
Ashdin Publishing
International Journal of Swarm Intelligence and Evolutionary Computation
Vol. 1 (2012), Article ID 235560, 12 pages
doi:10.4303/ijsiec/235560

Research Article

Response Threshold Model-Based Device Assignment for Cooperative
Resource Sharing in a WSAN

Takuya Iwai, Naoki Wakamiya, and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
Address correspondence to Takuya Iwai, t-iwai@ist.osaka-u.ac.jp

Received 10 March 2012; Revised 15 April 2012; Accepted 21 April 2012

Abstract Many researchers have been attracted by a
wireless sensor and actuator network (WSAN) for its wide
range of applications. In a WSAN, embedded sensors detect
and conjecture environmental and personal conditions
and actuators provide users with information services and
environmental control which are suited for time, place,
occasion, and people. Since it apparently is wasteful and
redundant to deploy an independent WSAN for each of
envisioned applications, building a multi-purpose WSAN
consisting of heterogeneous sensors and actuators and
sharing them among applications are considered promising.
However, we need a mechanism to effectively share
available resources among concurrent applications while
taking into account application requirements and resources.
Although there are several proposals on centralized or
deterministic device assignment mechanisms, they suffer
from difficulty in designing an appropriate set of rules
with fine-tuned parameters. In this paper, we propose a
fully distributed and self-organizing device assignment
mechanism by adopting a response threshold model, which
imitates division of labors in a colony of social insects. Our
proposal does not require deterministic and complicated
rules and appropriate device assignment emerges as a
consequence of autonomous decision of individual nodes.
Through simulation experiments, we confirmed the our
proposal accomplishes as effective device assignment as an
existing deterministic mechanism and our proposal is less
sensitive to parameter setting errors.

Keywords wireless sensor and actuator network; device
assignment; resource sharing; response threshold model

1 Introduction

In recent years, many researchers have been actively
working in the field of wireless sensor and actuator
networks (WSANs) [1]. A WSAN consists of embed-
ded sensors, e.g. thermometer, hygrometer, and motion
sensor, that detect and obtain environmental and personal
conditions and actuators, e.g. heater, cooler, buzzer, light,

and switch, that control environment and machinery. By
distributing nodes with appropriate sensors and/or actuators
at appropriate locations in an area, e.g. field, building, and
room, and organizing a network by wireless multi-hop
communication, a variety of applications can be provided in
the area. We hereafter call sensors and actuators “devices”
and a “node” corresponds to an equipment with CPU,
memory, wireless transceiver, and one or more devices.

In general, WSANs are constructed and managed in an
application-oriented manner to answer specific requirements
of an individual application. Therefore, nodes are deployed
for a specific application and they are not shared with oth-
ers. For example, both of WSANs for illumination control
and intrusion detection employ nodes with a motion sen-
sor to detect location of people and nodes with a switch to
turn on or off a light. Although applications use the same
kind of devices in the same way, their WSANs are made
of dedicated nodes and independent from each other with
current form of deployment. It is apparently redundant and
wasteful. Furthermore, an application-oriented deployment
requires previous knowledge about the operational environ-
ment and careful planning of types and locations of nodes
to place. However, it is impossible to predict all events that
may occur in the area and make WSANs well prepared for
unpredictable events.

Considering above-mentioned issues, interests of
researchers are shifting from a special purpose WSAN
to a multi-purpose WSAN where multiple concurrent
applications are running over a single WSAN [18]. In a
multi-purpose WSAN, heterogeneous nodes are deployed in
the area and applications employ those nodes with desired
devices. The first challenge exists in the heterogeneity
in node architecture [2,14], which makes application
implementation and interoperation of nodes difficult. As an
example of solution of the challenge, SOA (Service Oriented
Architecture) provides an application with a common
interface with nodes having different architecture [2,16].
Once heterogeneous nodes can be handled through the
common interface, another challenge arises in selection

2 International Journal of Swarm Intelligence and Evolutionary Computation

of nodes and devices [15,20]. For example, in starting
an intrusion detection application in the area where an
illumination control application already exists, is it better
to use the node with a motion sensor that the illumination
control application is using? If they share the node, other
nodes with a motion sensor can sleep and save energy and
network bandwidth. A decision on device assignment must
be made taking into account a variety of conditions, e.g.
the degree of device sharing and the amount of residual
energy, and it is not trivial. For this purpose, there are
several proposals on dynamic device assignment [8,9], but
they usually employ rule-based mechanisms. As such, as a
WSAN becomes large and the number and heterogeneity
of applications increase, they will suffer from difficulty in
making an appropriate set of rules without contradictions.

In [12], to effectively share available resources among
concurrent applications while taking into account applica-
tion requirements and resources, we presented a basic idea
of fully-distributed and self-organizing device assignment
mechanism where each node determines whether to offer
its own devices to an application or not. Results of prelimi-
nary simulation experiments showed that nodes and devices
were appropriately selected taking into account the amount
of residual energy and the degree of contribution to applica-
tions. In this paper, we improved our mechanism by incor-
porating with SPAN [6] to efficiently share nodes engaged
in message relaying among applications and simplifying a
decision making algorithm to make parameter setting easier.
In our proposal, the minimum connectivity is maintained
by SPAN, where a set of coordinator nodes constructs a
forwarding backbone. Once a need for device assignment
occurs, a request message is disseminated from a request
node of an application to all nodes through a forwarding
backbone. On receiving the request, each node determines
whether to offer its devices to the application or not. The
decision is sent back to the request node through the for-
warding backbone.

For autonomous decision making without deterministic
if-then type of rules, we adopt a response threshold
model [4], which imitates a mechanism of division of labors
in a colony of social insects. In a colony, each individual
decides to be engaged in a task without any centralized
control and the number of workers is dynamically adapted
in accordance with the demand of the task. In our proposal, a
request message advertised by a request node expresses the
demand intensity to stimulate nodes to offer their devices. A
request node does not appoint nodes to offer their devices as
existing mechanisms do. Instead, each node has has the right
to make a decision of device assignment in our proposal.
Furthermore, device assignment is performed stochastically
at a node. Therefore, our proposal is not deterministic. As
such, as will be verified in the paper, our proposal is less
sensitive to parameter setting than the existing mechanism.

