
Future Network and MobileSummit 2013 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2013
ISBN: 978-1-905824-36-6

OpenFlow-based Content-Centric
Networking Architecture and Router

Implementation
Atsushi Ooka1, Shingo Ata2, Toshio Koide3, HIDEyuki Shimonishi3, and Masayuki

Murata1
1Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871 Japan
Tel.: +81-6-6879-4542, Fax: +81-6-6879-4544

Email: {a-ooka, murata}@ist.osaka-u.ac.jp
2Graduate School of Engineering, Osaka City University

3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan
Tel.: +81-6-6605-2191, Fax: +81-6-6690-5382, Email: ata@info.eng.osaka-cu.ac.jp

3Cloud System Research Laboratories, NEC Corporation
1753 Shimonumabe, Nakahara, Kawasaki, Kanagawa 211-8666, Japan

Tel.: +81-44-431-7702, Fax: +81-44-431-7644
Email: {t-koide@bk, h-shimonishi@cd}.jp.nec.com

Abstract:
Content-Centric Networking (CCN) is a novel architecture that has been proposed as
a solution for dealing with various problems facing the Internet, such as the exces-
sive bandwidth costs that result from peer-to-peer (P2P) traffic and content delivery
networks (CDN). In order to deal with the difference between the principles of the
Internet and the purposes for which it is actually used, CCN entails a change from
a host-centric to content-centric architecture. However, there are deployment issues
that will require a gradual approach in order to realize migration from the Internet
to CCN. Additionally, the shortage of testbed environments needs to be addressed
as quickly as possible. We focus on OpenFlow, which is a promising candidate to
provide a programmable environment without disrupting existing networks. Specific
implementations of CCN using OpenFlow have not been examined in sufficient de-
tail, although there have been investigations into the conceptual design. This paper
presents the detailed design and implementation of an OpenFlow-based CCN with
the primary aim to achieve forwarding and end-to-end communication. Our approach
can solve the issues in existing designs by using a map from content names to hi-
erarchically structured hash values and the longest prefix match. We also discuss the
advantage of retaining significant attributes of CCN and OpenFlow such as high-speed
forwarding and network slicing which promotes deployment of CCN and research for
routing, caching, and security strategies.

Keywords:
Future Networks, Content-Centric Networking, Architecture, OpenFlow

1. Introduction

The Internet, which is now a global network of networks, is used in a form and scale
considerably different from the original design principles and assumptions, and this gives
rise to many problems. Information-Centric Networking (ICN) and Content-Centric
Networking (CCN) [1], which provide a location-independent network architecture in
which the content is named, has been proposed as a measure for coping with these
problems facing the Internet; the goal is for CCN to become the Internet of the future.

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 1 of 10

A number of research projects have studied ICN/CCN approaches such as Named Data
Networking (NDN) [2], PURSUIT [3], and SAIL [4]. These all share the common
concept of addressing the content that is exchanged in communication by “name”, which
is mnemonic and unique to each chunk of data. In this paper, we focus on CCN/NDN,
which is characterized by a hierarchical structure and variable-length names.

The features of CCN create key challenges for implementation. There are feasibility
problems for achieving routing, caching, and security and deployment problems about
a gradual approach to ICN/CCN deployment, costs, and business models, and they
have been analyzed and evaluated [5, 6, 7]. It is necessary to demonstrate that CCN
could become the successor to the Internet and to encourage general network users to
migrate to the CCN.

Taking this situation into account, OpenFlow is expected to aid with the devel-
opment of CCN. OpenFlow implements the software-defined networking (SDN) con-
cept [8]. This allows researchers to test novel networking protocols like CCN in an ac-
tual network environment [9]. The possibility of deployment supported and promoted
by OpenFlow has also been investigated [10, 11].

While the benefits of designing a network using OpenFlow based on content-centric
principles have been actively discussed, there has been a lack of discussion on the ma-
jor characteristics of CCN/NDN and a lack of concrete implementations. Most existing
research differs from the CCN/NDN concept in the details of the implementation, with
some features such as aggregation scaling routing states and availability of uniquely
named content sacrificed. There has not been either much discussion on how to imple-
ment the flow tables and OpenFlow controller.

In order to deal with these issues, we present the detailed design and implementation
of an OpenFlow network in which packet forwarding is realized based on hierarchically
structured hash values of names. We employ Trema as the OpenFlow framework for
implementation and testing.

