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Abstract Modern wide-area, Wavelength Division Multiplexing-based network topologies are often meant to have

a much longer lifetime than it is possible to obtain using current technologies, as the greatest cost in the network

deployment process is building the infrastructure itself. Thus, it is very important to design the topology in a way

that supports traffic changes resulting from population migration, introduction of new services, but network failures

as well. Networks obtained this way are more likely to be easier to extend using future technological advances. In

this paper, we investigate a topology design problem for future WDM-based networks, using Genetic Algorithm

with Lifetime Algorithm as an evaluation function, in search for the evolutionary optimal topology. Candidate

networks are being developed in the process similar to the evolution of living organisms where every generation

of new networks is being assessed for its ability to survive the longest, given certain, varying traffic load. Only

positively-verified network topologies are allowed to pass to another generation, simultaneously being parents to

descendants obtained from them in biologically inspired processes. We use Lifetime Algorithm for determining

bottlenecks and detailed lifetimes of networks, together with the new application using it to develop new topologies

for the same geographical locations. We discuss the features of the networks that seem to be promoted and outline

possibilities of further development of the method.
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1. Introduction

In the modern approach to the wide area backbone network topol-

ogy design, one of the outlined key points to have in mind, is that

physical topology is supposed to be left unchanged for much longer

than the current achievements in the optical communication would

allow it to, and often empty conduits or unlit fibres are installed as

a mean to provide additional network capacity when the traffic de-

mand grows. Such an approach makes it more important to consider

long-term predictions of the possible traffic shifts in the network, as

the cost of building infrastructure for new fibre optic lines is signif-

icant [1]. These shifts can occur as a result of emergence of a new,

enthusiastically adopted Internet service, or as a planned move of

datacentres of companies offering cloud, hosting, VPS and similar

services. Another concern is allocation of traffic in a way that is

better load-balanced over the nodes, minimizes the effect of router

failures, and maximizes predicted lifetime of the equipment before

it needs to be upgraded. All of these reason have led us to the con-

clusion that assessing of the possibility to cope with certain shifts in

traffic may not only be useful when dealing with already developed

networks, to determine bottlenecks and their improvement possibil-

ity, but also in the design process of entirely new network topolo-

gies.

In this paper we investigate the possibility of using the Lifetime Al-

gorithm [2], a method that has proven to be promising in terms of

assessing the ability of a proposed network topology to survive vari-

able load, by introducing shifts that can represent the unstable na-

ture of the Wide Area Networks traffic schemes. We use it together

with Genetic Algorithm in order to determine the characteristics of a

network, which for the given dataset, technological constraints and

time, proves to provide the best performance on the path of evolu-

tion. We discuss the properties of the obtained topologies and com-

pare them, as well as the influence of different parameters we have

introduced during our research to determine the optimal settings to

obtain the final topology. In this paper we have focused our attention

on the network nodes performance metrics, taking into account link

performance in the second place. However, when considering im-

plementation of the method in the production environment, a new,

combined metrics incorporating real world geographical constraints

need to be included as well.

This paper is organized as follows: in Section 2 we define assump-

tions of out method, together with explanation of used algorithms.
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In Sections 3 and 4 we discuss sample applications of our method

in two locations differing by size of the network and its application,

followed by comparison of obtained results in Section 5. In Section

6 we conclude our work and present possibilities of development of

the method.