It implies that our proposal can be used in the area where
a variety of applications emerge and their requirements
dynamically change.

The remainder of this paper is organized as follows.
First, in Section 2, we describe related work. Next, in
Section 3, we describe application scenario that our proposal
assumes. Then, in Section 4, we propose a mechanism for a
node to autonomously decide whether it assigns its devices
to an application or not. In Section 5, we show results of
simulation to evaluate our proposal and compare it with
an existing mechanism. Finally, in Section 6, we provide
concluding remarks and future work.

2 Related work

The heterogeneity of node architecture makes application
implementation and node management difficult. There are
several proposals to deal with heterogeneous nodes through
the common interface [2,14]. For example, TinySOA, which
is based on the concept of SOA [16], allows application
developers to write application programs without concern-
ing differences in node architecture, OS, and programming
languages.

To share sensors among multiple applications, TinyONet
is proposed in [13]. The main focus of TinyONet is reuse
of sensing data gathered at a sink. When a sink receive a
request for assignment of sensors from an application, it
organizes a slice, i.e. a group of virtual sensors. A virtual
sensor is a representative of a physical node and it provides
an application with cached sensing data. From a viewpoint
of an application, a dedicated sensor network is tailored over
heterogeneous sensors, from which it can collect required
sensing data at the desired frequency. Since a virtual sensor
is a cache, it is possible to accommodate multiple applica-
tions without putting extra load on a physical sensor net-
work. However, TinyONet assumes that sensing data are
collected from all sensor nodes at regular intervals, which
should be the minimum among all applications. That is, it is
energy and bandwidth consuming. Furthermore, it does not
consider actuators.

VSN (Virtual Sensor Network) is another example of a
mechanism to overlay application-oriented virtual networks
over physical WSANs [3]. In their proposal, a VSN can
consist of nodes belonging to different WSANs. A VSN
is a single network of tree topology and all messages are
exchanged over the tree. Although VSN realizes service-
oriented and inter-WSAN overlay networking, it is ineffi-
cient to concentrate all traffic at a single tree. Furthermore,
when there are multiple concurrent applications, there exist
multiple and independent VSN trees in the area.

Regarding on-demand selection of nodes which offer
devices or functions to an application, mechanisms
for generic role assignment are proposed in [8,9]. In
their framework, an application developer injects a role

International Journal of Swarm Intelligence and Evolutionary Computation 3

specification to a WSAN through a gateway. A role
specification defines roles and rules to assign roles to
nodes. Rules are in the form of Boolean expression, i.e.
if-the-else statement. A specification is disseminated in a
WSAN and a node receiving it decides whether to play
a role or not in accordance with the specified rules and
its properties. As far as rules are well defined, roles are
assigned to appropriate nodes. However, it is not trivial
to define an appropriate set of consistent rules to appoint
the necessary and sufficient number of nodes with desired
properties taking into account a variety of conditions.

Our proposal can assign an appropriate set of nodes and
their devices to an application taking into account appli-
cation’s requirements and multiple conditions, i.e. residual
energy and resource sharing, without centralized control or
deterministic rules.

3 Application scenario

There are applications operating in the area or being intro-
duced on demand. Each application has one or more appli-
cation servers or control units, such as a home server of a
home automation system, which manages the application.
However, a server does not have the complete knowledge of
the whole WSAN, e.g. type and location of nodes and their
devices. We assume that an application consists of a series
of processes, such as turn on or off the light, and a process
is realized by devices embedded in the area. For example,
a lighting control application (1) senses user presence and
illuminance and (2) turns a room light on or off depending
on the situation.

Sharing a sensor among multiple applications is not
harmful as far as the sensor can provide them with requested
sensor data at the desired precision and frequency. On the
other hand, sharing an actuator among multiple applications
sometimes causes a problem, which we call “actuator
contention.” An actuator usually has multiple operations
that cannot be performed simultaneously, e.g. turn on
and off a light. To solve competition for a device among
applications, we assume that each process of an application
has a priority value. A priority value is predetermined at
implementation and deployment, but it can dynamically
change in response to environmental conditions. A process
with a higher priority takes precedence over a process with
a lower priority. When there is a tie, a decision making
algorithm of a WSAN selects a process to assign a device.
An assigned device operates as requested by the designated
application.

4 Our proposal

The proposal adopts a response threshold model of division
of labors in a colony of social insects [4] to accomplish
autonomous and fully distributed decision making of nodes
on whether to assign embedded devices to an application.

4.1 Service network

An application is realized by devices which are selected by
our decision making algorithm. We call a network consisting
of nodes contributing to an application a “service network,”
which is logically laid on a physical WSAN. Nodes con-
stituting a service network are a “request node” that initi-
ates organization of the service network, “member nodes”
that are equipped with devices which can satisfy applica-
tion requirements, and “relay nodes” that deliver messages
among a request node and member nodes. In addition, there
are two types of member nodes, i.e. “active member nodes”
and “idle member nodes.” A role of a node is determined
per application and changes in the course of operation. For
example, a node is an active member node of application A,
a relay node of application B, and a non-member node of
application C.

An active member node assigns devices to one or more
applications. We call a device which provides a sensing or
actuation function to an application an “active device.” On
the contrary, an idle member node is equipped with devices
which can answer application requirements, but it does not
assign them to any application. We call an unassigned device
an “idle device.” An active member node has one or more
active devices and some idle devices, but an idle member
node has only idle devices. A decision on whether to become
an active or not is made by a node taking into account sev-
eral conditions such as application requirements, the degree
that devices are shared among applications, and the resid-
ual energy, to efficiently share active member nodes among
applications and balance energy consumption of member
nodes.

When there is no operating application, no node is active
in a WSAN. Device assignment is initiated by a request
node, e.g. an application server or a getaway node between
a WSAN and an outside application server. We should note
here that our proposal can be applied to both of a static and
dynamic application. In the case of a static application, a
request node is a sink of data of periodic monitoring, for
example. In the case of a dynamic application, a node detect-
ing an event becomes a request node, for example.