2. Background
2.1 Content-Centric Networking

CCN is a novel network architecture that was designed with a focus not on the location
of data but on the content of data. This approach has the following advantages:

• Content-centric rather than host-centric communication

• Namesthat provide each chunk of data with unique, human-readable, and hier-
archical structured addresses

• Mechanisms for native multicasting, in-network caching, and security that is built
into the data

The content-centric design was inspired by recent developments in the utilization
of the Internet. A main use of current networks is the distribution and retrieval of
vast amounts of data such as HTML documents, images, and high-definition video.
However, specifying the locations of providers and consumers is not necessary for this
purpose. CCN is a solution for dealing with the incompatibilities and security concerns
by shifting the routing behavior based on from “where” to “what”. In CCN, it is
not necessary to know where the device we want to communicate with is located, and

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 2 of 10

instead we directly identify the name of data that we want. Names enable us to do
this by providing each chunk of data with a unique, human-readable, and hierarchical
address. In addition, longest prefix match (LPM) look-up on names is implemented,
which enables to aggregate routing state just like Internet.

Communication via CCN is realized through the exchange of Interestpackets and
Data packets. Interest packets are sent by data consumers and contain the request
for and the name of the content. Data packets are sent back by the data producer in
response to Interest packets received by the producer and contain the actual data.

CCN supports inherent security and privacy protection. Every packet is verified
using encryption and signatures. There is demand for security that is embedded in
the content data itself, and research is ongoing into how to implement these inclusive
structures. Because of this and our intention to implement forwarding independently
from other functions, we do not take account of the security.

2.2 OpenFlow

OpenFlow was implemented as the first standard interface for an SDN architecture.
SDN provides network operators with programmable management which is decoupled
from the underlying network infrastructure for current L2/L3 switches. This pro-
grammability removes the barriers to experimenting with new network protocols in
a real network infrastructure. The separation of data paths from network intelligence
results in two basic components called the switch and controller, respectively. The con-
troller gives the switches the operational instructions, which are written to a flow table
contained in the switch as individual flow entries. When the switch receives a packet, it
searches the flow table for corresponding entries by using the matching rules, and then
processes the packets according to the actions in the entries.

Note that the first version and the latest version of the OpenFlow switch specifica-
tions differ in terms of the matching rules and actions. The OpenFlow 1.0 specifications
do not support matching and modification to IPv6 addresses. However, these are sup-
ported in the OpenFlow 1.3 specifications.

3. Architectural Description
3.1 Design Principles

In this section, we describe an architecture of OpenFlow-based CCN. This guarantees
a high-speed forwarding by using hierarchically structured hashes of names. In order
to decide the flow for sending back a Data packet immediately after receiving a corre-
sponding Interest packet, it is necessary to give these names hierarchically structured
hash values for matching them by using LPM. Because a name of an Interest packet
may be different from one of a Data packet satisfying it, this quick decision is impossible
in existing solutions which give them different hash values that are not hierarchically
structured.

We explain a detailed design including configuration of the flow entries, which is
missing in the existing researches. In accordance with the design principles of CCN, a
forwarding strategy is separate from the routing strategy. This promotes the deploy-
ment of CCN concurrently with research on routing systems. Owing to our concern
about the need of early-deployment, the design is based on UDP and OpenFlow 1.0
specifications, both of which are currently available. In addition, our solution can be
easily expanded by new technologies such as OpenFlow 1.3 specifications.

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 3 of 10

3.2 Specification of Packets

UDP packets are defined specifically for CCN and are treated as Interest packets and
Data packets. End-users are able to send and receive these packets natively.

In order to simplify application developments, we propose that a predefined set of
fields in the packet headers are examined, and have adopted the following rules:

UDP Port Number Used for distinction between Interest packets and Data packets. It is
necessary to assign port numbers that is uniquely used in the network. We denote
their port numbers as 50001 and 50002 respectively for purposes of illustration in
this paper.

IPv4 Address Associated with the name of the content through an appropriate hash
function (detailed in Subsection 3.3).

MAC Address Determines whether the I/O port where the packet has arrived is in-
bound or outbound. Specially defined MAC address must be assigned to the
packets. 11:11:11:11:11:11 indicates unprocessed packets, and 22:22:22:22:22:22
indicates processed packets by OpenFlow switches for purposes of illustration in
this paper.

