
matrix T̂ by the following equations:

min ∥T̂ − T grav∥, (6)
s.t. AT̂ = X.

That is, this method calculates T̂ satisfying Eq. 2 and mini-
mizes the difference between T̂ and T grav. Although the traffic
information required for the tomogravity method is much
smaller than that needed for directly collecting traffic matrix
information, L numbers of traffic information must still be
collected to estimate traffic matrices.

One approach to reducing the collecting overhead is to
divide the collection of traffic information into multiple steps.
In this approach, the centralized server collects the traffic
information from a subset of nodes in each step and con-
structs the traffic information of all links from the traffic
information collected at all steps. However, this approach
cannot follow the traffic changes that occur during the traffic
information collection steps.

Zhang et al. [16] developed a more sophisticated method
in which they calculated the correlation between each bit
of traffic volume information collected at different times or
different points. Then they estimated the uncollected traffic
volume information using the correlation. However, this
method cannot accurately estimate the uncollected traffic
volume information when a traffic change that is different
from past tendencies occurs.

C. Our Approach

In this paper, we develop a method that estimates the
traffic matrix from the information collected from a subset
of nodes without using the past traffic volume information.
Before estimating the traffic matrix, we estimate the un-
collected traffic volume on each link and create matrix X′

indicating the roughly estimated traffic volume on each link
as follows

X′ =


X′1
...

X′L

 , (7)
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where

X′l =


Xl if l is the link connected

to the source nodes,
Ul otherwise.

. (8)

In the above equation, Xl is the monitored traffic volume on
link l and Ul is the traffic volume on link l estimated from
the collected traffic volume information of other links.

Then we estimate the traffic matrix to match X′ and A by
minimizing the following equation:

min ∥AT̂ − X′∥. (9)

There are two challenges in our approach. The first is
estimating Ul from the monitored traffic volume on other
links without the past traffic volume information. We esti-
mate Ul using the relationship between the number of traffic
demands that pass a link and the traffic volume on it. The
details of our estimation method are described in Section III.
Another challenge is selecting the source node. The accuracy
of the estimated traffic matrix depends on the selection of the
source node. Thus, in our method, we select the source node
to avoid large estimation errors of the traffic matrix. The
details of the method to select the source nodes are described
in Section IV.

III. TRAFFIC MATRIX ESTIMATION FROM SUBSET
INFORMATION OF NODES

In this section, we introduce a method that estimates the
traffic matrix using the traffic volume monitored at a subset
of the nodes. Figure 1 shows the steps of our method. In Step.
1, we select source nodes and collect the traffic information
from them. In this step, the source nodes are randomly
selected. The details of Step 2 and 3 are described below.

A. Estimation of traffic volume using the number of traffic
demand

In this approach, we only use the traffic volume infor-
mation monitored at the selected source nodes. However,
because the lack of traffic volume information complicates
the estimation of traffic matrices, we estimate the uncol-
lected traffic volume information before estimating the traffic
matrix.

1) Method to estimate traffic volumes: The traffic volume
on each link is proportional to the number of traffic demands
passing the link unless the variance of the traffic demands is
large. Thus, we model the relationship between the number
of traffic demands passing a link and its traffic volume as
follows

Wi = αZi + β, (10)

where Wi is the traffic volume on link i, Zi is the number
of traffic demands passing link i, and α and β are constant
parameters. Zi for any node i can be calculated from the
routing matrix.

With this relation, we can estimate the traffic volume
on each link in the following steps. First, we calculate the
constant parameters α and β using the traffic volume on each
link collected from the selected source nodes with the least-
square method:

α =
|S |∑i∈S ZiWi −

∑
i∈S Zi

∑
i∈S Wi

|S |∑i∈S Z2
i −
(∑

i∈S Zi
)2 , (11)

Fig. 1. Flowchart for traffic matrix estimation

β =

∑
i∈S Zi

∑
i∈S Wi −

∑
i∈S ZiWi

∑
i∈S Zi

|S |∑i∈S Z2
i −
(∑

i∈S Zi
)2 , (12)

where S is the set of links connected to the source nodes.
Then we estimate traffic volume U j on link j that is not
collected from the source nodes as follows:

U j = αZ j + β. (13)

Finally, we create matrix X′ defined by Eq. 7 by using the
estimated volume of traffic U j.

2) Validation of the model used to estimate the traffic
volume: We validate the relationship modeled by Eq. 10
using a simulation. In this simulation, we use AT&T’s router-
level topology (523 nodes and 1304 links) measured in Ref.
[17]. We add one ingress link and one egress link for all nodes
in the AT&T topology and generate traffic between each pair
of ingress and egress links.