4.2 Basic behavior

A request node first disseminates a request message which
specifies necessary devices and their desired operational
mode to all nodes (step 1 in Figure 1). The minimum
connectivity of a WSAN is maintained by SPAN [6].
SPAN forms the forwarding backbone, which consists of
coordinator nodes. A coordinator node is a node which stays
awake to maintain connectivity of neighbor nodes. Nodes
which are not a coordinator can sleep and communicate
with each other through the forwarding backbone when
needed. Decision to become a coordinator is made locally
by a node. A request message is sent to all nodes in the

4 International Journal of Swarm Intelligence and Evolutionary Computation

Step2: Decide whether to
assign devices or not

Step3: Repot the decision Step4: Application messages
 are exchanged

Step1: Flood a request message

Coordinator

Request node

Request
message
Notification
message
Application
message

Active member
node
Idle member
node

Figure 1: Overview of device assignment.

whole area or nodes in the specified area of interest when
location information is available, through the forwarding
backbone.

When a node receives a request message, it first exam-
ines whether its devices can answer the request. If the node
is equipped with such devices, it becomes a member node.
Next, a member node decides whether to assign devices to a
requesting application or not by using the response thresh-
old model-based decision making algorithm (step 2). Then
active member nodes report the decision to the request node
by sending a notification message. Nodes where notification
messages traverse become a relay node and they adjust the
sleep scheduling if necessary (step 3). A member node of a
certain application can be a relay node of the same applica-
tion. A coordinator node is likely to become a relay node.
Finally, application messages including sensing and control
information are exchanged among active member nodes and
a request node through relay nodes until the next timing of
periodic dissemination of a request message (step 4).

Above-mentioned steps are repeated while an appli-
cation is running. A request node can change contents of
a request message to perform a different process of the
application. It is also possible for a member node to issue a
new request message for the application. At the end of an
application, a request node stops sending request messages.
Those internal values that a node holds for the application is
removed when a timer expires without receiving a request
message for a predetermined duration.

4.3 Internal values of nodes

In our proposal, a node maintains a set of information sum-
marized in Table 1. Details of each information is given in
the followings.

A node is equipped with a set D of devices. A node also
has a set Oj of operational modes of device j ∈ D. A set Oj

is represented by the following expression, where n= |Oj|,
i.e. the number of operational modes.

Oj = {mode1, . . . ,moden−1,moden}.

A device cannot operate in different operational modes
simultaneously. “moden” is a “default mode” of a device

Table 1: Internal values of a node.
Notation Default Description

D φ set of devices

Oj set of possible operational modes
of device j

S φ set of requirements of applications

X φ set of Xi,j

Y φ set of Yj

Θ φ set of θi,j
Xi,j false boolean flag of assignment of

device j to application i

Yj default mode operational mode of device j

θi,j 5 threshold of assignment of device
j to application i

and an idle device is in moden. When device j is a sensor,
a typical set is Oj = {sensing,sleep}. In the case of an
ON/OFF switch, Oj = {ON,OFF}. In general, a default
mode is an operational mode where a device and a facility
can save energy.

A node also maintains a set X of Xi,j , a set Y of Yj ,
and a set Θ of θi,j for application i and device j (i ∈ I and
j ∈ D), which are used by the response threshold model-
based decision making algorithm. I is a set of identifiers of
application for which a node received a request message.
Xi,j ∈ {true, false} represents whether device j is assigned
to application i (Xi,j = true) or not (Xi,j = false). Yj ∈
Oj represents the current operational mode of device j. θi,j
(0 < θi,j ≤ θmax) is a threshold representing hesitation of
node in assigning device j to application i.

A node maintains a set S of 7-tuples (i, j,m,k,h,

si(t), ri). These values are updated on receiving the tth
request message of application i ∈ I. The identifier i
which is unique in the whole network can be generated as
concatenation of a node identifier and a sequence number
of application it initiates. j is an identifier of a device which
application i requires. When application i requires multiple
devices, the tuple is generated for each of devices. m is an
operational mode which application i request to device j. k
is a sequence number of the last request message. h is an
identifier of a neighbor node where it received the request
message. si(t) is the demand intensity representing the
degree that the request node wants its request to be satisfied.
si(t) is calculated by the request node in accordance with
the number of devices assigned to application i. Finally, ri
is the priority of application i or its process.

4.4 Node behavior
A request node sends a request message at regular intervals
of Idemand s. We call an interval between successive
emissions of a request message a “round.” As a simple
example, assume a process for periodic data gathering
which requires a motion sensor to report the condition
at coordinates (x,y) every Idata s. In this case, a request

International Journal of Swarm Intelligence and Evolutionary Computation 5

send a notification message

node receives a request message
of application i

update the tuple with the latest request
message

perform the response threshold model-based
decision making algorithm

Is a tuple of
application i in set S?

yes

generate a new tuple and add it to set S

no

 Have a device
satisfying the

request?

become a member node

yes

no

Xi,j X, Yj, Y, and
i,j

yes

Generate new Xi,j Y i,j and
add them to sets X, Y,

no

yes

Is coordinator?
no

yes

forward the request message and
become a candidate of a relay node

Is Xi,j true

Finish

no

yes

update the state of device j

Is the priority
the highest or “NA”?

no

yes

j ,,

Figure 2: Behavior of a node on receiving a request
message.

message emitted at the tth round is a pair of attributes in
the form (i,k,si(t), ri) and a request body in the form
(motion sensor,sensing,(x,y), Idata). The content of a
request message can be extended by using an XML-based
method [10].

