Non bandwidth-intrusive video streaming over TCP

Hiroyuki Hisamatsu **Osaka Electro-Communication University**

Background

- Current video streaming services utilize TCP i.e.: YouTube, nicovideo, Dailymotion
- TCP is not suitable for video streaming
 - Greedy congestion control
 - Tries to exhaust the entire bandwidth
 - Increases its transfer rate regardless of the video playback rate
 - Takes the bandwidth from other competing traffic unnecessarily

Objective

- Investigate the characteristics of the data transfer of current Video streaming over TCP They transfer video at a much higher rate than the video playback rate
- Propose a new data transfer mechanism for Video streaming
- It controls data transfer at an application layer
- Show propose mechanism works effectively by simulation experiments
 - It avoids excessively taking bandwidth from competing traffic

Investigation of current video streaming over TCP

- Examined YouTube and nicovideo
- nicovideo has the same kind of problem as that of YouTube
- Observed data transfer at a packet level using *tcpdump* at a receiver
- Video Sequences
 - Playback time was 10 [m]
 - Quality was 108op
 - Playback rate was about 3.6 [Mbit/s]

Summary of Investigation Results

- Found two mechanisms
 - Mechanism(i) has two phase
 - First phase: beginning in the data transfer, average transfer rate 43.4 [Mbit/s] >> 3.6 [Mbit/s]
 - Second phase: after the first phase to the end average transfer rate 6.13 [Mbit/s] > 3.6 [Mbit/s]
 - Mechanism(ii) has no special control
 - Server sends data video data at an high rate from the beginning to the end
 - Average transfer rate 45.1 [Mbit/s] >> 3.6 [Mbit/s]

Transmits video data at a rate far beyond what is necessary

Outline of Proposed Mechanism

- Assumptions
 - An application program is installed at the sender and receiver
 - An application program can acquire TCP state variables Easily possible to acquire them by using web100 kernel
- Operations
 - The receiver notifies the sender of the amount of buffered video data, b_{dst}
 - The sender estimates the network congestion level, cl
 - The sender calculates the amount of video data , b_{igi} , to avoid buffer underflow and playback interruption based on the cl
 - The sender determines the amount of data passed to TCP based on difference b_{dst} and b_{tgt} Control of the proposed mechanism operates in the unit of one

RTT.

Conclusion and Future Works

Conclusion

- Investigate data transfer mechanisms of the current video streaming services using TCP
 Show transfer rate is much higher than video playback rate
- Propose a new data transfer mechanism to resolve this problem
 Controls data transfer at an application-layer
- Simulation results show roppication results in a second mechanism
- suppresses the occurrence of buffer underflow
 dose not unnecessarily divert bandwidth from background traffic
- Future works
 - Evaluate the performance of the proposed mechanism in a real network
 - Extend the proposed mechanism
 - Operate solely by a sender-side application

	Thank You ! & Question ?	
2011/4/13	ITNG2011	13