According to Ref. [18], each element of the actual traffic
matrices obeys a lognormal distribution. Thus, in this sim-
ulation, we generate traffic matrix T to follow a lognormal
distribution as follows:

T = Θ
(
T init + ∆

)
, (14)

where T init is a traffic matrix generated to follow a lognormal
distribution, ∆ is a matrix indicating the white Gaussian
noise with a mean of 0 and a variance of 1, and Θ is a scale
parameter. We generate T init

i, j on the basis of the lognormal
distribution with µ = 16.6, σ = 1.04 to match the results
described in Ref. [18]. The unit of the traffic volume of the
traffic demand generated by the above steps is Mbps and Θ is
set to 0.1 so that the generated traffic can be accommodated
in the topology used in this simulation.
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Fig. 2. Relationship between traffic demand and traffic volume on
each link in the case of AT&T topology (µ = 16.6, σ = 1.04)

Figure 2 shows the relationship between the number of
traffic demands passing a link and the traffic volume on
the link obtained by our simulation. According to Fig 2, the
model described by Eq. 10 fits the traffic volume on each
link when the traffic demands are generated using the same
parameters as the actual traffic demand monitored at the
real network in Ref. [17]. Therefore, Eq. 13 is considered to
estimate the traffic volume on each link without the large
estimation errors found in real networks.

The difference between the actual traffic volume and the
traffic volume modeled by Eq. 10 becomes large as the
variance of the traffic demands increases. This difference
leads to the estimation errors of the traffic volumes on
some links. However, if we obtain sufficient traffic volume
information from the source nodes, the estimation errors of
the traffic volumes on some links do not have large impacts
on the accuracy of the traffic matrix estimated by the steps
described in subsection III-B. The accuracy of the estimated
traffic matrix when the variance of the traffic demands is
large is discussed in Section V-B2.

B. Estimation of the traffic matrix
We estimate the traffic matrix from the roughly estimated

traffic volume on each link. If we apply the tomogravity
method to estimate the traffic matrix from the estimated
traffic volume on each link, estimation errors may become
large. The errors included in the traffic volume on the ingress
and egress links cause the inaccurate estimation of T grav

and the large estimation errors of the tomogravity method,
even when the traffic volumes on other links are estimated
accurately. Therefore, we need a traffic matrix estimation
method in which the estimation errors included in the traffic
volumes on particular links do not significantly affect the
estimation results.

Although a more sophisticated estimation method may
exist, in our evaluation described in Section V, we use a
simple approach to estimate the traffic matrix by minimizing
the following equation:

min ∥X′ − AT̂∥. (15)

The results shown in Section V clarify that we can accurately
identify the congested links and perform optical-layer TE to
mitigate the congestion by using the estimated traffic matrix,
even with the simple approach to estimate the traffic matrix.

C. Accuracy of the estimation
We evaluate the accuracy of the estimation by simulation.

The source nodes are randomly selected. We use Japan
topology (49 nodes and 91 links) and set the routes of packets
by the shortest path first (SPF) algorithm.

1) Metric: We use two metrics to evaluate the accuracy of
the estimation.

a) Accuracy of the estimated traffic matrix: We use the
Root Mean Squared Error (RMSE) to evaluate the accuracy
of the estimated traffic matrix. RMSE (TRMS E) of the traffic
matrix is defined as follows:

TRMS E =

√√√
1

N2

N∑
i=1

N∑
j=1

(
T̂i, j − Ti, j

)2
, (16)

where N is the number of nodes in the network, T̂i, j is
the estimated traffic demand between nodes i and j, and
Ti, j is the actual traffic demand between nodes i and j. In
our evaluation, we show RMSE normalized by the average
amount of traffic demand instead of the absolute value of
RMSE in order to compare the accuracy of the estimated
traffic matrix in the different environments.

b) Accuracy of the estimated traffic volume on each link:
The traffic volume on each link is important information
for optical-layer TE because inaccurate traffic volume on
each link may cause misidentification of the congested links.
Thus, we also investigated the accuracy of the traffic volume
on each link estimated from the estimated traffic matrix T̂
and the routing matrix A. The volume on each link X̂ is
estimated as follows:

X̂ = AT̂ . (17)

Similar to the accuracy of the estimated traffic matrix, we
use the RMSE to evaluate the estimated volume of traffic on
each link. RMSE (XRMS E) of the estimated volume of traffic
on each link is defined as follows:

XRMS E =

√√
1
L

L∑
k=1

(
X̂k − Xk

)2
, (18)

where L is the number of links in the network, X̂k is the
estimated traffic volume on link k, and Xk is the actual
traffic volume on link k. In our evaluation, we show RMSE
normalized by the average amount of traffic volume on each
link instead of the absolute value of RMSE for comparing
the accuracy of the estimated volume of traffic on each link
in different environments.

