
Master’s Thesis

Title

Hardware Design and Evaluation of

CAM-based High-speed CCN Router

Supervisor

Professor Masayuki Murata

Author

Atsushi Ooka

February 10th, 2014

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University



Master’s Thesis

Hardware Design and Evaluation of

CAM-based High-speed CCN Router

Atsushi Ooka

Abstract

Content-centric networking (CCN) is an innovative network architecture that is being consid-

ered as a successor to the Internet. In recent years, CCN has received increasing attention from

all over the world because its novel technologies (e.g., caching, multicast, aggregating requests)

and communication based on names that act as addresses for content have the potential to re-

solve various problems facing the Internet. To implement these technologies, however, requires

routers with performance far superior to that offered by today’s Internet routers. Although many

researchers have proposed various router components, such as caching and name lookup mecha-

nisms, there are few router-level designs incorporating all the necessary components. The design

and evaluation of a complete CCN router is the primary contribution of this thesis. We provide a

concrete hardware design for a CCN router model that uses three basic tables —forwarding infor-

mation base (FIB), pending interest table (PIT), and content store (CS)—and two entities that we

propose. One of these entities is the name lookup entity (NLE), which looks up a name address

within a few cycles from content addressable memory (CAM) by use of a Bloom filter; the other

is the interest count entity (ICE), which counts interest packets that require certain content and

selects content worth caching. Our contributions are (1) presenting a proper algorithm for looking

up and matching name addresses in CCN communication, (2) proposing a method to process CCN

packets in a way that achieves high throughput and very low latency, and (3) demonstrating CCN

router performance and cost on the basis of a concrete hardware design.

1



Keywords

Communication Architecture

Future Networks

Content-centric Networking

Router Hardware

Content Addressable Memory

Bloom Filter

2



Contents

1 Introduction 7

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 CCN 10

2.1 Principles of CCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Router Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Name Lookup Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Matching and Selecting Algorithms . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Algorithms Suitable for Each Table . . . . . . . . . . . . . . . . . . . . 13

3 Architecture 17

3.1 Name Lookup Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Interest Count Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Hardware Design 23

4.1 Name Lookup Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Interest Count Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Evaluation 28

5.1 Memory Size and Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion and Future Work 33

Acknowledgment 35

Reference 36

3



List of Figures

1 Example of Using EM (upper: Case(1), lower: Case(2)) . . . . . . . . . . . . 15

2 Example of Using BPM (upper: Case(1), lower: Case(2)) . . . . . . . . . . . . 15

3 CCN Router Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Definition of CAM Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Example of CAM and RAM Entries in NLE . . . . . . . . . . . . . . . . . . . . 20

6 Hardware Design of NLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Hardware Design of ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Packet Processing in Our Proposed CCN Router . . . . . . . . . . . . . . . . . . 27

4



List of Tables

1 Summary of Matching/Selecting Algorithms . . . . . . . . . . . . . . . . . . . . 16

2 Name Lookup Algorithm Applied to Our Implementation . . . . . . . . . . . . . 17

3 Performance of Existing Lookup Mechanisms . . . . . . . . . . . . . . . . . . . 28

4 The Number of Read/Write Accesses to The Memories on Name Lookup Process 32

5



List of Algorithms

1 Interest Process in ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Data Process in ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6



1 Introduction

1.1 Background

The Internet, which is now a global network of networks, is used in a form and scale considerably

different from the original design principles and assumptions, and this gives rise to many prob-

lems. The initial implementation of the Internet was developed for providing communications

between pairs of hosts. At present, however, the Internet is used for the purpose of distributing

and retrieving various types of content to and from global networks instead of communicating

with a specific host. Nevertheless IP datagrams require that an IP address be assigned, which

specifies the network interface. To map an IP address to the data in which we are interested, net-

work applications need to employ complex middleware services such as DNS. In addition, there

is no guarantee that the requested data always exist at the same location, because the data may be

moved or deleted, or the server providing data may become temporarily inaccessible.

Information-centric networking (ICN) or content-centric networking (CCN) [1] has been pro-

posed as a measure for overcoming the limitations of current Internet architecture. The most

significant feature in ICN/CCN is that the “name” address, which is variable-length and human-

readable in a way similar to uniform resource locators (URLs), is assigned to each piece of content.

Using the name address, content distribution applications (e.g., YouTube and Twitter), which have

been becoming more and more popular, can be supported efficiently and securely by adhering to

the end-to-end principle.　

Obviously, many challenges must be resolved to realize CCN, which is a clean-slate network.

First, we need new name resolution and routing mechanisms that are based on the name addresses

used in CCN. Second, the “bread crumb” forwarding technique, which uses Interest and Data

packets and which naturally incorporates multicast and Interest aggregation into the network, re-

quires lookup tables that can update much more quickly than IP tables. Most research focuses on

in-network caching mechanisms because they can cache content more efficiently and thus require

fewer resources [2, 3]. In addition, there are a number of problems that have been analyzed and

evaluated: security, mobility, and CCN deployment, among others [4, 5, 6].

7



1.2 Related Work

A number of research projects have studied ICN/CCN approaches such as CCNx [7], NDN [4],

PURSUIT [8], and SAIL [9]. These all share the common concept of addressing the content that

is exchanged in communication by “name”, which is mnemonic and unique to each chunk of

data. They also try to natively implement functions such as in-network caching, multicasting, and

security that is built into data. In this thesis, we focus on CCN/NDN, which is characterized by a

hierarchical structure and variable-length names.

Most previous studies have focused on isolated components or techniques of the router, such

as caching and name lookup mechanisms. For example, Caesar [10] aims to implement a scalable

high-speed forwarding table. DiPIT [11] and NameFilter [12] focus on pending interest table

(PIT) and propose very fast inexpensive architecture consisting of two-level Bloom filters, but the

probabilistic model means that false positives can never be completely eliminated. NCE [13],

ENPT [14] and ATA(MATA) [15] approach highly memory-efficient name lookup mechanisms

by using a trie-like structure. MATA achieves line speed (i.e., near-real-time performance) by

means of a highly parallelized architecture using graphics processing units, although it is difficult

to reduce the latency.