The CCN packets (i.e., the UDP payloads) that we use are simplified as much as
possible and do not support security features such as signatures since our aim is only
to demonstrate the feasibility of packet exchange using CCN. The packets therefore
contain the minimal information for communicating on CCN, as shown in Figure 1.

name_len name name_len name data_len data

2 byte (name_len) byte (data_len) byte2 byte

Interest Data

2 byte (name_len) byte

Figure 1: UDP payloads representing Interest packets (left) and Data packets (right)

Since each of the length fields are 2 bytes long, the sizes of the name and data
are limited to less than 64 Kbytes. This maximum length is reasonable because it is
obvious that the length of the names is less than 65,536, and Data packets where the
entire length is more than 1,500 bytes are first split up in order to avoid fragmentation
in the lower layers. These UDP packets customized for CCN allow end-users to retrieve
content without needing equipment based on OpenFlow.

3.3 Matching and Forwarding

In content-centric solutions, only the names of content are examined for forwarding
and routing decisions except in the case of security strategies. CCN routers require the
ability to perform LPM on names. However, OpenFlow does not offer any matching
rules for inspection of the UDP payload. Instead, the IP address field can be subnet
masked in the OpenFlow 1.0 specifications, and we therefore propose a solution that
writes hash values that are converted from the name into the IP address field.

Each component of the name is assigned 4 bits, allowing names consisting of up to 8
components to be handled. Each component is converted to a value from 1 to 15, with
the value 0 indicating that the corresponding component does not exist. For example,

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 4 of 10

consider the case of content named “/pict/a.jpg/v1/s2 .” The name contains four
components: “pict ”, “a.jpg ”, “v1”, and “s2”. If these components are converted
by a hash function to 1, 3, 4, and 8, respectively, the IP address becomes “19.72.0.0/16”
in CIDR notation or “0x13480000” in hexadecimal. When a Data packet with the name
“/pict/a.jpg/v1/s2 ” is cached, an Interest packet named “/pict/a.jpg ”, which
converts to “19.0.0.0/8”, would match the Data packet by using LPM on the IP address.
OpenFlow switches performs forwarding based on this virtually implemented LPM by
name, so the LPM rule for the IP address is common to all flow entries.

Actions targeting Interest and Data packets must include forwarding of the packet
to the appropriate destination I/O port and controller. The destination I/O ports of
Interest packets are looked up in the routing table and of Data packets are determined
when Interest packets that have the same name pass through the switch. In Open-
Flow networks, which is usually composed of multiple switches, the packets are simply
transfered from the source host to the destination host depending on the flows.

On sending a packet out to an external host, it is necessary to make the following
two modifications to the packet before forwarding: (1) adjust the IP and MAC des-
tination addresses to those of the destination host; and (2) change the IP and MAC
source addresses to those of a virtual gateway. Note that (2)’s modifications make it
possible to prevent end-hosts from becoming confused in the ARP table by provid-
ing end-hosts with non-duplicate IP addresses and the uniquely defined MAC address
11:11:11:11:11:11 . On receiving a packet from an external host, which are assigned
MAC destination address of 11:11:11:11:11:11 , this MAC destination address is modi-
fied to 22:22:22:22:22:22 for multihop transmission in OpenFlow networks.

In addition, Network slicing can be easily implemented. We can isolate the CCN
traffic from the IP traffic and handle them by examining the field of UDP port number,
i.e, UDP packets with port number 50001 or 50002 are processed as the CCN traffic,
and others are processed as the IP traffic.

3.4 Caching

CCN routers possess a native cache for Data packets called the CS. However, OpenFlow
switches do not have this kind of caching mechanism. We therefore introduce a software
cache in the OpenFlow controller. In particular, whenever the OpenFlow controller
receives Data packets, the controller stores the packets for later requests.

Although the controller is useful for caching, the software-based implementation
lacks the speed of the CS which is implemented in hardware. A dedicated storage device
for caching would certainly have the potential for achieving performance comparable
with that of the CS. However, we have not adopted this device as it lacks the flexibility
required for testing during development.