2) Simulation result: Figures 3 and 4 show TRMS E normal-
ized by the average amount of traffic demand and XRMS E

normalized by the average volume of traffic on each link
when we change the number of source nodes, respectively.
In these figures, the vertical axes are normalized TRMS E and
normalized XRMS E , and the horizontal axis is the number
of source nodes. We plot the results for the average of 20
cases randomly selected from the source nodes with the error
bar representing the 95% confidence interval. According to
Figs. 3 and 4, the estimation errors become large as the
number of source nodes reduces. This is because a large
number of traffic demands do not pass any randomly selected
source nodes. Furthermore, the traffic demand that does
not pass any source nodes is difficult to estimate because
we cannot obtain any information of the traffic passing no
source nodes. Therefore, we should select the source nodes
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Fig. 3. RMSE of the amount of traffic demand in the case of Japan
topology (µ = 16.6, σ = 1.04)
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Fig. 4. RMSE of the traffic volume on each link in the case of Japan
topology (µ = 16.6, σ = 1.04)

so that maximum possible traffic demands pass at least one
of the source nodes in order to accurately estimate the traffic
matrix from the small subset of nodes.

IV. SELECTING SOURCE NODES

In this section, we propose a method for selecting the
source nodes to avoid large estimation errors of the traffic
matrix. In our method, we select source nodes so that maxi-
mum possible traffic demands pass at least one of the source
nodes.

A. Method to select source nodes
Our method selects the source nodes by the following steps.

First, we set all nodes as candidates for the source nodes.
Then we eliminate the nodes passed only by the traffic
passing the other candidates from the candidates in the
elimination phase. Finally, we select the source nodes from
the candidates in the selection phase.

The details of the elimination phase and the selection
phase to select N source nodes are described below.

1) Elimination phase: We eliminate the nodes only passed
by the traffic demands passing the other candidates. By
eliminating such nodes from the candidates, we can reduce

the number of candidates without reducing the number of
traffic demands passing at least one of the candidates of the
source nodes.

We use the following variables: Qi is the number of traffic
demands that does not pass any other candidates except
node i and Ln,m is the number of candidates that passed by
the traffic demand from node n to node m. We select the
nodes to be eliminated on the basis of the number of traffic
demands passing node i, Pi. In the elimination phase, our
method eliminates the candidates by the following steps:
Step. 1.1 Initialize Qi to 0, and Ln,m to the number of nodes

that passed by the traffic demand from nodes n to
m.

Step. 1.2 Eliminate node x whose Pi is the smallest among
the candidates whose Qi is 0 from the candidates.

Step. 1.3 Update Ln,m by decrementing Ln,m whose corre-
sponding traffic demand passes node x.

Step. 1.4 Update Qi for all candidates by counting the el-
ements of Ln,m whose value is 1 and whose cor-
responding traffic passes node i. If a node whose
Qi is 0 exists, go to Step. 1.5, otherwise go to
Step. 1.6.

Step. 1.5 If the number of candidates is larger than N, go
back to Step. 1.2. Otherwise, go to Step. 1.6.

Step. 1.6 End.
2) Selection phase: In the selection phase, we select the

source nodes so that maximum possible traffic demands pass
at least one of the source nodes. In our method, we use a
greedy approach that iteratively selects the source nodes so
as to maximize the number of traffic demands passing the
selected source nodes.

In each iteration of the selection phase, we select the
source nodes by using the number of traffic demands that
passes node i and does not pass the currently selected source
nodes, Ri.

In the selection phase, we select the source nodes by the
following steps.
Step. 2.1 If the number of candidates is less than N, select

all nodes in the candidates and go to Step. 2.6.
Otherwise go to Step. 2.2.

Step. 2.2 Initialize Ri to Pi.
Step. 2.3 Select node x whose Rx is the largest among the

candidates. If there are multiple candidates whose
Rx are the largest, select node x with the largest
Pi.

Step. 2.4 Check the route of each traffic demand passing
selected node x. Then update Ri by decrementing
its value if a traffic demand passing selected node
x also passe node i.

Step. 2.5 If the number of the selected source nodes is less
than N, go back to Step. 2.3. Otherwise go to
Step. 2.6.

Step. 2.6 End.

B. Accuracy of the estimation using the information from the
selected source nodes

We evaluate the accuracy of the estimation using the traf-
fic information from the source nodes selected by our method.
In this evaluation, we use the same metrics, topology and
traffic demands as in Subsection III-C.

Figure 5 shows TRMS E normalized by the average amount of
traffic demand when we change the number of source nodes.
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Fig. 5. RMSE of the traffic matrix in the case of Japan topology
(µ = 16.6, σ = 1.04)
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Fig. 6. RMSE of the traffic volume on each link in the case of Japan
topology (µ = 16.6, σ = 1.04)

The vertical axis is normalized TRMS E , and the horizontal axis
is the number of source nodes. “our method” indicates the
results for the case that we select the source nodes by our
method. We also plot the results for the average of 20 cases
of the randomly selected source nodes indicated as ”random”
with the error bar representing the 95% confidence interval.

