Proposal and Evaluation of Ant-based Routing with Autonomous Zoning for Convergence Improvement

> Naomi Kuze, Naoki Wakamiya, and Masayuki Murata Osaka University, Japan

> > NBiS2012

Contents

- Research background

 Bio-inspired self-organization
 Controlled self-organization
- AntNet
- Our proposal
- Simulation and result
- · Conclusion and future work

Controlled self-organization

- Moderately control self-organization
 - The system is moderately controlled through a feedback mechanism or adaptation of control parameters
 - To accelerate self-organization
 - · To guide a system to achieve tasks effectively

Our goal : Show self-organization can be accelerated by moderate control

- Take AntNet as a test case
- Reduce the path convergence time by dividing the whole network to subareas

Simulation experiment

- We evaluate the convergence time, path length, and control overhead
- · Simulation setting
 - Change the size of network from scale = 1 (100 m x 100 m) ~ 10 (1,000 m x 1,000 m) while keeping node density
 - At *scale* = 2, 150 nodes are distributed at random in the area of 200 m x 200 m
 - Communication range : 30 m
 - One-hop delay : 2 msec
 - Interval of ant emissions : 10 msec

Comparison with AntNet and HOPNET

- Our proposal reduce the convergence time and establish shorter
 path compared with AntNet
- Our proposal reduce control overhead compared with HOPNET

Influence of parameter ρ

- Convergence time is shorter and control overhead is lower with lower ρ
 - Because the size of zones is smaller with lower ρ

Conclusion and future work

Conclusion

- Accelerate the path establishment by limiting search space of ants
 - · Path length is shorter than AntNet
 - · Control overhead is smaller than HOPNET
- · Future work
 - Controlled self-organization with prediction
 - Accelerate path convergence to adapt to environmental changes
 - Predict the future convergence from history of pheromone accumulation and adapt the convergence to the predicted st
 - accumulation and adapt the convergence to the predicted state

18