Among the existing complete router designs [16, 3], CAM, which has the potential to become

a major lookup technology, has not been sufficiently researched because of its cost. Neverthe-

less, the estimations conclude that it is too difficult to support an Internet scale CCN deployment

although the analysis that at least CDN or ISP scale can be easily afforded is a significant contribu-

tion to investigating the feasibility of ICN/CCN. In addition, the designs and simulations of CCN

router shown in the existing studies are not based on hardware designs or implementations. We

eventually plan to demonstrate the design and evaluation based on hardware with the same level

of [17]. In [17], the implementation of reconfigurable match tables for software-defined network

(SDN) is proposed and detailed design and evaluation based on hardware implementations are

described. The proposed techniques for quick matching a number of entries in SDN could help

to implement feasible matching mechanisms for ICN/CCN, but the techniques in SDN cannot be

directly applied to the router in CCN because of the variable-length name addresses in CCN.

8



1.3 Objectives

We address one of the biggest challenges to implementing a CCN router to demonstrate the feasi-

bility and specific performance of a CCN router. Of course, hardware must be feasible to realize

CCN communication. The realistic performance of a hardware router is required to estimate per-

formance at the network level and evaluate whether various proposals for CCN are reasonable.

However, there are few studies offering a comprehensive design for a CCN router; instead, most

previous studies have focused on isolated components or techniques of the router, such as caching

and name lookup mechanisms.

In this thesis, we propose a complete CCN router design that can be implemented with existing

hardware and show the feasibility and performance of the router. In Section 2, we describe an ac-

curate communication model for CCN that properly handles all packets. In Section 3, customizing

the router architecture by using the name lookup entity (NLE) and the interest count entity (ICE) is

proposed, and the hardware design using content addressable memory (CAM) and a Bloom filter

is demonstrated in Section 4. In Section 5, we comprehensively evaluate the throughput and cost

of the CCN router. Finally, we give a conclusion and discuss areas for future research.

9



2 CCN

2.1 Principles of CCN

CCN is a novel network architecture that was designed with a focus not on the location of data but

on the content of data. This approach has the following advantages:

• Content-centric rather than host-centric communication

• Names that provide each chunk of data with unique, human-readable, and hierarchical ad-

dresses

• Mechanisms for native multicasting, in-network caching, and security that is built into the

data

The content-centric design was inspired by recent developments in the utilization of the Inter-

net. A main use of current networks is the distribution and retrieval of vast amounts of data such as

HTML documents, images, and high-definition video. Specifying the locations of providers and

consumers is not necessary for this purpose. However, the Internet, which is the dominant tool

for communication, imposes these kinds of redundant processes solely for deploying or retrieving

the data that is contained within. In addition, duplicate packets carrying identical information as

part of data sharing systems such as content delivery networks (CDN) and peer-to-peer (P2P) ap-

plications consume bandwidth and degrade network performance. CCN is a solution for dealing

with these incompatibilities and security concerns by shifting the routing behavior based on from

“where” to “what”.

A name, which is assigned to each chunk of data, plays a major role in CCN instead of the

IP address that is assigned to device interfaces. In CCN, it is not necessary to know where the

device we want to communicate with is located, and instead we identify the name of data that

we want. Names enable us to do this by providing each chunk of data with a unique, human-

readable, and hierarchical address. They allow those who use networks and develop network

applications to eliminate the complexity of identifying hosts and to directly specify the iden-

tifier of the content. For example, a picture of an apple produced by XYZ could be named

“/XYZ/pictures/apple.jpg.” The name could also contain the version and segmenta-

tion of data. For example “/XYZ/pictures/apple.jpg/v1/s2” could indicate the second

chunk of version 1 of the image.

10



2.1.1 Communication Model

CCN’s communication model is request-driven through the exchange of Interest packets and Data

packets (abbreviated to Interest and Data below). To begin, a data consumer requests content by

sending Interest,　 which contain the name of the content. In response to Interest,　 the content

provider sends Data, which contain the actual data. Finally, the consumer receives all the Data and

the request is satisfied.

The name written in an Interest may be just a prefix of the requested content.　 For example,

when a consumer requests a video named “/video/a.mpg”, the producer may send the Data

with the name “/video/a.mpg/v1/s1”, so that the name contains the version and segment

number of the data. This dynamic naming method is referred to as active naming in this thesis.

In addition, we must consider the case where a name and its prefix (e.g., “/video/a.mpg”

and “/video/a.mpg/v1/s1”) refer to different content. In this thesis, we call pairs with this

relationship as name siblings. Name siblings complicate the handling of name addresses in a

router, but there is no inherent reason to forbid use of name siblings by applications running on

CCN. It is not obvious that name siblings will be accepted for CCN communications, but we also

include name siblings in our discussion.

2.1.2 Router Behavior

Although a number of research projects approach ICN/CCN in a different way, we adopt the

design principles of Named Data Networking (NDN) [4] in this thesis. To implement forwarding

functions in a CCN that includes multicasting, caching, and a loop-free architecture, the CCN

router contains three data structures: forwarding information base (FIB), PIT, and content store

(CS). The FIB is a table used for determining the proper interface for forwarding Interest that

have arrived at the router. The PIT remembers the interfaces from which Interest have arrived so

that it can send back the matching Data that will be subsequently received by the router. Interest

that have duplicate names (i.e., that have already been recorded in the PIT) leave only the trace

of the route and forwarding is skipped so as to aggregate requests and realize multicasting and a

loop-free architecture. The CS serves as a cache for Data. Because identical Data are addressed

by identical names, cached Data can be reused independently of the requester and time.

11



2.2 Name Lookup Algorithm

An algorithm for lookup tables in a CCN router is not trivial, and to our best knowledge has never

been discussed. The tables contained by the router (i.e., FIB, PIT, and CS) are not simple hash

tables with uniquely keyed entries; a single retrieval key could match multiple entries in the table

because of prefix matching and active naming. We need to consider how to match entries in the

tables and select one of them so that packets are appropriately processed without conflict between

the matching policies and implementations. The Interest and Data must be looked up in the FIB,

PIT, and CS tables. There are five possible combinations because Data are not looked up in the

FIB table.

2.2.1 Matching and Selecting Algorithms

A matching algorithm is an algorithm to decide whether the search key (denoted by KS) matches

the key stored in the table entry (denoted by KE), and we must consider the case where a given key

matches the prefix of another key K (denoted by P (K)). The following four matching algorithms

are available:

• Exact Match (EM), which matches when KS=KE ,

• Search-key Prefix Match (SPM), which matches when P (KS)=KE ,

• Entry-key Prefix Match (EPM), which matches when KS= P (KE), and

• Both-keys Prefix Match (BPM), which matches when KS=KEand when one is identical to

the prefix of the other (not P (KS)= P (KE), i.e., both keys contain the same prefix).