According to Fig. 5, by selecting more than 24 source
nodes, our method can estimate the traffic matrix with an
estimation error of less than 0.6 times the average of the
actual traffic matrix, while the method that randomly selects
source nodes cannot. This is because our method selects
source nodes to cover maximum possible traffic demands.
Therefore, most traffic demands pass at least one source node
selected in our method and can be estimated from the traffic
volume information collected from the source nodes.

Even when we select the source nodes by our method, the
estimation error shown in Fig. 5 is larger than the results
shown in Refs. [11-16]; this is because since our method uses
only the information of the selected source nodes. However
we do not have to accurately estimate traffic matrices if
we can accurately identify the congested links and perform
optical-layer TE to mitigate the congestion with the esti-
mated traffic matrix. Figure 6 shows XRMS E normalized by
the average volume of traffic on each link as a function of

the number of source nodes similar to Fig. 5. According to
Fig. 6, our method accurately estimates the traffic volume on
each link by selecting more than 24 source nodes, whereas
the method that randomly selects source nodes cannot. That
is, we can accurately identify the congested links from the
traffic volume on each link estimated by our method.

V. EVALUATION OF OPTICAL-LAYER TRAFFIC
ENGINEERING USING THE ESTIMATED TRAFFIC DEMANDS

In this section, we evaluate optical-layer TE using the
traffic demands estimated by our method through simu-
lations with multiple traffic patterns, topologies and the
optical layer TE methods. Then, we clarify the environment
in which our method estimates the traffic matrix and the
traffic volume on each link accurately enough to perform
optical- layer TE.

A. Simulation settings
1) Topology: In our evaluation, we use Japan topology (49

nodes and 91 links) and a random graph (100 nodes and
200 links). Japan topology is a real ISP topology constructed
by considering the geographical distance between each node.
Thus, there are no links between the node pairs at a large
distance. This causes the concentration of traffic demands on
certain links. On the other hand, the random graph is con-
structed without the geographical distance. Therefore, there
are no links where the traffic demands are concentrated.

We set the bandwidth for an optical path to 10 Gbps and
the number of transmitters/receivers of node i to Di+8 where
Di is the degree of node i. In this simulation, we assume
that the number of wavelengths on optical fibers will be
sufficient. The initial VNT is configured to suit the traffic
matrix generated by Eq. 14 with µ = 16.6 and σ = 1.04.

2) Traffic: Optical-layer TE reconfigures the VNT when
the traffic demand changes and the VNT becomes unsuitable
for the current traffic. In this simulation, we assume that
the traffic changes significantly and that the actual traffic
matrix after the traffic change is again generated randomly
by Eq. 14. We generate two types of actual traffic matrices:
realistic traffic and skewed traffic. Realistic traffic is gen-
erated using µ = 16.6 and σ = 1.04 so that the generated
traffic follows the traffic distribution monitored at the real
ISP [18]. Skewed traffic is generated using µ = 16.6 and
σ = 2.08 so that the variance of the generated traffic demand
is large. For skewed traffic, the traffic volume on each link
may be different from the traffic volume modeled by Eq. 10
owing to the traffic demand whose volume is significantly
larger than the other traffic. We set Θ to 1 in the cases
of Japan topology and random graph so that the generated
traffic can be accommodated in the topologies used in this
simulation

3) Optical-layer TE method: In this evaluation, we use
two optical layer TE methods; One is the method proposed
in Ref. [4] that we call the Adaptive Reconfiguration based
on Link Utilization (ARLU) in this paper. The other is the
Minimum Delay Logical Topology Design Algorithm (MLDA)
proposed in Ref. [5].

a) ARLU[4]: The ARLU adds a new optical path to
mitigate congestion and, if possible, deletes currently under-
utilized optical paths for reclamation. Although the original
version of this method adds or deletes only one optical
path at a time, such addition or deletion cannot sufficiently
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mitigate the congestion in a large-scale network. Thus, we
use the extended method to add or delete multiple optical
paths.

This method uses two thresholds for the utilization of each
optical path to define the congested and underutilized states
TH and TL, respectively. In our evaluation, we set TH to 0.3
and TL to 0.2. The general sequence of the algorithm to
calculate the VNT is as follows:
Step. 1 Calculate the utilization of all links of the VNT

from the estimated traffic matrix. If at least one
congested link (i.e., a link whose utilization ex-
ceeds threshold TH) is found, go to the optical path
addition phase (Step 2). If there is a link whose
utilization is less than threshold TL, go to Step. 3.

Step. 2 Execute the optical path addition phase described
below and go to Step. 4.

Step. 3 Execute the optical path deletion phase described
below and go to Step. 4.

Step. 4 Calculate the packet routes over the new VNT and
re-calculate the utilization of all links of the new
VNT from the estimated traffic matrix.