When a node other than a request node of an application
receives a request message, it behaves following a flow chart
shown in Figure 2. First, if a node is a coordinator of SPAN,
it forwards the request message to neighbor nodes and it
becomes a candidate of a relay node. Next, if it does not have
an element of application i in set S, it generates a new 7-
tuple element. If the corresponding tuple exists, it is updated.
Then, a node examines whether it has a device which satisfy
the request. If it has, the node becomes a member node. A
member node initializes elements Xi,j , Yj , and θi,j of appli-
cation i in sets X, Y, and Θ, respectively, if not exist. If the
priority of the application is the highest in all applications in
set S or the requested devices are not assigned, values Xi,j ,

Yj , and θi,j are updated by a decision making algorithm
explained in Section 4.5. Then, if the node assigns device
j to application i, the decision is reported to the request
node by sending a notification message which contains an
identifier of the active member node, an identifier of the
application and Xi,j . A notification message is sent to neigh-
bor h, from which a node received the corresponding request
message. Following a reverse path, a notification message
reaches the request node.

An assigned device operates in the decided operational
mode. In the above example, an active member node sends
sensing data of a point (x,y) obtained by a motion sensor
to the request node at regular intervals of Idata s. Data mes-
sages are sent to the request node through the forwarding
backbone of SPAN. Every time a member node receives a
request message, the above steps are conducted. If a member
node does not receive a request message for Ei s, it consid-
ers the corresponding application terminates and it removes
corresponding information from the memory.

A request node receives notification messages from
active member nodes. In the proposal, a request node uses
a scalar value, called the demand intensity, to control the
number of active member nodes while leaving decision
making to nodes. The demand intensity at the beginning
of the (t+ 1)th round is calculated from the number of
notification messages by the following equation, where the
initial demand intensity si(0) is set at 0.

si(t+1) = si(t)+ δi−Ni(t). (1)

Here, δi (δi ≥ 0) is an increasing rate of demand intensity
of application i. Ni(t) (Ni(t) ≥ 0) is the number of active
member nodes which is equal to the number of notification
messages stating Xi,j = true received in response to the tth
request message. The equation means that, when the number
of active member nodes is less than δi, the demand intensity
gradually increases and the request node requires more
member nodes to become an active member node. On the
other hand, when the number is greater than δi, the demand
intensity gradually decreases and active member nodes
become inactive. As such, the parameter δi determines the
number of active member nodes on convergence and it
can be used to adjust the degree that nodes are involved
in the process. The updated demand intensity is notified to
member nodes by a request message disseminated at the
beginning of the next round. Until the next round, a request
node exchanges messages with active member nodes.

4.5 Response threshold model-based decision making

It is known that a colony of social insects is divided into two
groups of workers and non-workers based on autonomous
decision of individuals using a simple rule. A response
threshold model is a mathematical model of the division
of labors of social insects [4]. We adopt the model as

6 International Journal of Swarm Intelligence and Evolutionary Computation

an algorithm for a member node to decide whether it
assigns a device to an application or not. For details of the
response threshold model, refer to [4]. The size of group
is well adjusted based on the task-associated intensity of
stimuli [5].

The probability P (Xi,j = false → Xi,j = true) that an
idle node (Xi,j = false) assigns device j to application i is
derived by the following equation:

P (Xi,j = false →Xi,j = true) =
s2
i (t)

s2
i (t)+Ajθ2

i,j(t)
. (2)

Here, si(t) (si(t)≥ 0) is the demand intensity of application
i at the tth round. θi,j (θmax ≥ θi,j > 0) is a threshold which
corresponds to hesitation of the node in assigning device j to
application i. The equation is extended from the basic model
by introducing variable Aj . Aj (Aj ≥ 1) is a variable related
to the degree that device j is shared among applications, and
the residual energy of the node. Derivation of Aj will be
explained in Section 4.6.

The probability P (Xi,j = true → Xi,j = false) that an
active member node (Xi,j = true) quits assigning device j

to application i is derived by the following equation:

P (Xi,j = true →Xi,j = false) = pj . (3)

Here, pj (1 ≥ pj > 0) is a constant defined per device. This
prevents an active member node from devoting its devices
too long and enables rotation of task among member nodes.
It further leads to avoidance of redundant device assignment.
The average duration that an active member node assigns
device j to an application is 1/pj rounds.

Similarly to the basic response threshold model, our pro-
posal also has a mechanism of reinforcement which makes
specialists. Threshold θi,j is adjusted as follows:

θi,j =

{
θi,j − ξj , if Xi,j is true,

θi,j +ϕj , if Xi,j is false,
(4)

where ξj (ξj > 0) and ϕj (ϕj > 0) are parameters of the
speed of differentiation. With the threshold adjustment, an
active member node is more likely to become active again
than an inactive member node.

4.6 Variable Aj for device sharing and energy efficiency

In the proposal, for efficient device sharing and balancing
energy consumption for a longer lifetime variable Aj (1 ≤
Aj) is derived by the following equation from the degree
that device j is shared among applications and the residual
energy.

Aj =
(
Sj −Fj

)m
+

(
Pfull

Pres

)n

−1. (5)

Parameters are summarized in Table 2. Here, the first term of
the right side is used for device sharing among applications.

Table 2: Parameters of variable Aj .
Notations Description

m exponent regulating the sensitivity to the degree of
sharing

n exponent regulating the sensitivity to the residual
energy

Sj number of applications where a node is a member
for device j

Fj number of applications where a node is an active
member node for device j

Pres amount of residual energy of a node

Pfull total capacity of battery of a node

Variable Sj (Sj ≥ 1) represents the number of applications
where a node is a member regarding device j. Sj is derived
as Sj = |{Xi,j ∈ X | i ∈ L}| where L is a set of identifiers
of application where a node is a member node. Variable Fj

(Fj ≥ 0) represents the number of applications where a node
is an active member node. Fj is derived as Fj = |{Xi,j ∈ X |
i ∈ I,Xi,j = true}| and Fj ≤ Sj − 1. Exponent m (m ≥ 1)
influences the sensitivity of the algorithm to the degree that
the device is sharing. The second term is used for balancing
energy consumption. Pfull/Pres is the ratio of the battery
capacity Pfull (Pfull > 0) to the residual energy Pres (Pfull ≥
Pres > 0). Exponent n (n ≥ 1) influences the influence of
the amount of residual energy on decision making. The third
term is used for shifting minimum value of valuable Aj

from 2 to 1. Variable Aj becomes smaller and probability
P (Xi,j = false → Xi,j = true) becomes higher on a node
which is engaged in more applications as an active member
node and has more residual energy.