The non-exact matching algorithms might retrieve multiple entries, therefore, algorithms for

choosing one of the retrieved entries should be described. Such algorithms are called selecting

algorithms. When the matching algorithm is SPM, selecting the longest entry is suitable; this

is just the longest-pattern-matching (LPM) algorithm used in conventional IP routers. Selections

from EPM and BPM are more complex. For example, when KS is “/video/A.mpg”, the KSwill

match both “/video/a.mpg/v1/s1” and “/video/a.mpg/v2/s4”. Since LPM cannot

deterministically select only one of the entries that are same length, other criteria for selecting

algorithms are needed. One strategy is to prioritize the time when the entries are registered or

12



the number of requests. We can also adopt a simpler strategy when matching from FIB: select all

matching entries. In that case, Interest packets are multicast from all ports corresponding to the

matched entries although excessive traffic could be generated.

2.2.2 Algorithms Suitable for Each Table

The combination of SPM and LPM is the most suitable for FIB, which accords with the strategy

for current IP routers. In fact, the other algorithms cannot aggregate entries.

When looking up Data in CS, EM should be used because the name assigned to the Data must

not be an abbreviated active name and must be a complete name that identifies specific content.

Additionally, the other algorithms do not support name siblings. The process to look up Data in

CS is essential for avoiding duplicate entries, but it is possible to skip this process when the Data

is so unpopular that PIT does not have any matching entries.

When looking up an Interest in CS, either EM or EPM should be used because it would be

undesirable for an Interest to match a Data or cache entry with a name shorter than the one in Inter-

est. Thus, although SPM and BPM, which allow KS to match a shorter KE in CS, are unsuitable,

EM and EPM cause no problems. We note that EPM requires that the priority rules select exactly

one entry when a single KSmatches multiple KE . If name siblings are allowed, EM must be used

in order to prevent a router from returning undesirable Data to Interest. Otherwise, EPM could

improve the cache hit rate by exploiting the advantage of active naming. Suppose there is K1
E =

“/video/a.mpg/v1/s1” in CS. When searching Interest named K2
S = “/video/a.mpg”,

K1
E can match the K2

S by using EPM.

For looking up Data in PIT, SPM should be chosen: Active naming and name siblings cannot

be supported by the other matching algorithms. For the selecting algorithm, we can select both the

entry with the longest key and all entries that match the search key. While using LPM is a risk-free

approach, it is more efficient to satisfy multiple Interests at once if name siblings are disallowed.

Suppose there are K1
E = “/video/a.mpg/v1/s1”, K2

E = “/video/a.mpg/v2/s6” and

K3
E = “/video/a.mpg” in PIT. When Data named KS= “/video/a.mpg/v1/s1” arrived

at the router, the Data can satisfy not only K1
E but also K3

E by selecting all matching entries.

Needless to say, because the Interest requesting content named “/video/a.mpg” must not be

satisfied with the content named “/video/a.mpg/v1/s1”, the all hit algorithm cannot work

when name siblings are allowed.

13



When looking up an Interest in PIT, both EM and BPM are more suitable matching algorithms

than the others. To explain the reason, consider two cases; (1) a case where PIT contains K1
E =

“/text/A.txt/v1/s1” and K2
E = “/text/A.txt/v2/s6” and Interest whose name is

K1
S = “/text/A.txt” is looked up, and (2) a case where PIT contains K3

E = “/text/A.txt”

and Interest whose name is K2
S = “/text/A.txt/v1/s1” is looked up.

First, an example of using EM is shown in Figure 1. In Both Case(1) and Case(2), Inter-

ests match none of entries and registered as a new entry. Thus EM cannot aggregate Interests

whose names are identical to the prefix of entries in PIT, but EM is the only solution that handles

name siblings. We must concern about the problem that Interest whose name is an abbreviated

active name but name sibling cannot be satisfied due to consecutive arrivals of Interests whose

names are complete. For instance, consider that PIT receives many Interests whose names contain

the information of version or segment number of the data, such as “/text/A.txt/v1/s1”,

“/text/A.txt/v1/s2”, · · · , and “/text/A.txt/v1/sN” in Case(2). Until all the se-

quential requests are satisfied, K3
E has been unsatisfied. In most cases, the request of K3

E may be

expired and retransmitted. To eliminate the expirations and retransmissions, FIFO (first in, first

out) may be necessary for looking up Data in PIT as the selecting algorithm.

In contrast, BPM makes full use of active naming as shown in Figure 2. Using BPM, Interests

with names shorter than KEare aggregated into the entries as in Case(1). Of course, BPM also

requires priority rules to select a single entry. In Case(2), the K3
E is shorter than the Interest’s

K2
S . K2

S cannot be aggregated to Ks
E ince the shorter key matches Data whose name is different

from K2
S (e.x., “/text/A.txt/v2/s6”) and the origin Interest will be unsatisfied. Therefore,

any matching entry with shorter key is re-registered as a new entry with the longer key assigned

to the Interest. It should be noted that this re-registering process takes advantage of active naming

but disrupts the name siblings by eliminating the Interests with shorter names.

Finally, SPM and EPM are available but they are unsuitable. Compared to BPM, these two

matching algorithms cannot take full advantage of active naming; SPM cannot aggregate entries

in Case(1) and EPM cannot aggregate entries in Case(2).

Table 1 summarizes the available algorithms for matching and selecting the entry. Although

all combinations support active naming, only combination (I) is able to cope with name siblings.