Step. 5 If the optical path is not added/deleted, go to Step.
6. Otherwise, return to Step. 1.

Step. 6 End.
In the above steps, the routes of the packets over the VNT

are calculated using the SPF algorithm. The following are
the details of the optical path addition/deletion phases.

In the optical-path addition phase, if the link utilization of
the current VNT exceeds TH , a new optical-path is set up to
reroute traffic away from the congested link. First, we collect
a set of traffic demands that passes the most congested link.
Then, we select the busiest set of collected traffic demands.
Finally, we add the direct optical path (i.e., a single directly
connected link) from the ingress to the egress nodes of the
selected traffic demands.

In the optical path deletion phase, if the utilization of an
optical path is less than TL and its deletion doesn’t cause
congestion, the path is torn down so that the IP router ports
and wavelengths can be reclaimed for future use. The optical
path is checked for the potential of its deletion to cause
congestion by calculating the utilization of the optical paths
after deletion using the traffic matrix. If there is more than
one deletion candidate, each candidate path is tested in the
ascending order of utilization.

b) MLDA[5]: The MLDA is a method that aims to
minimize the maximum link utilization. It uses the following
parameters; Ti, j is the element of the traffic matrix corre-
sponding to the traffic from node i to node j, dout

i is the
number of transmitters in node i, and din

i is the number of
receivers in node i. The MLDA reconfigures the VNT by the
following steps:
Step. 1 Select the node pair i- j whose traffic volume is the

largest. If the traffic volume Ti, j corresponding to the
selected node pair is 0, go to Step. 6. Otherwise, go
to Step. 2.

Step. 2 If dout
i > 0 and din

j > 0, configure the optical path from
node i to node j and go to Step. 3. Otherwise, go to
Step. 4.

Step. 3 Decrement dout
i and din

j .
Step. 4 Select the node pair k-l whose traffic volume is the

second largest.
Step. 5 Update Ti, j ← Ti, j − Tk,l, and go to Step. 1.
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Fig. 7. RMSE of the traffic matrix using the ARLU in the case of
Japan topology (µ = 16.6, σ = 1.04)
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Fig. 8. RMSE of the traffic volume on each link using the ARLU
in the case of Japan topology (µ = 16.6, σ = 1.04)

Step. 6 End.
4) Metrics:

a) Accuracy of the estimation: We evaluate the accuracy
of our estimation method by using the same metric described
in subsection III-C1.

b) Performance of TE using the estimated traffic matrix:
The goal of the optical-layer TE used in this simulation is to
mitigate the congestion. Thus, we evaluate the performance
of the TE using the estimated traffic matrix by the maximum
link utilization achieved by it.

B. Performance of the ARLU in the case of Japan topology
In this subsection, we evaluate the ARLU using the traffic

demands estimated by our method using Japan topology (49
nodes and 91 links) as a physical topology. In the evaluation
in this subsection, the initial VNT is also constructed by the
ARLU so as to suit the initial traffic demands.

1) Realistic Traffic: In this subsection, we generate the
realistic traffic for the traffic demands.

Before evaluating the performance of the ARLU, we inves-
tigate the accuracy of our estimation method when the VNT
is constructed using the ARLU. Figures. 7 and 8 show TRMS E

normalized by the average amount of traffic demand and
XRMS E normalized by the average volume of traffic on each
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Fig. 9. Maximum link utilization after TE using the estimated
traffic matrix using the ARLU in the case of Japan topology (µ = 16.6,
σ = 1.04)

link, respectively. In these figures, the vertical axes are the
normalized TRMS E and normalized XRMS E , and the horizontal
axis is the number of source nodes. “our method” indicates
the results for the case that we select the source nodes by
our method. We also plot the results for the average of 20
cases randomly selected from the source nodes indicated as
”random” with the error bar representing the 95% confidence
interval.

According to Figs. 7 and 8, similar to the results de-
scribed in Subsection IV-B, by selecting more than 29 source
nodes, our method can estimate the traffic matrix with an
estimation error of less than 0.7 times the average of the
actual traffic matrix, whereas the method that randomly
selects source nodes cannot. Our method can also estimate
the traffic volume on each link accurately by selecting more
than 29 source nodes. That is, we can accurately identify
the congested links from the traffic volume on each link
estimated by our method.

Figure 9 shows the maximum link utilization achieved by
the ARLU using the estimated traffic matrix as a function
of the number of source nodes. The vertical axis is the
maximum link utilization, and the horizontal axis is the
number of source nodes. “Our method” indicates the results
for the case that we perform the ARLU using the traffic
matrix estimated by our method, “actual traffic” indicates
the case that we perform the ARLU using the actual traffic
matrix, and ”before TE” indicates the maximum link utiliza-
tion before we reconfigure the VNT. In addition, we plot the
results for the average of 20 cases randomly selected from
the source nodes indicated as ”random” with the error bar
representing the 95% confidence interval.