5 Performance evaluation

In this section, we evaluate our proposal through comparison
with directed diffusion [11] and our former proposal [12].
We first briefly explain directed diffusion and its extension
made for comparison purposes. Then, we will show results
of evaluation from viewpoints of efficiency of device assign-
ment and robustness against parameter setting errors.

5.1 Directed diffusion

Directed diffusion is a data-centric information gathering
mechanism [11]. A sink which corresponds to a request
node in our proposal first disseminates an interest message.
An interest message specifies a required sensing task and a
reporting interval. Initially, a reporting interval is set longer
than one that an application requires.

When a node receives an interest message, it sets an
entry called gradient, which consists of the information
about a task, an identifier of a link with a neighbor node
from which it received the interest message as a precursor,
and a report interval specified in the message. If a node
can perform the requested sensing task, it becomes a source
node, which we call a member node in our proposal, and

International Journal of Swarm Intelligence and Evolutionary Computation 7

begins to send data messages at the specified report interval.
Data messages reach the sink by following gradients. The
first data message is called an exploratory data message.

A sink would receive multiple exploratory messages
from different source nodes. Among them, it selects one
based on a reinforcement rule, for example, to select an
exploratory data message received first. Then, the sink
sends an interest message, called a reinforcement message
to a neighbor node from which the selected exploratory data
message comes. A reinforcement message is in the same
format as an interest message, but it specifies an application-
specific reporting interval which is shorter than a reporting
interval written in an interest message. A reinforcement
message is sent to a source node following gradients in
the reverse direction while updating gradients on the route
with the new reporting interval. The gradient does not hold
information about a source node. Therefore, when there are
two or more source nodes in the downstream of the selected
neighbor node, a reinforcement message does not neces-
sarily reach a source node which sent the corresponding
exploratory data message. A sink keeps sending both of
interest messages and reinforcement messages at regular
intervals to maintain and update gradients.

5.2 Extension of directed diffusion

In our proposal, a request node can control the number of
devices which contribute to an application by the demand
intensity as will be verified in Section 5.4, while device
assignment relies on an autonomous decision of each node.
On the other hand, the number of source nodes is uncontrol-
lable and it would dynamically change in directed diffusion.
Since gradient on a node does not have information about
either of a sink or a source node, interest messages and
reinforcement messages do not always reach the same set
of source nodes. Therefore, for comparison, we extended
directed diffusion for controlling the number of nodes or
devices which contributes to an application as follows.

First, for a sink to obtain information of a source node,
we extend a data message to have additional fields for an
identifier idsink of a sink, idsrc of a source node, the amount
Pres (Pres > 0) of residual energy, the battery capacity Pfull

(Pfull > Pres), the number Mdd (Mdd ≥ 1) of sinks from
which it receives interest or reinforcement messages, and
the number Ndd (Ndd ≥ 0) of sinks from which it receives
reinforcement messages. Consequently, the extended data
message takes the form of [type, data, idsink, idsrc, Pres,
Pfull, Mdd, Ndd, time-stamp]. Please refer to [11] for details
of other fields than those newly introduced. Next, to identify
a path between a specific sink and a specific source node,
we add a field of an identifier idsink of a sink and idsrc

of a source node to the gradient. First time when a node
receives an interest message, it makes a gradient while
leaving idsrc empty. It fills in the field when a data message

Table 3: Prioritization rule for reinforcement in directed
diffusion.

Renergy

≥ Tenergy < Tenergy

Rshare
≤ Tshare 1 3

> Tshare 2 4

is received. Consequently, the extended gradient has the
form of [type, region, data rate, time stamp, expired-AT,
idsink, idsrc]. While leaving the form of an interest message
as it is, i.e. [type, region, interval, time-stamp, expired-AT],
we extended the form of a reinforcement message to have a
new field for an identifier idsink of a sink node and idsrc of
a source node. As a result, the reinforcement message has
the form of [type, region, interval, idsink, idsrc, time-stamp,
expired-AT].

Now based on the extension, we consider a reinforce-
ment rule which takes into account the amount of residual
energy and the degree of device sharing. A sink in the
extended directed diffusion first disseminates an interest
message to all nodes. Next source nodes begin to send data
messages. A data message sent by a source node contains
information about its energy, Pres and Pfull and its task
Mdd and Ndd. After receiving the sufficient number of
data messages, a sink evaluates Renergy which is derived as
Pres/Pfull and Rshare which is derived as (Mdd −Ndd)/Mdd

for each source node. Then, it determines priority of the
node in reinforcement. For the sake of simplicity, we
use threshold-based prioritization summarized in Table 3,
where Tenergy and Tshare are thresholds. A smaller number
has higher priority. For example, if a source node has
plenty of energy, i.e. large Renergy, and is contributing to
many sinks, i.e. small Rshare, it is the best source node to
reinforce. Finally, following an ascending order of priority
value, a sink selects the required number N of source nodes
and send reinforcement messages to them. In the following,
we call a source node which receives a reinforcement
message an active source node.

5.3 Simulation setting

We used OMNet++ [19] for simulation. 25 nodes are placed
in the area of 25 m × 25 m. 5 nodes, A, B, C, D, and E,
among them are located at the edge of the area, while
remaining 20 nodes are randomly distributed. Figure 3
illustrates an example of node layout where the x and y
axes are coordinates and filled circles, open circles, crosses,
and triangles indicate nodes. Each line corresponds to a
path between an active member node and a request node to
exchange application messages.

Nodes are identical in battery capacity, embedded
device, and communication capability. They operate on
two AA batteries of 3.3 V. Based on the data sheet of

8 International Journal of Swarm Intelligence and Evolutionary Computation

Table 4: Parameter setting of performance evaluation.