14



Interest: �

�

� /text/A.txt/v1/s1 (from Port #2)

PIT

/text/A.txt → #1

/text/A.txt/v1/s1 → #2

Interest: �

�

� /text/A.txt (from Port #3)

PIT

/text/A.txt/v1/s1 → #1

/text/A.txt/v2/s6 → #2

/text/A.txt → #3

add a new entry

add a new entry

mismatch

mismatch

mismatch

Figure 1: Example of Using EM (upper: Case(1), lower: Case(2))

Interest: �

�

� /text/A.txt/v1/s1 (from Port #2)

PIT

/text/A.txt → #1

/text/A.txt/v1/s1 → #1, #2

Interest: �

�

� /text/A.txt (from Port #3)

PIT

/text/A.txt/v1/s1 → #1, #3

/text/A.txt/v2/s6 → #2

integrate

remove an existing entry, 

add a new entry

& integrate them

match & hit

match (not hit)

match & hit

Figure 2: Example of Using BPM (upper: Case(1), lower: Case(2))

15



Table 1: Summary of Matching/Selecting Algorithms

FIB CS PIT

Data Interest Data Interest

(I) SPM/LPM EM/- EM/- SPM/LPM or others1 EM/-

(II) SPM/LPM EM/- EM/- SPM/- BPM/optimal

(III) SPM/LPM EM/- EPM/optimal SPM/LPM or others1 EM/-

(IV) SPM/LPM EM/- EPM/optimal SPM/- BPM/optimal

1 FIFO (first in, first out) or all hit are also available.

16



3 Architecture

Firstly, we describe design principles of our proposed router architecture. In comparison with a

fixed-length IP address, a variable-length name address imposes a very high load for lookup. To

handle the variable-length name address at line speed, we introduce CAM and a distributed-and-

load-balancing Bloom filter (DLB-BF) [18] into the prefix table; an associated element is an NLE.

NLE maps between a name address and entries in each of the three tables so that only one lookup

is required to retrieve the most specific entry from among the three tables without a false positive.

DLB-BF, which allows name lookups to be performed in parallel, reduces the workload on the

CAM. We also present ICE, which is a new mechanism for identifying content worth caching.

The most suitable matching and selecting algorithms for the lookup mechanism using the

CAM and Bloom Filter is combination (I) in Table 1. More specifically, Table 2 shows the algo-

rithms adopted in our implementation. If name siblings are disallowed (and therefore it is possible

to use SPM as the matching algorithm), the combination (I) makes the lookup mechanism simple

by choosing SPM for all matching algorithms except the lookup of Interests in PIT as shown in

Table 2. For this reason, we assume that there are not any name siblings. Additionally, Binary-

CAM (BCAM) can be used instead of Ternary-CAM (TCAM); BCAM is more reasonable than

TCAM in respect to cost and power.

Table 2: Name Lookup Algorithm Applied to Our Implementation

Packet Storage Matching Algorithm Selecting Algorithm

Interest

FIB SPM Longest Match

PIT EM -

CS EM (implemented as SPM) - (implemented as LPM)

Data
PIT SPM Longest Match

CS EM (implemented as SPM) - (implemented as LPM)

Figure 3 illustrates the basic architecture of the proposed CCN router. First, an input packet

is received by a Face element. After the packet is processed by the parser, its name and content

are sent to an NLE and an ICE, respectively. NLE performs a lookup on the name and retrieves

17



a pointer to a location in random access memory (RAM). ICE is used to avoid caching rarely

requested data by counting how many Interests sought the data. According to the results, an

appropriate process, such as forwarding or caching, is determined. Finally, if the packet is to be

forwarded, it is passed to an appropriate output Face.

NLE

ICE CS-RAM

PIT-RAM

FIB-RAM

namedata

Packet parser RAM controller

hit storage

hit storage

pointer

data

Face 1 Face 2 ・・・
Face 3 Face 

n

Figure 3: CCN Router Architecture

3.1 Name Lookup Entity

We propose NLE, which implements a fast lookup operation for a name address. Almost all

existing architectures that use a hash table sometimes yield a false positive, which results in a

failure to forward packets. Preventing false positives in a hash table incurs a long delay to check

that no component of the searched name is falsely matched. Our approach avoids this issue by

using CAM instead of a hash table. CAM can search its entire memory in a single lookup, but

the cost and power requirements have been assumed to be prohibitive. We therefore propose a

solution that splits the CAM into many small parts; this is expected to be less expensive than a

single large memory. In addition, DLB-BF can dramatically reduce the load on CAM without

sacrificing speed.

Because CAM stores fixed-length data words and name addresses are variable length, we must

18



decide what to do when a name address is longer than the data word size. We divide such a name

address into partial names and then simulate a hierarchical tree structure. We define three types of

node: short name (SN), partitioned name (PN), and partitioned prefix (PP). SN is used whenever

a name is short enough to be store in a single data word; PN and PP are used otherwise. In terms

of a tree structure, PN represents a leaf node and PP represents an internal node.

Figure 4 illustrates the definitions of fields of the node in the tree structure (i.e., the entry stored

in CAM). W [bit] is the bitlength of CAM entries, and L[bit] is the bitlength of CAM addresses.

“Address Flag” is set to ‘TRUE(T)’ in PN and PP, which use the “Address” field to store a link to

the parent node. If “Prefix Flag” is true, this entry is PP, which is not a terminal node.

W-1 [bit]

F

T Partial nameAddressF

T Partial nameAddressT

Address flag

Prefix flag

・・・ ・・・

NameShort name: 

Partitioned name: 

Partitioned prefix: 

L [bit] W-L-2 [bit]

Figure 4: Definition of CAM Entry

An example of several entries stored in CAM and RAM is shown in Figure 5. There are

three names in NLE: NA =“/aaa/.../bbb”, NB =“/aaa/.../ccc/.../ddd”, and

NC =“/aaa/.../ccc/.../eee/.../fff”. NA is short enough to store in CAM as SN,

while NB and NC are divided into two entries (NB
1 , NB

2 ) and three entries (NC
1 , NC

2 , NC
3 ), re-

spectively. These divided entries are same length: W − L − 2[bit] as shown in Figure 4. The

values of an entry in CAM correspond to the definition in Figure 4.

NA is stored in CAM and RAM as SN (a single entry), and so we need only the name ad-

dress to retrieve the data from RAM. The process to retrieve the data corresponding to NB ,

which is too long to pack into SN, is as follows: a) divide NB into NB
1 “/aaa/.../cc” and

NB
2 =“c/.../ddd”, where NB

1 and NB
2 = is used to search PP and PN, respectively, b) per-

form a lookup for NB
1 as PP with the Address field set to 0 because the tree structure starts at this

PP, c) create a search key as PN from the name NB
2 and the address of the parent node NB

1 , and

19



ADDR ENTRY

@1 0,  /aaa/…/bbb

@2 1, 1, ∅, /aaa/…/cc

@3 1, 0, @2, c/…/ddd

@4 1, 1, @2, c/…/e

@5 1, 0, @4, ee/…/fff

CAM

ADDR ENTRY

@1
����

�

@2 #2

@3 ����

�

@4 #1

@5
����

�

RAM

Figure 5: Example of CAM and RAM Entries in NLE

d) retrieve the data from RAM located at the address ‘@3’, which was specified by searching the

PN. Note that a lookup for a PN or PP entry requires the address of the parent PP. The lookup for

NC is performed in a similar way, although it requires one more PP lookup.