According to Fig. 9, when we select more than 24 source
nodes, the ARLU using the traffic matrix estimated by our
method achieves maximum link utilization similar to the
ARLU using the actual traffic matrix; on the other hand
the maximum link utilization after performing the ARLU
using the traffic matrix estimated from the information of
randomly selected nodes remains large. This is because we
can accurately identify the congested links from the traffic
matrix estimated by our method, as shown in Fig. 8.

2) Skewed traffic: In this subsection, we evaluate our
method when the variance of the traffic demand is large.
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(a) Case of realistic traffic (µ = 16.6, σ = 1.04)
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(b) Case of skewed traffic (µ = 16.6, σ = 2.08)

Fig. 10. Relationship between the number of traffic demands and
the traffic volume on each link in the case of Japan topology

In this case, the traffic volume on each link may be different
from the traffic volume modeled by Eq. 10.

Figure 10(b) shows the relationship between the number
of traffic demands passing a link and the traffic volume on
each link in the initial VNT constructed by the ARLU in
the case of the skewed traffic. Compared with Fig. 10(a), the
difference between the actual traffic volume on each link and
the traffic volume modeled by Eq. 13 is large because of the
large variance of traffic demands.

Figure 11 shows XRMS E normalized by the average volume
of traffic on each link. According to Fig. 11, even when the
variance of traffic demand is large, our method can accu-
rately estimate the traffic volume on each link by selecting
more than 24 source nodes. This is because our method
selects source nodes to cover maximum possible traffic de-
mands similar to the case in Fig. 8. Most traffic demands
pass at least one of the source nodes selected in our method
and can be estimated from the traffic volume information
collected from the source nodes. Therefore, even if the traffic
volume estimated by Eq. 13 includes a large estimation error,
we can accurately identify the congested links.

Figure 12 shows the maximum link utilization achieved by
the ARLU using the estimated traffic matrix as a function of
the number of source nodes. According to Fig. 12, when the
number of source nodes is more than 19, the ARLU using the
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Fig. 11. RMSE of the traffic volume on each link using the ARLU
in case of Japan topology (µ = 16.6, σ = 2.08)
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Fig. 12. Maximum link utilization after TE using the estimated
traffic matrix using the ARLU in the case of Japan topology (µ = 16.6,
σ = 2.08)

estimated traffic matrix can achieve link utilization similar
to the ARLU using the actual traffic matrix. This is because
our method can accurately estimate the traffic volume on
each link by selecting more than 19 source nodes.

C. Performance of the ARLU in the case of the random graph
In this subsection, we evaluate our method using the ran-

dom graph (100 nodes and 200 links) as a physical topology.
The initial VNT is configured by the ARLU. Now, we generate
the realistic traffic.

Figures 13 and 14 show normalized XRMS E and the max-
imum link utilization achieved by the ARUL using the
estimated traffic matrix, respectively. According to Fig. 13,
our method cannot accurately estimate the traffic volume on
each link. The estimation errors of our method are larger
than the method that randomly selects source nodes. As a
result, the ARLU using the estimated traffic matrix cannot
reduce the maximum link utilization as much as the ARLU
using the actual traffic matrix unlike the case of Japan
topology.

This large estimation error is caused by the small number
of traffic demands passing each link. Because the number
of traffic demands passing each link is small in the VNT
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Fig. 13. RMSE of the traffic volume on each link in the case of the
random graph (µ = 16.6, σ = 1.04)
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Fig. 14. Maximum link utilization after TE using the estimated
traffic matrix in the case of random graph(µ = 16.6, σ = 1.04)

constructed over the random graph, a large number of traffic
demands do not pass any of the selected source nodes and
are estimated from the traffic volume estimated by Eq. 13.

In addition, the small number of traffic demands passing
each link causes the large estimation errors in the traffic
volume estimated by Eq. 13. As shown in Fig. 15, a large
number of links are passed by only a smaller number of
traffic demands than the number of traffic demands passing
the ingress/egress link. However, our method does not obtain
the traffic information on such links because it selects the
nodes passed by a large number of traffic demands. This
causes large estimation errors on the parameters, α and β
in Eq. 13. Because the traffic volume estimated by Eq. 13
includes large estimation errors, we cannot accurately esti-
mate the traffic volume.