Notation Description set A set B

pj probability of quitting task in (3) 0.01 0.01

ξj threshold adaptation parameter in (4) 0.1 0.1

ϕj threshold adaptation parameter in (4) 1 1

m influence of degree of sharing in (5) 3 6

n influence of residual energy in (5) 3 6

L interval for exploratory data messages 0.5 0.5

Tshare threshold of reinforcement rule 0.5 0.1

Tenergy threshold of reinforcement rule 0.5 0.9

Idemand interval of request message 10 10

A B

C

D

E

Sensing area of (25,25)

Relay node

Request node

Active member node
5 10 15 20 25

5

10

15

20

25

Figure 3: Snapshot of a simulation.

MICAz [7], a transceiver module consumes 18.8 mA in
listening a channel and receiving a message, 17.4 mA in
transmitting a message, and 0.021μA in a sleep mode. A
node is equipped with a sensing device with identifier j. A
sensing device can obtain information about a certain point
in the diameter of 15 m. We assume that energy consumption
of the device in sensing is negligible in evaluation.

The communication range is 15 m on the IEEE 802.15.4
non-beacon mode MAC/PHY protocol. The length of a
request message, an interest message, and a reinforce
message is set at 36 byte without 6 byte header. Regarding
a notification message, an exploratory message, and a data
message, the length is set at 64 byte without a 6 byte
header. Parameters used in the simulation experiments are
summarized as set A in Table 4, which are chosen based on
preliminary experiments.

5.4 Evaluation of task assignment

Since self-organization does not always achieve the optimal
result due to its autonomous behavior, in this section, we
first verify that our proposal can accomplish as good device
assignment as directed diffusion which employs determin-
istic rules. Evaluation is conducted from a viewpoint of the
number of active member nodes and relay nodes.

We configure 5 edge nodes as request nodes of 5 inde-
pendent applications of the same priority, respectively. All
request nodes require the information about the corner point

0

1

2

3

4

5

6

1 2 3 4 5

nu
m

be
r o

f a
ct

iv
e

m
em

be
r n

od
es

number of request nodes

PROP-FLOOD (d=0.1)
PROP-FLOOD (d=1.1)
PROP-FLOOD (d=2.1)

PROP-SPAN (d=0.1)
PROP-SPAN (d=1.1)
PROP-SPAN (d=2.1)

(a) Our proposal.

0

1

2

3

4

5

6

1 2 3 4 5

nu
m

be
r o

f a
ct

iv
e

so
ur

ce
 n

od
es

number of request nodes

DD-FLOOD (N=1)
DD-FLOOD (N=2)
DD-FLOOD (N=3)

DD-SPAN (N=1)
DD-SPAN (N=2)
DD-SPAN (N=3)

(b) Directed diffusion.

Figure 4: Number of active member or source nodes.

at (25,25). In the other words, they require assignment of a
sensor device within a circular area centered at (25,25) with
radius 15 m, which is illustrated as a shaded quadrant in Fig-
ure 3. Each request node sends a request message at a regular
interval of Idemand, which is 10 s in the experiments. Timings
of emission of the first request message from request nodes
are randomly distributed in 1 sec to avoid collision. We con-
ducted 100 simulation runs for each of 30 combinations of
simulation parameters by changing the number of request
nodes which send request messages from 1 to 5, the increase
rate δi from 0.1 to 2.1, and the required number N of active
source nodes from 1 to 3.

Figures 4 and 5 summarize results of the number of
active member nodes or active source nodes and the number
of relay nodes in the network at the end of a simulation run
of 20000 s, respectively. The number of active member or
source nodes can be controlled by adjusting δ in our pro-
posal and N in directed diffusion. Each point is an average
of 100 simulation runs. In the figures, PROP-SPAN means
that our proposal is adopted, while PROP-FLOOD, that
is our former proposal, employs our proposed scheme but

International Journal of Swarm Intelligence and Evolutionary Computation 9

0

2

4

6

8

 10

 12

 14

1 2 3 4 5

nu
m

be
r o

f r
el

ay
 n

od
es

number of request nodes

PROP-FLOOD (d=0.1)
PROP-FLOOD (d=1.1)
PROP-FLOOD (d=2.1)

PROP-SPAN (d=0.1)
PROP-SPAN (d=1.1)
PROP-SPAN (d=2.1)

(a) Our proposal.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

nu
m

be
r o

f r
el

ay
 n

od
es

number of request nodes

DD-FLOOD (N=1)
DD-FLOOD (N=2)
DD-FLOOD (N=3)

DD-SPAN (N=1)
DD-SPAN (N=2)
DD-SPAN (N=3)

(b) Directed diffusion.

Figure 5: Number of relay nodes.

without SPAN. Instead, a request node use simple flooding
to disseminate a request message in PROP-FLOOD. We also
consider combination of directed diffusion with flooding
and SPAN as DD-FLOOD and DD-SPAN, respectively.

Figure 4(a) shows that both of variations of the proposal,
i.e. PROP-SPAN and PROP-FLOOD, keep the number of
active member nodes constant even if the number of request
nodes increases. Although not shown in the figure, the aver-
age number of active member nodes per application is one,
two, and three with δ = 0.1, 1.1, and 2.1.

This implies that our proposal can share active mem-
ber nodes among applications without involving redundant
devices. In addition, we also observe that the same δi results
in the same number of active member nodes independently
of the number of applications, while different δi results in
the different number of active member nodes. When param-
eter δi is 0.1, the number of active member nodes stays 1.
If there is no active member node, the demand intensity si
gradually increases. Consequently, the probability P (Xi,j =

false →Xi,j = true) in (2) becomes large at an idle member
node. Then some idle member nodes become active and the

demand intensity gradually decreases. At the beginning, the
number of active member nodes is more than one. How-
ever, an active member node eventually becomes idle with
probability pj . If all active member nodes change to idle
occasionally, the demand intensity increases again. Through
the course, threshold θi,j is adjusted on each node. Conse-
quently there appears a node which has the smallest thresh-
old among all. As a result, the number of active member
nodes converges to 1. Similarly, when parameter δi are 1.1
and 2.1, the number of active member nodes per application
converges to 2 and 3, respectively.