Since NB and NC share the prefix of name “/aaa/.../cc”, the two entries for NB
2 and

NC
2 , which are located at ‘@3’ and ‘@4’, respectively, assign the same value ‘@2’ to the PP. The

number of child nodes that have a references to this PP is held at the entry located at ‘@2’ in RAM;

we find the value ‘#2’ there. This value is incremented whenever a new child node is registered

and decremented whenever a child node is removed, allowing us to remove the PP entry when the

count becomes zero.

Note that it is rare to perform the multiple lookups for a long name like NB and NC , which

cause high latency. In accordance with the fact that 99% of domain names are no longer than 40

bytes [13], almost all of name addresses can be stored in SN by setting W = 320. This length of

an entry is supported in an existing CAM implementation.

3.2 Interest Count Entity

ICE is an entity used to avoid caching rarely requested data by counting Interest requests for the

data. In general, the popularity of Internet traffic approximately follows Zipf’s law. This means

that a small amount of popular content accounts for the majority of requests. To exploit this

characteristic, we propose ICE as a means of caching based on the number of requests for each

piece of content. ICE counts the requests for each name, and only those Data whose frequency

20



exceeds a certain threshold are cached. Thus, ICE prevents content that is requested once or

just a few times from occupying limited cache space. Algorithm 1 and 2 shows the pseudo code

description of this ICE processes.

Algorithm 1 Interest Process in ICE
1: procedure ITERESTPROCESSINICE(hitCS, name)

2: if hitCS = True then

3: return

4: end if

5: entry ← ICETable[H(name)]

6: c← entry.count

7: n← entry.name

8: if n = name & c > 0 then

9: entry.count++ ▷ The existing counter is incremented

10: else

11: entry.name← name ▷ A new entry is created (or overwritten)

12: entry.count← 1

13: end if

14: end procedure

21



Algorithm 2 Data Process in ICE
1: procedure DATAPROCESSINICE(hitCS, name, data)

2: if hitCS = True then

3: return

4: end if

5: entry ← ICETable[H(name)]

6: c← entry.count

7: n← entry.name

8: if c > THRESHOLD & n = name then

9: AddCS(name, data) ▷ The Data is cached

10: end if

11: end procedure

22



4 Hardware Design

4.1 Name Lookup Entity

We now describe a detailed implementation of NLE. Figure 6 shows the hardware design of NLE.

Roughly, NLE consists of four components: the unit to process partial names (upper left), the unit

to process partial prefixes (lower left), DLB-BF (lower right), and CAM (upper right).

[ Partial name buffer ]

<Partial name>  <Address>

1 /aaa/.../bb/c 1

2 ccc/.../ddd 3

3 /ee/.../ffff 4

・
・
・

・
・
・

・
・
・

M

[ Partial prefix buffer ]

<Partial prefix>

1 /www/.../xxx/yy/zzzz 35

2 /www/.../xxx/yy 30

3 /www/.../xxx 27

・
・
・

・
・
・

・
・
・

N /aaa 4

5

5

5

・
・
・

1

<
L

e
n

g
th

>

<
In

d
ex

>
<

In
d

e
x

>

<
In

d
e

x
>

C
A

M
 h

a
n

d
le

r

CAM 1

CAM 2

CAM 3

・
・
・

CAM D

prefix

[1..W]

P
rio

rity
 e

n
co

d
e

r (L
P

M
)

D
L

B
-B

F
 h

a
n

d
le

r

P
a

rtia
l p

re
fix

 p
a

rse
r

P
a

rtia
l n

a
m

e
 p

a
rse

r

DLB-BF

・
・
・

B
F

 h
it v

e
cto

r

RAM-pointers Memory

CS-RAM

length

name, len[1..l ]name, len[1..l ]

PIT-RAM

FIB-RAM

prefix

[1..W2]

・
・
・

・
・
・

・
・
・

prefix[1..W2],

addr[1..s]

prefix

[1..W1]

prefix[1..W1],

len[1..l ],

Index[1..l ]

#partial name[1..l ], lpm index[1..l ]

#partial prefix[1..l ]

・
・
・

hit

addr[1..s ]

prefix

[1..W1]

pointer[1..p ]

addr[1..s ]

prefix[1..W2],

addr[1..s]

hit

vector

[1..N]

name: /aaa/... /bb/cccc/.../ddd/ee/.../ffff/.../www/.../xxx/yy/zzz

name[1..W1]

Figure 6: Hardware Design of NLE

Name lookup is performed as follows. First, the input name is partitioned into fixed-length

partial names if necessary. A partial name is a W2-bits-wide segment of a name that is too long to

store in a single entry (as SN in Figure 4). Since looking up a child node requires the address of its

23



parent node, as discussed in 3.1, a buffer for a partial name contains not only its string but also an

address for the partial name. Secondly, a partial name and SN are further split into partial prefixes

delimited by the character ‘/’. A buffer for partial prefixes both stores the prefixes and remembers

the indexes of the partial names to which the partial prefixes correspond. Third, queries in DLB-

BF for the partial prefixes are executed in parallel; the CAMs then search the partial prefixes for

which a membership query to the DLB-BF yields true. Finally a pointer is obtained from the

resulting address and used to retrieve the data from RAM.

To reduce the cost and power requirements of the system, we split the monolithic CAM into

D smaller CAMs. In general, the price of large memory is higher than the price of the same

amount of memory in smaller pieces. The power required to search CAM is proportional to the

size of the CAM. Thus, many small CAMs will have lower power requirements than a single

large CAM. Additionally, the distributed CAMs make it easier to perform a lookup operations in

parallel, which improves throughput significantly.

W is the length of a CAM entry, and W1 and W2 are determined according to W : W1 is

the maximum length of “Name” defined in Figure 4, and W2 is the maximum length of “Partial

Name” defined in the same place. Two conflicting characteristics are desirable for W . It should

be large enough to avoid CAM lookups by PP and achieve a single CAM lookup; however, large

values of W cause wasted space from storing short variable-length names into fixed-length CAM

entries. We are going to investigate and optimize W in light of this tradeoff.

4.2 Interest Count Entity

The hardware design of ICE is illustrated in Figure 7. ICE is implemented as a simple hash table

with name addresses as key is a name address and the counts of Interest as values. Because hash

collisions may occur, ICE also holds the complete name address.