2. Method used to search for the evolutionary-
optimal topology

As a means to determine an optimal evolutionary developed

topology we decided to use Genetic Algorithm implemented by the

Genesis tool [3], in which we use a modified version of Lifetime

Algorithm [2] as an evaluation function. We start by generating ran-

dom topologies with fixed average starting degree, and then evaluate

every one of the topologies against technological constraints. If it

satisfies all of them (minimum and maximum node degree, veri-

fied connectivity between all nodes) then the topology is evaluated

by sequentially loading it with each of the traffic matrices from the

predefined set. Topology lifetime, defined as in [2] is calculated, by

finding the node with the highest traffic and dividing the node capac-

ity by this value to obtain multiplicity, determining how many times

the traffic can grow before we need to change the node, or reroute

the traffic in another way. Average lifetime for all available traffic

matrices is calculated for a topology based on the average value of

the node lifetime and the Genetic Algorithm orders them inside a

generation according to this metric. The best obtained topologies

are analysed in the second phase using stand-alone Lifetime Algo-

rithm to calculate not only node lifetime, but also link lifetime and

determine the traffic vs degree graph, which can be used to deter-

mine equipment that would be sufficient to support a given load,

basing on the feasibility region as described in [4]. Moreover, we

compare basic features of the current and developed topologies by

utilizing CAIDA TopoStats toolkit [5], and determine features of the

network that were promoted on the path of evolution.

2. 1 Lifetime Algorithm
As an assessment function used in our method we have decided

to use the Lifetime Algorithm [2]. Because full implementation was

meant to provide an insight into how already developed topologies

deal with traffic growth and shifts, which is beyond the scope of

this research, we have decided to implement it selectively. With the

feasibility problem, addressed there, we cope by introducing a load

matrix for every evaluated topology. Then, using topology matrix

and each of the traffic matrices we load links in the topology using

a simple routing algorithm based on the Breadth-first search (BFS).

As a next step, a node with the lowest node bandwidth/node traffic

coefficient is determined, and this smallest value becomes the indi-

cator of how many times the traffic can grow, before the node will

have to be replaced. We use this value as lifetime of the topology.

After initial simulations we have noticed that node lifetime tends to

converge with high values of node degree, with link lifetime, which

we were observing as well, being random. As a countermeasure we

Table 1 Genetic Algorithm settings

Generations 10000

Population 100

Crossover rate 0.6

Mutation rate 0.01

Generation gap 90%

Options R, e

have decided to introduce another parameter, link importance coef-

ficient to investigate the influence of this combined metric on the

total lifetime of the topologies.

2. 2 Genetic Algorithm
As the implementation of the Genetic algorithm, we have used

the Genesis v5.0 [3] tool. The tool implements genetic algorithm,

operating on bit strings representing topologies in our case, where

every bit corresponds to a single, bi-directional link which results in

a total structure length of N ∗ (N − 1)/2 with node count N . The

algorithm generates random strings with a given average starting de-

gree parameter, to obtain randomized topologies with a predefined

amount of links. All generated topologies form a first generation in

the experiment which is evaluated by a selected function and used

as a foundation for next generations afterwards. The scheme of the

Genetic Algorithm implemented by Genesis is represented by the

following pseudocode [3].

1 procedure g e n e t i c A l g o r i t h m

2 begin
3 t =0 ; { g e n e r a t i o n c o u n t}
4 i n i t i a l i z e P ( t ) ; { p o p u l a t i o n i n t}
5 e v a l u a t e s t r u c t u r e s in P ( t ) ;

6 whi le ! t e r m i n a t e do
7 t = t +1 ;

8 s e l e c t P ( t ) from P ( t −1) ;

9 r ecombine s t r u c t u r e s in P ( t ) ;

10 e v a l u a t e s t r u c t u r e s in P ( t ) ;

11 end ;

12 end .

Values of constants which we have used in Genetic Algorithm dur-

ing all of the simulations are presented in Tab. 1. Generations de-

scribes the number of generations, through which the algorithm per-

forms an evolution process with crossover and mutation rate prob-

abilities on population count of topologies, in every following gen-

eration exchanging generation gap of topologies for the new ones.

Option e assures us that the best topology will survive and R, indi-

cate the ranking method for the selection of descendants, helps to

prevent premature convergence of the algorithm.