On the other hand, the number of traffic demands passing
each link in the real ISP topology is much larger than
the random graph because the real ISP topology is con-
structed by considering the geographical distance. According
to Fig. 10(a), many links are passed by much larger number
of traffic demands than the ingress/egress links in the Japan
topology. In this case, the traffic information on the links
passed by a small number of traffic demands is also obtained
from the selected source nodes; this is because the number
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Fig. 15. Relationship between the number of traffic demands and
the traffic volume on each link in the case of the random graph
(µ = 16.6, σ = 1.04)
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Fig. 16. RMSE of the traffic matrix using the MLDA in the case of
Japan topology (µ = 16.6, σ = 1.04)

of traffic demands passing the ingress/egress link connected
to the selected source node is smaller than that passing the
other links. Thus, we can accurately estimate parameters,
α and β in Eq. 13. Therefore, the large estimation errors
caused by the small the number of traffic demands passing
each link do not occur in the real ISP topology.

D. Performance of the MLDA
We evaluate our method for the case when the MLDA is

used for reconfiguration. In this evaluation, we configure the
initial VNT by the MLDA using the initial traffic matrix. In
this subsection, we generate the realistic traffic.

1) In the case that the number of transmitters/receivers
are large: In this section, we evaluate the MLDA when each
node has Di + 8 transmitters/receivers where Di is the node
degree of node i.

Before evaluating the performance of the MLDA, we eval-
uate the accuracy of the estimation when the initial VNT is
configured by the MLDA. Figures 16 and 17 show TRMS E nor-
malized by the average amount of traffic demand and XRMS E

normalized by the average volume of traffic on each link,
respectively. According to Figs. 16 and 17, the estimation
errors of our method are significantly larger than the results
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Fig. 17. RMSE of the traffic volume on each link using the MLDA
in the case of Japan topology (µ = 16.6, σ = 1.04)
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Fig. 18. Relationship between the number of traffic demands and
the traffic volume on each link in the case of Japan topology using
the MLDA (µ = 16.6, σ = 1.04)

of the case of the ARLU and similar to the estimation errors
of the case when the source nodes are randomly selected.
This is because of the difference between the initial VNT
constructed by the ARLU and that constructed by the MLDA.
Thus, we compare the VNT constructed by the ARLU and the
MLDA.

Figure 18 shows the relationship between the number of
traffic demands passing a link and the traffic volume on
the link obtained by our simulation when the initial VNT
configured by the MLDA is used. Comparing Figs. 18 and
10(a), the number of traffic demands passing each link is
much smaller in the VNT configured by the MLDA than
that configured by the ARLU. This is because the MLDA
constructs maximum possible optical paths, whereas the
ARLU constructs only the optical-paths required to mitigate
the congestion. This small number of traffic demands passing
each link causes the large estimation errors as discussed in
subsection V-C,

Figure 19 shows the maximum link utilization achieved by
the MLDA using the estimated traffic matrix as a function
of the number of source nodes. According to Fig. 19, the
maximum link utilization achieved by the MLDA using the
estimated traffic matrix is greater than that achieved by the
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Fig. 19. Maximum link utilization after TE using the estimated
traffic matrix using the MLDA in case of Japan topology (µ = 16.6,
σ = 1.04)
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Fig. 20. RMSE of the traffic matrix using the MLDA when the
number of the transmitters/receivers is small in the case of Japan
topology (µ = 16.6, σ = 1.04)

MLDA using the actual traffic demand. This is because of the
large estimation errors shown in Figs. 16 and 17. However,
we can reduce the maximum link utilization compared with
that before TE. This is because we can add many optical
paths in the environment used in this evaluation. We add
optical paths to the node pairs whose traffic amounts are
large despite the large estimation errors.

2) In the case that the numbers of the transmit-
ters/receivers are small: Now, we evaluate our method when
the numbers of the transmitters/receivers is small. Each
node has Di + 2 transmitters/receivers where Di is the node
degree of the node i. As mentioned earlier, we configure the
initial VNT by the MLDA.

Figures 20 and 21 show normalized TRMS E and XRMS E , re-
spectively. According to the figures, our method can estimate
the traffic matrix and the traffic volume on each link more
accurately than the case of Di+8 transmitters/receivers. This
is because the number of constructed optical paths in the
case of Di + 2 transmitters/receivers is smaller than that in
the case of Di+8 transmitters/receivers. Because the number
of constructed optical paths is small, the number of traffic
demands passing a node is larger than for the case of Di + 8
transmitters/receivers. Thus, the number of traffic demands
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Fig. 21. RMSE of the traffic volume on each link using the MLDA
when the number of the transmitters/receivers is small in the case
of Japan topology (µ = 16.6, σ = 1.04)
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Fig. 22. Maximum link utilization after TE using the estimated
traffic matrix using the MLDA when the resource is reduced in the
case of Japan topology (µ = 16.6, σ = 1.04)

that do not pass any selected source nodes in the case of
Di + 2 is smaller than that for the case of Di + 8.