We now present the caching algorithm with ICE. When receiving an Interest, an entry con-

taining a count of requests for content with that name is retrieved by using the name of the input

Interest. If the count is zero or the name stored in the counter is different from the input name, the

existing entry is overwritten with the new name, and the count value is reset to one. Otherwise,

the count value is incremented. When a Data that has not yet been cached arrives at the router, the

data is cached in CS if the count value is larger than a certain threshold.

ICE makes it possible to cache only content for which caching will improve performance.

24



data

[ Interest counter ]

<Name>

1 /xxx/yyy/zzz 1

2 /abc/def/ghi 2

3 0

・
・
・

・
・
・

・
・
・

H(name) /aaa/ ... /bb/cccc 3

<
In

d
e

x>

<
C

o
u

n
te

r>

・
・
・

・
・
・

・
・
・

N /123/456/789 1

name:            

/aaa/... /bb/cccc

data

CS-RAM

hash

H
a

sh
 fu

n
ctio

n
 H
(n
a
m
e
)

hit CS

name, 

count

In
te

re
st co

u
n

t h
a

n
d

le
r

NLE

n
a

m
e

Figure 7: Hardware Design of ICE

Since most content is rarely requested, the limited resources of CS and CAM would be exhausted

by simple caching. In contrast, the method of caching content that has a number of requests more

than a certain threshold can be much more memory efficient. According to [19], ICE needs

approximately one tenth the capacity of a universal cache.

Additionally, we can dynamically adjust the threshold according to network traffic volume.

The number of requests for even unpopular content can be greater than a few if heavy traffic

is handled. Furthermore, network traffic can vary hourly and daily. For these reasons, a fixed

threshold is not ideal; however, a variable threshold can be used to maintain a desired cache hit

ratio by adjusting the threshold in response to volume or characteristics of network traffic. The

adjustment process is challenging because the first few times that content is requested, the returned

data will not be cached but only counted. A method to determine suitable thresholds is left to future

work.

25



4.3 Summary

Packet processes in our proposed CCN router processes is summarized in Figure 8. All packets

received by the router are transmitted, integrated, cached or satisfied with cached Data according

to the flow chart.

NLE consisting of DLB-BF and CAM implements lookup system based on LPM. The case

where Interest matches PIT, however, requires to check whether the match is EM since matching

and selecting algorithms follow the strategy illustrated in Table 2. Obviously, a simple implemen-

tation makes the check possible; we only have to know buffer indexes where the matching prefix

is stored. If the prefix’s index of both buffers is one, the matching partial prefix is essentially iden-

tical to its complete name and the match is identified with EM. Otherwise, the match is non-exact

match, therefore, the processes for partial prefixes are repeated.

When Data matches an entry in CS, the process does not stop but continues to run as shown

in Figure 8. Although the match appears to be proof that the Data is cached in CS and Interest

requesting the Data has been satisfied by the cache, active naming requires the further processes.

For example, if CS contains a cache of Data named “/video/a.mpg/v1/s1”, Interest named

“/video/a.mpg” mismatches the cache entry (because the Data’s name is not identical to any

prefixes of the Interest’s name), and the Interest is expected to be satisfied with the returned Data.

If the returned Data is named “/video/a.mpg/v1/s1”, which is identical to the name of the

cached content, the Data matches the cache entry. Without continuing the process in such a case,

the Interest named “/video/a.mpg” cannot be satisfied.

26



Begin packet process in CCN router

End

Divide name into 
partial names

Split partial name into partial 
prefixes, and query DLB -BF

Query CAM

Retrieve the entry of 
RAM-pointer memory

Are all 
partial prefixes

processed ?

No

No

Packet Type

Match PITMatch CS Match  CS

Interest

No Match FIB

Data

Exact
Match

Yes

Send cached 
Data packet

No

Yes

Add Face the 
received packet to the 

matching PIT entry

Send Interest 
packet, and create 

a new PIT entry

Yes

Send the Data packet , and 
remove the matching PIT entry

Match PIT

Count the Interest (in ICE) Cache the Data packet 
according to ICE

Yes

Are all 
partial names
processed ?

Yes
(not hit)

Figure 8: Packet Processing in Our Proposed CCN Router

27



5 Evaluation

In this section, we analyze the performance of our CAM-based CCN router and discuss its feasi-

bility and challenges to widespread adoption. We calculate the required memory size, cost of the

memory, and throughput on the assumption of a table with 10 million entries, average packet size

of 256 bytes, Interest packets of 40 bytes, and Data packets of 1500 bytes; these values are the

same as in [16, 15]. In addition, we assume that 99% of existing domain names are no longer than

40 bytes and have no more than six components [13].

Existing lookup mechanisms that weed out a false positive achieve searches per second, through-

put, and size of memory shown in Table 3. MATA-NW seems to be fast enough but its throughput

is achieved by employing a pipeline using GPU. Although a pipelined process outputs the packets

at high-speed, both the pipeline process and GPU make it hard to reduce the latency of each packet

process.

Table 3: Performance of Existing Lookup Mechanisms

lookup mechanism searches per second throughput memory size

(3M/10M)[MSPS] (3M/10M)[Gbps] (3M/10M)[MB]

Character Trie[12] 3.505/3.172 7.010/6.344 282.21/1,026.34

NCE [13] 5.489/4.017 10.979/8.034 192.58/718.44

ENPT [14] -/20.67 -/41.34 -/116.02

NameFilter [12] 36.976/37.003 73.952/74.006 64.73/234.27

ATA(200µs latency) [15] -/6.56 -/13.12 192.97/682.55

MATA(100µs latency) [15] -/29.75 -/60.50 149.92/490.28

MATA-NW(100µs latency) [15] -/63.52 -/127.04 149.92/490.28

5.1 Memory Size and Cost

Scalability is limited by CAM, and so the necessary amount of RAM is determined according to

the number of CAM entries. We therefore discuss how much memory is required to implement

NLE. NLE consists of two buffers, DLB-BF and CAM.

The size of partial name buffer SN [bit] and the size of partial prefix buffer SP [bit] can be

28



calculated as follows:

SN = M(W2 + s) (1)

SP = N(W1 + 2l) (2)

where M is the number of entries of partial name buffer, N is the number of entries of partial

prefix buffer, W1 and W2 are the bit-lengths of buffer as shown in Figure 6, s is the bit-length

of < Address > field, and l is the bit-length of < Length > and Index fields in Figure 6.