3.5 Description of Communication

Figures 2, 3, and 4 give a detailed description of the communication in our architecture.
There are a single CCN router comprising an OpenFlow switch and controller, and two
hosts that are exchanging a piece of content named “/pict/a.jpg/v1 ”. The host
denoted “A” is a consumer who sends Interest packets and receives Data packets, and
the host denoted “B” is a content producer who does the opposite.

Figure 2 illustrates the beginning of a scenario in which the requester sends an
Interest packet named “/pict/a.jpg ”. The requester computes the hash value of

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 5 of 10

AAAA BBBB

MAC : AA-AA-AA-AA-AA-AA

IP : 192.168.0.11

MAC : BB-BB-BB-BB-BB-BB

IP : 192.168.0.22

UDP server waiting for Data

Name: /pict/a.jpg

Port: 50002

Send Interest

Name: /pict/a.jpg

Destination port: 50001

IP destination address: 18.0.0.0

MAC destination address: 11:11:11:11:11:11

Hash

ARP

UDP server waiting for Interest

Name: /pict/a.jpg/v1

Port: 50001

CCN router

MAC_Dst MAC_Src IP_Dst IP_Src Dst_Port Name

11-11-11-11-11-11 AA-AA-AA-AA-AA-AA 18.0.0.0 192.168.0.11 50001 /pict/a.jpg

Flow for Interest

Figure 2: Detailed description of communication: (1) Sending an Interest packet

MAC_Dst MAC_Src IP_Dst IP_Src Dst_Port Name

BB-BB-BB-BB-BB-BB 11-11-11-11-11-11 192.168.0.22 192.168.0.254 50001 /pict/a.jpg

UDP server

waiting for Data

Flow for Data

AAAA BBBB

MAC : AA-AA-AA-AA-AA-AA

IP : 192.168.0.11

MAC : BB-BB-BB-BB-BB-BB

IP : 192.168.0.22

CCN router

UDP server waiting for Interest

Name : /pict/a.jpg/v1

Port : 50001

Figure 3: Detailed description of communication: (2) Receiving an Interest packet

MAC_Dst MAC_Src IP_Dst IP_Src Dst_Port Name

11-11-11-11-11-11 BB-BB-BB-BB-BB-BB 18.32.0.0 192.168.0.22 50002 /pict/a.jpg/v1

Flow for Data

AAAA BBBB

MAC : AA-AA-AA-AA-AA-AA

IP : 192.168.0.11

MAC : BB-BB-BB-BB-BB-BB

IP : 192.168.0.22

CCN router

Send Data

Name: /pict/a.jpg/v1

Destination port: 50002

IP destination address: 18.32.0.0

MAC destination address: 11:11:11:11:11:11

UDP server waiting for Data

Name: /pict/a.jpg

Port: 50002

MAC_Dst MAC_Src IP_Dst IP_Src Dst_Port Name

AA-AA-AA-AA-AA-AA 11-11-11-11-11-11 192.168.0.11 192.168.0.254 50002 /pict/a.jpg/v1

Figure 4: Detailed description of communication: (3) Sending and receiving a Data packet

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 6 of 10

the name to determine the IP destination address before sending the packet. The
MAC destination address is resolved by the CCN router. The flow for forwarding an
Interest packet named “/pict/a.jpg ” is preliminarily written in a flow table in the
switch. In addition to sending the packet, the requester needs to prepare the UDP
server for receiving the Data. Figure 3 shows the forwarded Interest packet arriving
at the producer. Both the IP address and MAC address of the packet are modified
properly. What needs to be emphasized is that the flow is also rewritten for Data
packets. Finally, Figure 4 shows the flow of the Data packet. In response to the
Interest packet, the producer sends a Data packet named “/pict/a.jpg/v1 ”. The
Data packet is modified and forwarded by the CCN router similarly to the Interest
packet. The consumer subsequently receives the packet and the request is satisfied.
What is important is that all packets contain names with different hashes, but these do
not disrupt the processing owing to the LPM and hierarchically structured hashes.

4. Implementations of Each Component
4.1 Configuration of Flow Entries in the OpenFlow Switch

The flow entries in the OpenFlow switch are managed according to the states computed
by the OpenFlow controller. The state assigned to each name can be defined as the data
structure (i.e., FIB, PIT, or CS) where the packet with that name should be processed.
An index table is used for looking up the state of the name.