In both of variations of directed diffusion, i.e. DD-
SPAN and DD-FLOOD, the number of active source nodes
is kept constant as shown in Figure 4(b). A sink selects
the pre-determined number N of source nodes based on
the algorithm explained in Section 5.2. Then, it sends
reinforcement messages to those nodes. By receiving a
reinforcement message, Rshare increases and the priority of
the source node becomes higher. Consequently, a source
node selected by a sink node is likely to be selected by other
sink. As a result, the desired number of source nodes, which
are engaged in data reporting at the application-specific
rate, are well shared among applications.

Regarding relay nodes, Figure 5(a) shows that incor-
poration with SPAN results in the smaller number of relay
nodes than with flooding except for the case of δ = 0.1
and the number of applications is 1. Being incorporated
with SPAN, messages traverses the forwarding backbone
between a request node and an active member node. Since
there is only one forwarding backbone in the network and
it is shared by nodes, a path between them is not necessary
the shortest. On the contrary, a message disseminated by
flooding follows the shortest path from a request node
to a member node. As a result, the average number of
relay nodes becomes larger with SPAN than with flooding,
whereas the difference is only 0.2. When there are two or
more applications or δ is set at a larger value to have two
or more active member nodes, the proposal results in the
smaller number of relay nodes. With flooding, in the worst
case scenario, there exist the same number of independent
and disjoint paths between all pairs of a request node and
an active member node. On the other hand, the forwarding
backbone is always shared among paths with SPAN. This
apparently contributes to reduction in the number of relay
nodes and the lifetime of a network can be prolonged. As
shown in Figure 5(b), directed diffusion also benefits from
SPAN. Comparing the proposal and directed diffusion,
the number of relay nodes is similar, since the number of
active member nodes and the number of active source nodes
are the same. For example, Figure 6 shows snapshots of
networks at the end of a simulation run. In the figure, the
number of request nodes is 5, δ = 2.1 for our proposal and
N = 3 for directed diffusion. As shown in the figure, both of

10 International Journal of Swarm Intelligence and Evolutionary Computation

(a) Our proposal
with SPAN.

Sensing area of (25,25)

Relay node

Request node

Active member node

Request & relay node

(b) Our proposal without SPAN.

(c) Directed diffu-
sion with SPAN.

Sensing area of (25,25)

Relay node

Request node

Active source node

Request & relay node

(d) Directed diffusion without
SPAN.

Figure 6: Snapshots of networks at the end of a simulation
run.

our proposal with SPAN and directed diffusion with SPAN
involve the minimum number of active source nodes and
relay nodes to satisfy five applications. On the other hand,
they involve more relay nodes and constructed networks
become more complex if they do not adopt SPAN.

From the above results, we can conclude that the
proposal can effectively share active member nodes and
relay nodes among applications and keep the number of
active member nodes constant independently of the number
of applications in the current simulation setting. Since
directed diffusion is a centralized protocol, where a sink
decides source nodes to reinforce with rule-based decision
making, it is not surprising that the number of nodes is
kept as intended. On the other hand, each member node
has the right to make a decision of device assignment in
our proposal. Nevertheless, a response threshold model-
based decision making algorithm brings results similar to
directed diffusion’s. That is, our proposal accomplishes
self-organizing device assignment which is as optimal as a
centralized and deterministic scheme.

5.5 Evaluation of robustness against parameter setting
We discuss advantages of the self-organization based
proposal over the deterministic and complicated rule-based
directed diffusion in regard to the robustness against errors
in parameter setting. In this Section, we assume that three
applications are operating in the area. Three nodes at
coordinates (0,0), (12.5,0), and (0,12.5) are their request
nodes as illustrated in Figure 3. The requested number N of
active source nodes per application is set at 1 and parameter

 0

 1

 2

 3

 4

 5

 6

nu
m

be
r o

f a
ct

iv
e

m
em

be
r/s

ou
rc

e
no

de
s

 scheme
PROP+FLOOD (A

)

PROP+FLOOD (B
)

DD+FLOOD (A
)

DD+FLOOD (B
)

DD+FLOOD

 PROP+SPAN (A
)

 PROP+SPAN (B
)

DD+SPAN (A
)

DD+SPAN (B
)

DD+SPAN

our proposal
directed diffusion

(a) Number of active member/source nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1
av

er
ag

e
ra

tio
 o

f r
es

id
ua

l e
ne

rg
y

 scheme
PROP+FLOOD (A

)

PROP+FLOOD (B
)

DD+FLOOD (A
)

DD+FLOOD (B
)

DD+FLOOD

 PROP+SPAN (A
)

 PROP+SPAN (B
)

DD+SPAN (A
)

DD+SPAN (B
)

DD+SPAN

(b) Residual energy.

Figure 7: Rubustness of our proposal against parameter
setting.

δi of the proposal is set at 0.1. To make nodes heterogeneous
in energy condition, the initial residual energy of each node
is set at random value ranging from 25% to 80%.

In general, a response threshold model is less sensitive
to parameter setting similarly to other bio-inspired mecha-
nisms [17]. To confirm this, we use the different parameter
setting, i.e. set B in Table 4, we changed m and n in (5)
from 3 to 6. With larger m and n, it prevents a member
node from becoming an active member node and getting
the sufficient number of active member nodes become diffi-
cult. To examine the robustness of a decision making algo-
rithm against parameter setting, we also change thresholds
Tshare and Tenergy from 0.5 to 0.1 and 0.9, respectively. Since
Renergy ranges from 0.75 to 0.80 from the beginning of a
simulation run and Rshare is always equal to or larger than
(3− 2)/3 � 0.33. All source nodes have the same priority
of 4 in Table 3. That is, directed diffusion cannot take into
account the heterogeneity of nodes in device assignment.

International Journal of Swarm Intelligence and Evolutionary Computation 11

Simulation results averaged over 100 runs are depicted
in Figure 7. We considered 10 different schemes in the
experiments. “DD+FLOOD” and “DD+SPAN” without an
identifier of parameter setting corresponds to the original
directed diffusion without and with SPAN. In Figure 7(a),
the x-axis indicates schemes and the y-axis is the average
number of active member nodes or active source nodes at
20000 s. In Figure 7(b), the y-axis indicates the averaged
ratio of residual energy of member nodes. Each cross show
an average ratio of residual energy of active member nodes.
The top and bottom of each bar indicates the maximum and
minimum ratios, respectively.