According to the size of domain names mentioned above, we define W = 40[Bytes], as the size

of a CAM entry and the upper size limit of an entry in the buffers shown in Figure 4. The buffer

for partial names, whose capacity should be large enough to store complete name addresses, needs

more than 37 entries to store a name whose length is the maximum transmission unit; therefore,

we set M = 32 (cf. Figure 6). Since it is desirable to store all components into the buffer

for partial prefixes, we set N = 64 according to the fact that the longest URL has roughly 70

components [16]. To achieve M and N , the partial name buffer needs 10 Kbits and the partial

prefix buffer needs 22 Kbits; these buffer sizes are reasonable, although we must still investigate

how parallel processing scales in terms of wiring cost.

The size of DLB-BF depends on the probability of a false positive. If m is the number of

bits in the array, k is the number of hash functions, and n is the number of elements inserted into

DLB-BF, the false positive probability α can be calculated as follows [18]:

α =
(
1−

(
1− 1

m

)kn)k ≃ (1− e
kn
m

)k
. (3)

Since k = m
n log 2 minimizes the probability α, the equation (3) results in the following expres-

sion:

α =

(
1

2

)m
n

log 2

(4)

which can be simplified to:

m

n
= −

logα

(log(2))2
. (5)

By substituting α = 10−x into the equation (5), we finally obtain the following equation:

m

n
=

log 10

(log(2))2
x ≃ 4.7925× x (6)

29



This means that extending the length of each entry by about 4.8 bits decreases the probability of a

false positive 10-fold. When α = 10−6 and n = 10M , the amount of memory required for DLB-

BF is 288 MB, and this grows to 4.6 GB upon assigning 16 bits to each entry for implementing

counting filters, which allow deletion of entries. Implementing DLB-BF on SRAM, whose cost is

approximately 1 USD/ MB [20], the 4.6 GB for the DLB-BF will cost 4600 USD.

The memory required for CAM is the most serious problem because of the limitation of the

size. When W = 40[Bytes], CAM requires 3.2 Gbits to hold 10 million entries. Although a single

CAM with capacity on the order of gigabits does not exist, it is easier and more efficient to arrange

many small CAMs. Since 1 Mbit of CAM currently costs about 1 USD, we can estimate the cost

of the CAM to be 3200 USD. As a result, the total memory cost can be estimated at 7800 USD.

5.2 Throughput

The throughput of CCN router strongly depends on the access time of NLE. The lookup operation

in NLE requires accesses to two buffers, DLB-BF implemented with SRAM and CAM. Table 4

describes the minimum/average/maximum number of read/write access to the memories. In Table

4, α is the false positive probability of DLB-BF, m̄ is the average number of partial names, mmax

is the maximum number of partial names obtained from a name, and S(m) and T (m) is defined

as follows:

S(m) =
m∑
i=1

ni, T (m) =

⌈S(m)

N

⌉
where ni is the number of partial prefixes obtained from i-th partial name and N is the number of

entries in partial prefix buffer. Table 4 covers three operations: lookup process, add process when

the adding entry exists in CAM, and add process when the adding entry is absent from CAM.

Although NLE is designed to handle names too long to store into a single entry, in practice,

almost all names can be stored as a single entry and processed in a single buffer access (i.e.,

m̄ ≤ 1) by setting W = 40. In addition, we can reduce the number of write access to partial prefix

buffer from S(m) to m by parallelizing the process to write partial prefixes. As a consequence,

30



the access times required for lookup and add operations are approximated as follows:

Tlookup = (1.0 + 0.45)× (2m̄+ 2T (m̄) + S(m̄))

+(1.0 + 4.0)× (m̄+ αS(m̄))

= 1.45× (2 + 2 + 1) + 5.0× (1 + 0)

= 12.25[ns]

Tadd = (1.0 + 0.45)× (2m̄+ 1)

+(1.0 + 4.0)× (m̄+ 1)

= 1.45 ∗ (2 + 1) + 5.0 ∗ (1 + 1)

= 14.35[ns]

if SRAM access time is 0.45 ns, CAM access time is 4.0 ns, and buffer access time is 1.0 ns [16].

This access time results in throughput for lookup (and deletion) of 81.6 million searches per second

(MSPS) and throughput for the add operation of 69.7 MSPS. With an average packet size of 256

bytes, these throughputs are roughly equivalent to 163 Gbps and 139 Gbps, respectively. Thus, we

can realize CCN router processing at line speed. These throughputs could be greatly improved by

designing mechanisms for concurrent lookups.

31



Table 4: The Number of Read/Write Accesses to The Memories on Name Lookup Process

PNB1 PPB2 DLB-BF CAM

R(read)/W(write) R W R W R W R W

Lookup

min 0 0 1 1 1 0 1 0

ave m̄ m̄ T (m̄) S(m̄) T (m̄) 0 m̄+ αS(m̄) 0

max mmax mmax T (mmax) S(mmax) T (mmax) 0 mmax + S(mmax) 0

Add
min 0 0 0 0 0 0 1 0

(in CAM)
ave m̄ m̄ 0 0 0 0 m̄ 0

max mmax mmax 0 0 0 0 mmax 0

Add min 0 0 0 0 0 1 1 1

(not in ave m̄ m̄ 0 0 0 1 m̄ 1

CAM) max mmax mmax 0 0 0 1 mmax 1

1 Partial Name Buffer
2 Partial Prefix Buffer

32



6 Conclusion and Future Work

This thesis contributes evidence for the feasibility of CCN by designing concrete CCN router

hardware and evaluating its performance. Needless to say, it is a requirement for implementation

of CCN that CCN routers be feasible. In addition, accurate estimates of actual performance are

essential to all sorts of network-level simulations. We addressed these problems by proposing

CAM-based CCN router architecture. We proposed NLE, which consists of many small CAMs

and DLB-BF and allows reasonable costs, and ICE, which assists in adaptive caching; thus, we

have shown the entire design of a CCN router. We also gave a basic theoretical analysis to evaluate

the throughput and cost of the CCN router.