3. Sample applications of the method

To present the sample application of the method we have chosen

Japan and European Union as target geographical locations. For

both of them we have defined the node count for the topologies

we were going to generate, together with technological constraints

which may not be violated on the path of evolution. Because of
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differences in location, traffic patterns and the currently deployed

network topology and applications, we have used a slightly differ-

ent approach in both cases, holding in mind to keep the main as-

sumptions constant, so it would be possible to compare the final re-

sults obtained in the simulations. In the final assessment procedure

we were using only node lifetime, while during evolution process,

topologies were developed with the evaluation function comparing

link lifetime as well, with four values of the influence of this param-

eter: 0%, 25%, 50% and 75%. Constants of the Lifetime Algorithm

included link capacity, which has been set to 100Gbps, node capac-

ity set to 1,28Tbps, which implies using Cisco 12000 series routers

in all nodes and maximum hop count equal to 10. These were only

sample values to ensure the node lifetime and link lifetime would

always be positive, indicating the ability of a network to cope with

already existing traffic.

4. Application to the Japan backbone network

As a first location for application of the method we have chosen

Japan, setting the node count according to the number of Japanese

prefectures, to simulate a country-wide optical backbone network.

In the beginning we started by determining basic features of one

of the already existing country-wide networks to have an insight in

the constraints that should not be violated, but to better understand

the needs of such a network as well. Results of our simulation are

compared to these results in section 4. 3 and 4. 4.

4. 1 Data set used as a traffic reference in Japan backbone
network

Because of lack of an authentic traffic matrices set available for

Japanese networks, we have decided to use the method introduced

in [2] to increase the dataset on which the algorithm will work, in-

stead of just using it in the process of final topology evaluation. We

generated five datasets of traffic matrices with different unexpected

traffic growth (UTG) values and carried out experiments using this

batch of data to determine if different values used during the genera-

tion of the new network topologies influence its performance when

assessed with datasets with other values of this parameter, i.e. if

any particular value used in the dataset during generation also pro-

vides us with overall better performance. The UTG parameter, as

introduced in [2], for any traffic matrix Td(i, j), for every node pair

t(i, j) is defined as:

U(d(i, j))max =
(
∑m

i=1

∑m

j=1
t(i, j)) − (t(i, j) + t(j, i))

t(i, j) + t(i, j)
(1)

Then the U, being the minimal value of UTG is chosen from the set

of all obtained values for a given traffic matrix, as using a greater

value would mean that traffic exceeding the total traffic in the traffic

matrix has been shifted to one node pair. Subsequently, a new set of

matrices is being build, in which for every node pair t(i, j), we cre-

ate a new traffic matrix in which traffic of the node pair in question

is multiplied by (1 + U), and for every other node pair by

rd(i,j) =
U(t(i, j) + t(j, i))

(
∑m

i=1

∑m

j=1
t(i, j)) − (t(i, j) + t(j, i))

(2)

to preserve total traffic sum in the matrix. It is important to men-

tion that the values of traffic, in the case of the dataset meant for

Japanese topology, do not reflect reality, but are only estimations

made on a basis or real percentage per node. Therefore, values pre-

sented in this research are only a sample, and give us an insight into

relative node utilization.

4. 2 Algorithm settings
An additional constant required by the Genetic Algorithm and

dependant on the specific network parameters, is structure lenght,

which represents the amount of bi-directional links for N, the num-

ber of nodes. In case of topologies designed for a Japanese location

we assumed the node count of 47, which is coherent with the prefec-

tures count. Among variables used in this setting, were the datasets

with different U parameter (20-100% of the maximum UTG) and

maximum degree, which represents the maximum amount of bi-

directional links that the node is allowed to utilize. Moreover, after

collecting and comparing evolutionary optimal topologies, in some

cases for both of the simulations for Japanese locations, we noticed

that the final results obtained by competing topologies with differ-

ent settings were very close. To make it clearer which topology

provides a higher average node lifetime, the BFS algorithm was run

in two ways, with the starting point being the node with the lowest

index, followed by a run in the opposite direction to obtain two inde-

pendent paths in each case, which were averaged, giving us insight

into the flexibility of topologies obtained using our method.