Figure 22 shows the maximum link utilization achieved
by the MLDA using the estimated traffic matrix as a func-
tion of the number of source nodes. The MLDA using the
traffic matrix estimated by our method cannot reduce the
maximum link utilization even when we select 39 source
nodes, although the estimation error of the traffic matrix
(Fig. 22) is as small as that for the case of the ARLU
shown in subsection V-B1. That is, when the numbers of
transmitters/receivers is small, the MLDA is less robust to
the estimation errors of the traffic matrix than the ARLU.
This is because the MLDA uses only the traffic matrix to
decide where to add the optical paths, while the ARLU uses
both the traffic matrix and the traffic volume on each link.
As shown in Figs. 7 and 8, the traffic volume on each link can
be estimated more accurately than the traffic matrix. Thus,
the ARLU can configure the adequate VNT even when using
the estimated traffic matrix.
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Fig. 23. RMSE of traffic volume on each link in the case of AT&T
topology 　 (µ = 16.6, σ = 2.08)

E. Summary of the results
According to the results in this section, our method can

estimate the traffic matrix accurately enough to perform the
ARLU. Although the estimation errors become large when
the number of traffic demands passing each link is small,
such large estimation errors do not occur in the real ISP
topology. This is because the number of traffic demands
passing some links in the real ISP is large since the real
ISP topology is constructed by considering the geographical
distance between each node.

The evaluation also shows that the MLDA is less robust to
estimation errors than the ARLU. This is because the MLDA
uses only the traffic matrix to decide where to add the optical
paths, while the ARLU uses both the traffic matrix and the
traffic volume on each link. That is, the TE method using
both the traffic matrix and the traffic volume on each link is
suitable for the case when the estimated traffic information
is used.

VI. EVALUATION IN A LARGE SCALE NETWORK

Here, we evaluate our method using AT&T topology (523
nodes and 1304 links) measured in Ref. [17] as a physical
topology. The initial VNT is configured by the ARLU. In
addition, we show the results for the case of the skewed
traffic that is generated by Eq. 14 using µ = 16.6, σ = 2.08 and
Theta = 0.1. We omit the results for the case of the realistic
traffic because the realistic traffic is easier to estimate than
the skewed traffic.

A. Accuracy of estimated traffic volume
Figure 23 shows the normalized XRMS E when we change the

number of source nodes. According to Fig. 23, our method
accurately estimates the traffic volume on each link by
selecting more than 123 source nodes, while the method that
randomly selects source nodes cannot. That is, our method
can identify the congested links more accurately than the
case of the estimation from the randomly selected nodes in
the large scale ISP topology.

B. Performance of the ARLU
Figure 24 shows the maximum link utilization achieved

by the ARLU using the estimated traffic matrix. According
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Fig. 24. Maximum link utilization after TE using the estimated
traffic matrix in the case of AT&T topology (µ = 16.6, σ = 2.08)

to Fig. 24, the ARLU using the traffic matrix estimated by
our method can significantly reduce the maximum link uti-
lization. In addition, it can achieve 1.3 times the maximum
link utilization achieved by the ARLU using the actual traffic
matrix by selecting 123 source nodes in the case of skewed
traffic. That is, our method can estimate the traffic volume
on each link accurately enough to be used by the ARLU by
collecting traffic information from 30% of all nodes in AT&T
topology.

C. Calculation time
The caluculation time to estimate the taraffic volume is

important for handling traffic changes that occur in a short
period of time. The complexity of our method to select source
nodes is O(N3) and the complexity of our method to estimate
the traffic matrix is O(N2L) where N is the number of nodes
and L is the number of links in the topology.

We measure the time to estimate the traffic volume by our
method. In this simulation, we use a server with a 3.16GHz
Intel Xeon 5460 Processor to measure the time to estimate
the traffic volume. We implement the method to select source
nodes in C++ and the method to estimate the traffic matrix
in MATLAB.

In our method, selecting source nodes requires 40 seconds
and estimating traffic volume requires only 1.5 seconds for
the VNT constructed over the AT&T topology. We do not have
to select the source nodes within a small interval because our
method continues to collect the traffic information from the
same source nodes unless the VNT is changed. Therefore,
even in a large scale network such as AT&T topology, our
method can estimate the traffic volume in a sufficiently short
time to handle the traffic changes that occur in a short period
of time.

VII. CONCLUSION

In this paper, we developed a method to select the source
nodes and estimate the traffic matrix on the basis of the
traffic information collected from the selected source nodes.
We evaluated our method through simulations. According
to the simulation results, our method estimates the traffic
matrix and the traffic volume on each link accurately enough
to perform TE in real ISP topologies; however our method
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cannot accurately estimate the traffic matrix when the
number of traffic demands passing each link is small. The
simulation results show that we can mitigate the congestion
by using the traffic matrix estimated from 50% of all nodes
in the case of Japan topology and 30 % of all nodes in the
case of AT&T topology.

Future researches include improving the accuracy of the
estimation by developing more sophisticated method to es-
timate the uncollected traffic volume on each link and the
traffic matrix by using the information from the source
nodes.
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