A significant challenge for our architecture is to scale the memory capacity and the number of

entries. There are no existing TCAMs with more than 100 Mbits of memory capacity. In addition,

the power cost of a TCAM can be approximated as 1 kW/Mbit; the power requirements of our

router, which needs at least 3.2 Gbits of CAM, can rise to more than 3 kW; however, even a 1

kW power requirement is beyond the capacity of any existing implementation by several orders of

magnitude. Furthermore, our evaluated situation, which assumed 10 million entries, will not be

practical in the future. FIB is required to handle websites, the number of which is approaching 1

billion according to a survey in [21]. The line-speed (40 Gbps) traffic, whose average round-trip

delay time (RTT) is RTT = 100ms, imposes 2 million entries per port on PIT. Even if the effect

of ICE is maximized, the number of chunks stored in CS for 10 million entries is equivalent to the

amount of files accessed per day in terms of city-scale traffic [19].

By disregarding lookup time, we can easily scale our router by using a hash table instead of

CAM; however, these limitations can be relaxed without sacrificing speed because we can use not

only 16 T / cell TCAM but also 10 T / cell BCAM, and we expect exponential growth in feasible

memory. An architecture that combines CAM and a high-speed hash table to balance scalability

and packet processing time will be studied in future work.

We also plan to evaluate the router performance based on a hardware implementation of the

router. The calculations in this thesis show that it is essential to evaluate the practical throughput

from the likely cost of hardware implementation. Before physical implementation, an advanced

mechanism to parse packets and control buffers in parallel must be developed. Additionally, FIB,

PIT, and CS requires the policy to manage their entries and its implementation such as timeout,

33



retransmission, and cache replacement algorithms. Ultimately, this will result in practical network-

level evaluation and a realistic analysis of network bottlenecks.

34



Acknowledgment

First, I would like to express my sincere gratitude to my supervisor, Professor Masayuki Murata

of Osaka University, for his continuous support and expensive advice throughout my studies, and

providing me this precious study opportunity in his laboratory.

I especially would like to express my deepest appreciation to Professor Shingo Ata of Osaka

City University, for his elaborated guidance and invaluable firsthand advice. All works of this

thesis would not been possible without his support.

There was suggestive advices of Professor Kazunari Inoue of Nara National College of Tech-

nology, so I am able to complete the discussion of hardware in this thesis.

Furthermore, I must acknowledge Associate Professor Shin’ichi Arakawa, Assistant Professor

Yuichi Ohsita of Osaka University for their valuable comments and suggestions on this study.

I heartily thank Ms. Kazama, secretary’s doing a lot of help, and the encouragement at times.

I show will of thanks to here.

35



References

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard,

“Networking named content,” in Proceedings of the ACM CoNEXT 2009, December 2009,

pp. 1–12.

[2] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on caching perfor-

mance in a content-centric network,” in Proceedings of the IEEE Conference on Computer

Communications 2012, March 2012, pp. 310–315.

[3] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design and implications,” in

Proceedings of the ACM Re-Architecting the Internet Workshop, November 2010, pp. 1–6.

[4] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,

G. Tsudik, K. Claffy, D. Krioukov, D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang,

P. Crowley, and E. Yeh, “Named data networking (NDN) project,” pp. 1–24, October 2010.

[Online]. Available: http://named-data.net/techreport/TR001ndn-proj.pdf

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of

information-centric networking,” IEEE Communications Magazine, vol. 50, no. 7, pp. 26–

36, July 2012.

[6] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D. Thornton, and

R. L. Braynard, “VoCCN: Voice-over Content-Centric Networks,” in Proceedings of the 2009

workshop on Re-architecting the internet, December 2009, pp. 1–6.

[7] “CCNx,” PARC, 2013. [Online]. Available: http://www.ccnx.org/

[8] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing information networking

further: From PSIRP to PURSUIT,” in Proceedings of the 7th International ICST Conference

on Broadband Communications,Networks, and Systems, October 2010, pp. 1–13.

[9] T. Levä, J. Gonçalves, R. J. Ferreira et al., “Description of project

wide scenarios and use cases,” pp. 1–99, February 2011. [Online]. Avail-

able: http://www.sail-project.eu/wp-content/uploads/2011/02/SAIL D21 Project wide

Scenarios and Use cases Public Final.pdf

36



[10] M. Varvello, D. Perino, and J. Esteban, “Caesar: a content router for high speed forwarding,”

in Proceedings of the 2nd edition of the ICN workshop on Information-centric networking,

August 2012, pp. 73–78.

[11] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “DiPIT: A distributed bloom-filter

based PIT table for CCN nodes,” in Proceedings of the 21st ICCCN 2012, July 2012, pp.

1–7.

[12] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and Q. Dong, “NameFilter:

Achieving fast name lookup with low memory cost via applying two-stage bloom filters,” in

Proceedings of the IEEE INFOCOM 2013, April 2013, pp. 95–99.

[13] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen, “Scalable name lookup in

NDN using effective name component encoding,” in Proceedings of the IEEE 32nd Interna-

tional Conference on Distributed Computing Systems 2012, June 2012, pp. 688–697.

[14] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in Named Data Network-

ing,” in Proceedings of the ACM/IEEE 8th Symposium on Architectures for Networking and

Communications Systems 2012, October 2012, pp. 211–222.

[15] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai, X. Tian, Z. Xu,

H. Wu, and D. Yang, “Wire speed name lookup: a GPU-based approach,” in Proceedings

of the 10th USENIX Conference on Networked Systems Design and Implementation, April

2013, pp. 199–212.

[16] D. Perino and M. Varvello, “A reality check for Content Centric Networking,” in Proceedings

of the ACM SIGCOMM workshop on Information-centric networking, August 2011, pp. 44–

49.

[17] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and

M. Horowitz, “Forwarding metamorphosis: fast programmable match-action processing in

hardware for SDN,” in Proceedings of the ACM SIGCOMM 2013, August 2013, pp. 99–110.

[18] H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, “IPv6 lookups using distributed and

load balanced bloom filters for 100Gbps core router line cards,” in Proceedings of the IEEE

INFOCOM 2009, April 2009, pp. 2518–2526.

37



[19] F. Guillemin, B. Kauffmann, S. Moteau, and A. Simonian, “Experimental analysis of caching

efficiency for YouTube traffic in an ISP network,” in Proceedings of the 25th International

Teletraffic Congress, September 2013, pp. 1–9.

[20] S. Iyer, R. Kompella, and N. McKeown, “Designing packet buffers for router linecards,”

IEEE/ACM Transactions on Networking, vol. 16, no. 3, pp. 705–717, June 2008.

[21] “netcraft,” December 2013. [Online]. Available: http://www.netcraft.com/

38