4. 3 Numerical results obtained maximum degree of 8
The first of the simulations was conducted with the maximum al-

lowed node degree set to 8. We have designated two topologies as

candidates for the best topology obtained in this result. The first

was chosen from the topologies generated while taking into account

only the node lifetime, the second one was chosen from the topolo-

gies generated using the combined metrics. Basic characteristics

of topologies obtained with these settings are displayed in Tab. 2

in comparison with one of the major existing backbone topologies.

With these settings we expected the average degree to reach 6, with

a higher value for the topology obtained using mixed metrics, as the

algorithm tends to offload the links, if link lifetime is part of the

assessment, by introducing additional connections between nodes.

The obtained node degree and traffic distribution among nodes is

presented in Fig.1. We determined that the dataset which was used

during the generation of the topology , i.e. the U parameter did not

have significant meaning on the output of the algorithm. Much more

important in the final results turned out to be initial average degree

and link importance. Only with average degree parameter values

of 3 to 5 was it possible to develop topologies with an increase in

lifetime. Using an average degree of 6 and 7 it was impossible to

obtain meaningful results in any experiment, as the random genera-

tor had been generating topologies with parameters violating initial
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Table 2 Characteristics of topologies obtained for Japan with maximum

degree of 8: Japan dataset

Metrics: Node Mixed real topology

Starting avg degree 4 3 -

Links 111 133 87

Avg node degree 4.72 5.66 3.70

Assortative coefficient -0.02 -0.22 0.09

Clustering coefficient 0.13 0.09 0.19

Average distance 2.60 2.35 3.43

Radius 3 3 4

Diameter 5 4 8
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Fig. 1 Degree and traffic distribution of topologies with maximum degree

of 8: Japan dataset

constraints in most cases. This caused the Genetic Algorithm to

break off the experiment because of a lack of topologies to be as-

sessed in the next generation.

4. 4 Numerical results obtained maximum degree of 16
In the second experiment we set the maximum degree to 16 to

observe the behaviour of evolution during which the algorithm had

greater freedom. The starting average degree parameter of the gen-

erated topologies has varied between 5 and 7, to provide a relatively

low node degree in the initial generation and avoid the situation

encountered in the case of topologies generated with a maximum

allowed degree of 8. This time we expected the final average de-

gree to grow more significantly on the path of evolution, especially

in case of mixed metrics, which promotes a higher edge count for

the algorithm to distribute traffic uniformly. Results obtained with

the maximum degree set to 16 are presented in Tab.3 together with

statistics of a real world backbone network deployed in a compara-

ble area. Traffic distribution for the nodes with different degrees in

the topology is presented in Fig. 2. We noticed that the topologies

obtained using only node lifetime metrics carried most traffic with

more, low degree nodes while the topologies obtained using mixed

metrics routed most traffic via high degree hub nodes. We verified

again that the Genetic Algorithm did not promote any of the intro-

duced U values. Moreover, we obtained meaningful results with all

the available average degree values used during generation of the

first population, which was caused by the relatively low values of

these parameters set in the beginning of the simulation.

4. 5 Discussion of numerical results for Japan dataset
In case of Japanese localisation, we found trends in topology de-

sign, that seem to be followed without difference, whether the max-

Table 3 Characteristics of topologies obtained for Japan with maximum

degree of 16: Japan dataset

Metrics: Node Mixed real topology

Starting avg degree 6 6 -

Links 134 278 87

Avg node degree 5.70 11.83 3.70

Assortative coefficient -0.06 -0.09 0.09

Clustering coefficient 0.14 0.25 0.19

Average distance 2.35 1.78 3.43

Radius 3 2 4

Diameter 4 3 8
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Fig. 2 Degree and traffic distribution of topologies with maximum degree

of 16: Japan dataset

imum degree was set to 8 or 16. Firstly, a high average degree of

nodes was not promoted, unless it was needed by the metrics as-

sessing function. Because of this, topologies generated taking into

account only node lifetime preserved a relatively low average de-

gree. However, the output degree rose together with higher values

of the average generation degree. Such behaviour was not observed

in the case of topologies obtained with combined metrics, as pre-

sented in Tab. 4. The lifetimes of the topologies that achieved the

highest value were compared with the full mesh topology in Fig. 3.