As shown in Figure 7(a), from a view point of the num-
ber of active member nodes, the change of parameter set-
ting does not have strong impact on our proposal. On the
contrary, directed diffusion suffers from an error and the
number of active source nodes increases. This is because,
all source nodes are categorized into one priority class. As
a result, DD+FLOOD(B) and DD+SPAN(B) become iden-
tical to DD+FLOOD and DD+SPAN, respectively, where
devices are not effectively shared among applications. In
appropriate threshold setting further results in the unbal-
anced energy consumption as shown in Figure 7(b). We also
observe that our proposal, independently of parameter set-
ting errors, can achieve the same level of energy saving as
the extended directed diffusion with appropriate thresholds.

From the above results, we can conclude that our self-
organizing device assignment is less sensitive to errors in
parameter setting and, as such, to operational conditions,
than directed diffusion, while achieving as efficient device
assignment as directed diffusion with appropriate parame-
ters does.

6 Conclusion and future work
In this paper, we proposed a self-organizing device
assignment mechanism for a multi-purpose WSAN. Results
of simulation support the proposal, but there still remains
room for further evaluation and improvement. When there
is actuator contention among two applications with the
same priority, our proposal first assigns an actuator to
one application and then to another application by being
stimulated by the increased demand intensity of the latter.
The frequency that a device is assigned depends on δi, i.e.
an increasing rate of demand intensity. In other words, δi
is another parameter with which an application can control
device assignment. We need to confirm this by conducting
additional experiments. We also need to evaluate the
scalability and adaptability of the proposal, which are
inherent characteristics of self-organizing systems.

Acknowledgments This research was supported in part by Interna-
tional Collaborative Research Grant of the National Institute of Infor-
mation and Communications Technology, Japan and Grant-in-Aid for
Scientific Research (B) 22300023 of the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References

[1] I. F. Akyildiz and I. H. Kasimoglu, Wireless sensor and actor
networks: research challenges, Ad Hoc Networks, 2 (2004), 351–
367.

[2] E. Avilés-López and J. Garcı́a-Macı́as, TinySOA: a service-
oriented architecture for wireless sensor networks, Service
Oriented Computing and Applications, 3 (2009), 99–108.

[3] H. M. N. Bandara, A. P. Jayasumana, and T. H. Illangasekare,
Cluster tree based self-organization of virtual sensor networks,
in Proc. of the International Workshops on Wireless Mesh and
Sensor Networks, New Orleans, LO, 2008, 1–6.

[4] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L.
Deneubourg, Adaptive task allocation inspired by a model
of division of labor in social insects, in Proc. of the International
Conference on Biocomputing and Emergent Computation,
Skövde, Sweden, 1997, 36–45.

[5] E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence:
From Natural to Artificial Systems, Oxford University Press, New
York, 1st ed., 1999.

[6] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, Span:
an energy-efficient coordination algorithm for topology mainte-
nance in ad hoc wireless networks, Wireless Networks, 8 (2002),
481–494.

[7] Crossbow Technology, MICAz Datasheet. www.xbow.com.
[8] C. Frank and K. Römer, Algorithms for generic role assignment

in wireless sensor networks, in Proc. of the 3rd International
Conference on Embedded Networked Sensor Systems, San
Diego, CA, October 2005, 230–242.

[9] C. Frank and K. Römer, Solving generic role assignment exactly,
in Proc. of the 20th International Parallel and Distributed
Processing Symposium, Rhodes Island, Greece, April 2006.

[10] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, D. Boeckmann,
and V. Linnemann, Efficient XML usage within wireless sensor
networks, in Proc. of the 4th Annual International Conference on
Wireless Internet, Maui, HI, November 2008, 1–10.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed
diffusion: a scalable and robust communication paradigm for
sensor networks, in Proc. of the 6th Annual International
Conference on Mobile Computing and Networking (MobiCom
’00), Boston, MA, August 2000, 56–67.

[12] T. Iwai, N. Wakamiya, and M. Murata, Proposal for dynamic
organization of service networks over a wireless sensor and
actuator network, Procedia Computer Science, 5 (2011), 240–
247.

[13] E. H. Jung and Y. J. Park, TinyONet: a cache-based sensor
network bridge enabling sensing data reusability and customized
wireless sensor network services, Sensors, 8 (2008), 7930–7950.

[14] H. B. Lim, M. Iqbal, and T. J. Ng, A virtualization framework for
heterogeneous sensor network platforms, in Proc. of the 7th ACM
Conference on Embedded Networked Sensor Systems (SenSys
’09), Berkeley, CA, November 2009, 319–320.

[15] A. Majeed and T. A. Zia, Multi-set architecture for multi-
applications running on wireless sensor networks, in Proc. of
the 24th International Conference on Advanced Information
Networking and Applications Workshops (WAINA ’10), 2010,
299–304.

[16] N. Mohamed and J. Al-Jaroodi, A survey on service-oriented
middleware for wireless sensor networks, Service Oriented
Computing and Applications, 5 (2011), 71–85.

[17] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, Media
streaming on P2P networks with bio-inspired cache replacement
algorithm, in Proc. of the 1st International Workshop on Biologi-
cally Inspired Approaches to Advanced Information Technology,
A. J. Ijspeert, M. Murata, and N. Wakamiya, eds., vol. 3141
of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
2004, 380–395.

12 International Journal of Swarm Intelligence and Evolutionary Computation

[18] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann, Towards multi-
purpose wireless sensor networks, in Proc. of the International
Conference on Systems Communications, August 2005, 336–
341.

[19] A. Varga, The OMNeT++ discrete event simulation system,
in Proc. of the European Simulation Multiconference, Prague,
Czech Republic, June 2001, 319–324.

[20] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, Supporting
concurrent applications in wireless sensor networks, in Proc.
of the 4th International Conference on Embedded Networked
Sensor Systems (SenSys ’06), Boulder, CO, November 2006,
139–152.