Suppose an Interest packet that requests content named “/pict/a.jpg ” reaches
the switch for the first time. In this case, the FIB should be looked up to process this
packet since the CS has not yet cached the Data packet for this name and the PIT entries
have not been registered yet either. The state for “/pict/a.jpg ” therefore needs to
be pre-defined as FIB, with the controller having already registered the corresponding
flow entries in the switch. The flow entries then enable the switch to forward the packet
appropriately, and the new state becomes PIT since the unsatisfied Interest packet has
been added to the PIT.

The state transition rules and the operations performed on received packets are
listed in Table 1. Operations to add and remove entries are intended to not only deal
with the flow entries in the switch but also to change the state of the controller.

Table 1: State transition rules and operations on flow entries

State On Receiving Interest New StateOn Receiving Data New State
FIB Add the PIT entry PIT Cache Data and add the

FIB entry
CS

PIT Add PIT entry PIT Remove PIT entry, and
add FIB entry

CS

CS Send back cached Data CS Do nothing CS

4.2 OpenFlow Controller

In our solution, the OpenFlow controller is programmed to behave as a CCN router in
combination with the OpenFlow switch. It also needs to ensure consistency of commu-
nication with the end-users. To that end, the controller needs to manage the state of

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 7 of 10

each content name, configure flow entries (as detailed in Subsection 4.1), handle ARP
packets properly, and associate the I/O port to which the host is directly connected.

As noted in Subsection 3.3, the virtual CCN router implemented by the OpenFlow
controller and switch handles ARP table confusion. Without ARP, it is impossible for
hosts to communicate over Ethernet, and UDP is no exception. However, it is quite
likely that the large number of dynamic IP addresses derived from the names would
trigger an explosion of entries in the ARP table. As a consequence, the CCN router
must provide fixed IP addresses and MAC addresses and act as a virtual gateway router.

5. Discussion
5.1 Comparison with Existing Solutions

Existing solutions implement a dynamic mapping between content names and fixed-
length hash values [10, 9]. However, those solutions lack some of the important charac-
teristics of CCN. A hierarchically structured name is required for performing the LPM
in CCN in order to allow for different names between the Interest and Data packets.

Consider two packets, an Interest packet with the name “/pict/a.jpg ” and a
Data packet with the name “/pict/a.jpg/v1/s2 ”. Obviously, the two names give
different hash values, which are not hierarchically structured and have nothing in com-
mon in the existing solutions. This makes it impossible to use the LPM between two
names from the hash values. It is therefore unreasonable for a CCN router that have
received an Interest packet both to register all flow entries for forwarding conceivable
Data packets, and to determine the single name of the corresponding Data packet.
Because of this, the router cannot create the flow entries before receiving the Data
packet.

In our proposed solution, by contrast, the content names are mapped to IPv4 ad-
dresses while maintaining the hierarchical structure, which makes it possible to look
up content names using the LPM on IPv4 addresses. Since a CCN router can create
the flow entries immediately on receiving an Interest packet, a Data packet is sent back
quickly along the path of switches. It should also be noted that this also facilitates new
routing system research which employs aggregation based on hierarchically structured
names.

5.2 Contribution to Deployment Issues

The network implemented according to our specifications meets the minimal require-
ments for CCN with regard to realizing end-to-end communication. Forwarding based
on a hierarchically structured name is performed by using the IP address field to store
hierarchically hashed names. Routing strategies are easy to implement and expand, in-
cluding strategies that use the LPM on the content name, owing to their independence
from the forwarding strategies.

In addition to this feasibility, CCN implemented using OpenFlow can be deployed
in a way that allows for gradual migration from the Internet. While the deployment
of OpenFlow networks represents a cost to network operators, isolating experimental
networks from the existing network by network slicing potentially reduces the overall
burden including the migration.

The transition from OpenFlow-based CCN to pure CCN remains a topic for further
research. However, we are not yet concerned with this issue because the specifications
of CCN are still being explored.

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 8 of 10

5.3 Consideration of OpenFlow 1.3 Specifications

The OpenFlow 1.3 specifications have the potential to improve the probabilities of
hash collisions by supporting matching on IPv6 addresses. This makes it possible to
use arbitrary bitmasks for matching IPv6 address fields and MAC addresses. We focus
on applying this to the probabilities of hash collisions, i.e., to use the LPM on IPv6
and MAC addresses to reduce the rate of collisions.