We observed that with the U parameter value of 20% UTG, the two

best of developed topologies were able to deal traffic load almost

as well as the full mesh topology. However, together with growing

U parameter, their lifetime has been decreasing more significantly

than in case of the reference network. As for the parameters, re-

ferring strictly to the Japanese topology, which were obtained di-

rectly from Lifetime Algorithm as suggested in [2], most often the

bottleneck was the Tokyo node. This was most likely because of

very centralized traffic patterns in the current dataset. Moreover,

the algorithm determined that the link between Osaka and Tokyo

was the one limiting the link lifetime, meaning it will be the first

one that will have to be upgraded. Similar results were obtained

with other measured metrics as well, which included a assortativ-

ity coefficient where topologies generated using only node lifetime

tended to be less assortative than the ones obtained using combined

metrics, in case of both maximum degree settings. The clustering

coefficient showed similar tendencies, coherent with the results of

the average degree in the obtained topologies, i.e., it grew together

with the average starting degree in the case of node lifetime assess-

ment and maintained a relatively constant, higher value in case of
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Table 4 Average obtained degree: Japan dataset

Metrics: Node evaluation Link importance 25% Link importance 50% Link importance 75%

Generation degree: 3 4 5 3 4 5 3 4 5 3 4 5

Max degree 8: 5.14 5.18 5.70 5.89 5.93 5.81 5.77 5.82 5.73 5.69 5.75 5.90

Max degree 16: 5.58 6.43 7.13 12.16 12.23 12.24 12.16 12.44 12.13 12.09 12.10 12.16

Japan:

 606

 607

 608

 609

 610

 611

 612

 613

 0  0.2  0.4  0.6  0.8  1  1.2

Li
fe

tim
e

U

maxdeg8 
maxdeg16 
Full Mesh 

Fig. 3 Best topology lifetimes vs variation of U parameter: Japan dataset

combined metrics. average distance, radius and distance of the gen-

erated networks demonstrated similar behaviour, highly influenced

by average degree, causing them to decrease proportionally to the

increasing value of these characteristics.

5. Application to European Union-wide back-
bone network

As another location for the application of our method we selected

the European Union. In this case our target was an even bigger net-

work. However, with a lower node count representing the 23 nodes

of the Geant a few years ago. In this case, we were simulating a Eu-

ropean research backbone network, so both the traffic distribution

and patterns were expected to vary greatly from the ones we had

observed in the case of generating of the Japanese topology.

5. 0. 1 Data set used as the traffic sample

During the research we considered using the Lifetime Algorithm

UTG coefficient, as in case of the topology designed for Japan.

However, because the real, rich dataset was offered to the research

community by the authors of [6], we decided to use it, as it could

bring more convincing results. Traffic matrices gathered in this

dataset constituted of a few months worth of data from the Geant

network, gathered every fifteen minutes. In later research we were

considering to introduce the UTG parameter for evaluation of the

topologies generated in this location as well. However, because of

the characteristics of the dataset we were using, it would be difficult

to determine the UTG parameter that would allow us to introduce

the method presented by the authors of [2].

5. 1 Algorithm settings for the European Union location
In case of a European Union-wide backbone network, structure

lenght was altered to reflect the 23 considered nodes. Again, the av-

Table 5 Characteristics of developed topologies: EU dataset

Metrics: Node Mixed real topology

Starting avg degree 3 5 -

Links 68 76 37

Avg node degree 5.91 6.61 3.22

Assortative coefficient -0.31 -0.22 -0.20

Clustering coefficient 0.21 0.21 0.05

Average distance 1.83 1.77 2.60

Radius 2 2 3

Diameter 3 3 5
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Fig. 4 Degree and traffic distribution in topologies: EU dataset

erage degree of the randomly generated topologies varied between

3 and 7 to give us insight into the importance of the first generation

in the simulation. In this case it was possible to obtain results from

the whole range of this parameter. However, the best results were

again obtained using average degree values of 3 to 5, like in the

case of the Japanese simulation. Link capacity, node capacity and

maximum hop count remained the same as in the case of Japanese

topologies, with the main variable being the link importance coeffi-

cient.

