

_	
•	Comparing two types of topologies having power-law characteristics
	· To reveal the relationships between structures and traffic dynamics
	 Measured ISP (router-level) topologies
	ISP: Internet Service Provider
	Generated BA topologies
	Two topologies having different structures
	 523 nodes and 1304 links
	AT&T Topology: Measured router-level topology of AT&T Measured by Rocketfuel [6]
	 BA (AT&T) Topology: Generated by BA model [5]

Csaka University

Simulation Evaluation

Network model

- Each link has the uniform link capacity and buffer size
- Network load is defined by the number of sessions
 The number of sessions is 100,000
- Source and destination node pairs are selected randomly
 Two flow control models
- Stop and wait and TCP Reno model

· Evaluation metric

Queue length fluctuation

ch ISP topology has higher modularity value and red					
ne number of fluctuating links Modularity is calculated using the method in [9]					
Тороlоду	Nodes	Links	Modularity	Ratio of Fluctuating Links	
AT&T	523 467 817	1304 1280 1874	<u>0.89</u>	<u>0.11</u>	
BA AT&T			0.63	0.26	
Sprint			0.87	<u>0.12</u>	
BA Sprint			0.68	0.26	
Verio			<u>0.81</u>	<u>0.10</u>	
BA Verio			0.58	0.19	
Telstra 296	594	0.96	<u>0.14</u>		
		0.77	0.22		

🔷 Osaka University

Conclusion and Future Work

- Investigating the interaction between the structures of topologies and flow control
- The functionality of TCP makes the queue length to fluctuate
 The high-modularity structure of the ISP topologies reduces the ratio of highly fluctuating links
 - As the modularity value decreases, the ratio of highly fluctuating links decreases
 - The modularity structure is essential to reduce fluctuation

Future work

 Developing a topology generation method that reproduces the modularity structure and apply it to performance evaluations