Assuming each component of a name is assigned B bits, the probabilities P protocol
B

for the three protocols (IPv4, MAC, and IPv6) are given by the following equation:

P protocol
B =

(
1−

N∏
i=1

(2B − 1)− i

2B − 1

) len
B

(1)

where N is the number of names and len is the bit-length of the addresses in the
protocol. Figures 5, 6 show the probabilities P IPv4

B , PMAC
B and P IPv6

B for B = 4 and 16
respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16P
p

ro
to

c
o

l
4

 :
 H

a
s
h

 c
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

N: Number of names

P
IPv4
4

P
MAC
4

P
IPv6
4

Figure 5: Probability of a hash collision
(B = 4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000P
p

ro
to

c
o

l
1

6

:
H

a
s
h

 c
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

N: Number of names

P
IPv4
16

P
MAC
16

P
IPv6
16

Figure 6: Probability of a hash collision
(B = 16)

The graphs show that the parameter B is much more influential on the probability
of a hash collision than the difference between protocols. This means that it is better
to adopt as large a value of B as possible. However, 99.9% of URLs consist of less than
30 components according to [5]. It is therefore preferable to adopt matching on IPv6
addresses with B = 4. The trade-off between the hash collision probability and the
number of components is left for investigation in future work.

6. Conclusions

With the growing recognition that the Internet is reaching its limits, CCN has been
drawing attention around the world. This promising architecture offers tremendous
advances including native support for multicasting, in-network caching, and security
that depends on the content. OpenFlow, which is also gaining an increasing presence,
is expected to become the intermediary for migration from the Internet to CCN.

This paper presented the architecture and implementation of an OpenFlow-based
CCN. Our examination demonstrated the feasibility and possibility for deployment, and
the ability to simultaneously study challenges such as routing and caching strategies by
using hierarchically structured hashes of content names. The trade-off between hash

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 9 of 10

collision probabilities and the number of components that can be handled in names will
be investigated once products and a framework are released.

7. Acknowledgment

This work was supported by the Strategic Information and Communications R&D Pro-
motion Programme (SCOPE) of the Ministry of Internal Affairs and Communications,
Japan.

References

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” in 5th international conference on
Emerging networking experiments and technologies, pp. 1–12, December 2009.

[2] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters, B. Zhang,
G. Tsudik, D. Massey, C. Papadopoulos, et al., “Named data networking (NDN)
project,” Tech. Rep. NDN-0001, PARC, October 2010.

[3] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing information
networking further: From PSIRP to PURSUIT,” in 7th International ICST Confer-
ence on Broadband Communications,Networks, and Systems, pp. 1–13, October 2010.

[4] T. Levä, J. Gonçalves, R. J. Ferreira, et al., “Description of project wide scenarios
and use cases,” Tech. Rep. D2.1, SAIL, February 2011.

[5] D. Perino and M. Varvello, “A reality check for Content Centric Networking,” in
the ACM SIGCOMM workshop on Information-centric networking, pp. 44–49, August
2011.

[6] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design and impli-
cations,” in the Re-Architecting the Internet Workshop, pp. 1–6, November 2010.

[7] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D. Thornton,
and R. L. Braynard, “VoCCN: Voice-over Content-Centric Networks,” in the 2009
workshop on Re-architecting the internet, pp. 1–6, December 2009.

[8] ONF Market Education Committee, “Software-Defined Networking: The new
norm for networks,” Tech. Rep. ONF White Paper, ONF, April 2012.

[9] N. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and L. Veltri, “An
OpenFlow-based testbed for information centric networking,” in Future Network
Mobile Summit 2012, pp. 1 –9, July 2012.

[10] D. Chang, J. Suh, H. Jung, T. T. Kwon, and Y. Choi, “How to realize CDN
Interconnection (CDNI) over OpenFlow?,” in Proceedings of the 7th International
Conference on Future Internet Technologies, pp. 29–30, September 2012.

[11] I. Carvalho, F. Faria, E. Cerqueira, and A. Abelem, “ContentFlow: An intro-
ductory routing proposal for Content Centric Networks using Openflow,” API, 7th
Think-Tank Meeting, pp. 1–2, June 2012.

Copyright c⃝ The authors www.FutureNetworkSummit.eu/2013 10 of 10