5. 2 Numerical results for the European Union-wide net-
work

In the case of the pan-European network topology design, we

were expecting different results than these obtained in the case of

the Japanese location. Firstly, the algorithm was likely to prefer

topologies with a higher average node degree, as more uniform traf-

fic distribution in such a wide area backbone network was expected

to cause the average degree to increase more rapidly. Moreover, we

expected a higher clustering coefficient, which indicates a relatively

high density of ties. The results presented in Tab. 5 confirm our

predictions, as well as indicate that in the case of this topology, the

assortative coefficient is significantly lower than in the case of the

Japanese topology. This means there is a much higher tendency of

nodes of different degree to form a link, reflecting the differences

in network utilization across a pan-European network. Traffic vs

node degree plots in Fig. 4 display behaviour similar to the Japanese
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topologies, i.e., preferring high degree hub nodes in the topology

developed using mixed metrics, whilst the topology obtained only

with node lifetime presents a more uniform traffic distribution.

5. 3 Discussion of numerical results
Results of the topology designed for the European Union loca-

tion, comparing the node lifetime and mixed metrics selection meth-

ods, were similar to those of topologies for Japan. Parameters such

as link count and related average degree were not prioritized to grow

when only node lifetime was assessed, and again, as in the case of

the Japanese topology, had greater significance when link lifetime

was considered.

6. Comparison of the two applications

In the previous sections we discussed the application of the pre-

sented method in two geographical locations. Each of these cases

need to be considered separately, as they have a different scope and

requirements. However, in both cases we managed to present that

the method was able to determine an optimal topology for the given

area and dataset representing the corresponding traffic, following

the predictions we stated. This application is just a sample, as many

other parameters, like link lengths, different metrics and many oth-

ers were not taken into account. However, it gives an insight into the

parameters that the algorithm promotes, and what useful, additional

variables may be altered in order to influence the results to be more

coherent with particular applications. It is important to mention that

parameters such as link importance need to be selected with caution,

as the difference in the values of node lifetime and link lifetime may

be significant.

7. Conclusion

We managed to develop a method for searching evolutionary-

optimal topologies, based on the traffic demand matrices for a given

geographical area, prioritizing the biggest value of node lifetime of

the evaluated topologies. The method proved to give positive results

when taking into account the link lifetime as well in a form of com-

bined metrics. By using the Genetic Algorithm, the method is very

flexible, allowing to introduce additional constraints in the topology

development process. It can be used for obtaining topologies for dif-

ferent time periods as well, by introducing alternative data sets rep-

resenting the estimated bandwidth demand in the future. However,

in order to apply our method to a real-world network design, other

factors need to be considered, namely geographical constraints that

need to be reflected. So far, the main goal of the method was to pro-

vide the highest possible node lifetime while taking into account the

link lifetime in second place. However, because traffic between ma-

jor nodes in distant locations is more likely to be significantly higher

than in the case of big to small node traffic, the algorithm will seek

to realize loading of this path in as few hops as possible. Introduc-

ing a geographically aware loading method should solve this prob-

lem, providing us with topologies better reflecting networks that are

possible to realize and will be the subject of future research. An-

other improvement, related to the previous one, is introduction of a

more advanced routing algorithm used during the loading of a path

between nodes that are not directly attached to each other. It can

be partially realized by the introduction of different link capacities

for the links interconnecting nodes and implementing the Dijkstra

algorithm, as in the OSPF routing protocol.
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