特別研究報告

題目

エンド端末間パスにおける

複数区間の利用可能帯域計測手法の実験評価

指導教員 松岡 茂登 教授

> 報告者 森本 顕

平成 26 年 2 月 14 日

大阪大学 基礎工学部 情報科学科

平成 25 年度 特別研究報告

エンド端末間パスにおける複数区間の利用可能帯域計測手法の実験評価

森本 顕

内容梗概

エンド端末間パスの利用可能帯域に関する情報は,アプリケーション層やトランスポート層に おける様々なネットワーク制御を行う際の重要な指標となる.例えば,ネットワーク輻輳の検知 や制御,オーバレイネットワークにおける経路制御やトポロジ制御などが挙げられる.過去の研 究において提案されている,利用可能帯域の計測を行うツールは,パス上に存在するボトルネッ ク箇所の利用可能帯域の値のみを計測するため,ボトルネックが存在するパス上の位置に関する 情報や,パス上の様々な区間の利用可能帯域に関する情報は得られない.しかし,例えば無線ネッ トワークと有線ネットワークなどのように,ネットワーク特性が異なる区間がエンド端末間パス に混在している場合に,それぞれのネットワークの利用可能帯域の計測が可能となれば,無線ネッ トワークなどパケット誤りの多い環境に応じて通信レートを低く設定するなどの,ネットワーク 環境に応じた制御を行うことができる.

我々の研究グループにおいては、エンド端末間パスの複数区間の利用可能帯域を計測する手法 を提案している.提案手法は、エンド端末間パスのルータにおいてパケットの送受信時刻をタイ ムスタンプとしてパケットに記録できることを前提とし、送信側端末から送られたパケットを受 信した受信側端末が、パケットのタイムスタンプ情報を基に、パス上の各区間の利用可能帯域を 推定する.提案手法の有効性は、コンピュータシミュレーションによってのみ検証が行われてい る.そのため、提案手法が実ネットワーク上において有効であることを示すためには、実機を用 いた実験によって提案方式の性能評価を行うことが重要である.

本報告では、エンド端末間パスにおける複数区間の利用可能帯域計測手法の実験評価を行い、手 法の実ネットワークにおける有効性を検証した.具体的には、パケットにタイムスタンプを記録す ることができるルータを用いて複数区間を持つ実験ネットワークを構築し、各区間に異なるレー トの背景トラヒックを発生させ、提案手法に基いて各区間の利用可能帯域の計測を行った.実験 評価の結果、送信側端末に近いネットワーク区間より、受信側端末に近いネットワーク区間の利 用可能帯域が2倍程度大きい場合においても、それぞれの区間の利用可能帯域を3.6%以内の誤差 で計測することが可能であることを確認した.また、計測する利用可能帯域の真の値が物理帯域 に対して小さい場合に、計測誤差が40%程度にまで悪化するが、計測誤差の悪化の原因となる計 測結果を取り除くことで、その誤差を9.5%まで改善できることを示した.

主な用語

利用可能帯域、物理帯域、複数区間、タイムスタンプ、実験評価

目 次

1	はじ	めに	5
2	複数	区間の利用可能帯域計測手法	7
	2.1	既存の利用可能帯域計測手法の原理	7
	2.2	複数区間の利用可能帯域計測の実現可能性	8
	2.3	複数区間の利用可能帯域計測手法	10
3	実験	評価	13
	3.1	実験環境	13
	3.2	実験結果	13
		3.2.1 基本性能の評価	13
		3.2.2 計測パケットの送信レートの影響	17
		3.2.3 計測サンプルの選別	17
		3.2.4 物理帯域の影響	21
		3.2.5 3つの区間を持つネットワークにおける評価	21
4	まと	めと今後の課題	26
謝	锌		27
参考文献			

図目次

1	ネットワークモデル	9
2	[1] で用いられているネットワークトポロジ..............	9
3	流入レートと流出レートの観測結果 ([1])	11
4	提案手法における利用可能帯域の計測原理	14
5	実験ネットワーク	14
6	物理帯域が 10 Mbps の時の計測結果	15
7	A(1)=8 Mbps, A(2)=2 Mbpsの場合の流入レートと流出レートの関係	16
8	A(1)=2 Mbps, A(2)=8 Mbpsの場合の流入レートと流出レートの関係	18
9	送信レートの間隔が 0.1 Mbps である場合の計測結果	19
10	送信レートの間隔が 0.1 Mbps の場合の流入レートと流出レートの関係	20
11	計測サンプルの選別を行った場合の計測結果...............	22
12	物理帯域が 100 Mbps の時の計測結果	23
13	実験ネットワーク 2	24
14	3 つの区間を持つネットワークにおける計測結果	25

1 はじめに

スマートフォンやタブレット端末,さらに,PSP [2] などのゲーム機を代表とする安価なイン ターネット接続端末が増加したことにより,インターネットトラヒックは急激に増加しており [3], その傾向は今後も続くと考えられる.また,無線ネットワーク技術や光ネットワーク技術などに 基づくアクセスネットワークやバックボーンネットワークの登場に伴い,インターネットは高速 化,大規模化,かつ複雑化している.その結果,インターネットを介して行われる通信の品質は, 空間的かつ時間的に大きなばらつきを持つようになっている.このような環境で用いられるネッ トワークアプリケーションの品質を向上させるためには,ネットワークの帯域に関する情報が重 要である.特に,エンド端末間パスの利用可能帯域 [4,5] は,トランスポート層における輻輳制御 機構 [6] や転送速度調整 [7],オーバレイネットワーク [8,9] におけるトポロジ制御 [10,11] などを 行うための重要な指標となる.しかし,現在のインターネットのプロトコル構造においては,エ ンド端末上のアプリケーションはネットワーク計測によって利用可能帯域に関する情報を得るこ とが求められる.

エンド端末間パスの利用可能帯域は、利用可能帯域が最も小さい区間であるボトルネック区間 における利用可能帯域により決定される.ボトルネックとなっている区間の利用可能帯域を把握 できれば、例えば、通信レートを調節することにより遅延時間の増加やパケットの損失を防ぐこ とができる [12]. しかし、ボトルネック区間がエンド端末間通信性能に与える影響そのものを回)避することはできない.また、データ転送中の経路以外の経路を利用するための情報が得られな。 いため、輻輳時に利用可能帯域が大きい、あるいは遅延時間の小さいような他の経路を効率的に 選択することができない.また,無線ネットワークと有線ネットワークなどパケット誤り率や伝 播遅延時間などのネットワーク特性が異なる区間がエンド端末間パスに混在している場合、無線 ネットワークなどパケット誤り率が多い環境では、有線ネットワークの通信レートを考慮せずに ビットレートを選択することにより、実効帯域が大きく低下する場合がある.それに対し、パケッ ト誤り率が大きくならないようにビットレートの低い通信方式を選択するなどの対応が求められ るが、ボトルネックリンクの帯域値のみが得られる状況においては、そのような制御を行うこと は困難である. さらに, オーバレイネットワークのような仮想的なネットワークにおいて, 利用 可能帯域を評価基準として輻輳が発生している箇所を特定し、その結果に応じて新規オーバレイ ノードの設置場所を決定するといった場合において、ボトルネック区間の特定ができなければ効 率的なオーバレイネットワークを構築することはできない.

上述の問題は、エンド端末間のボトルネック区間における利用可能帯域に関する情報のみでは、 ネットワーク性能を評価するための指標としては不十分であることを意味する.これまで利用可 能帯域の計測を行うツールは数多く提案されてきたが [4, 13-29],それらのツールはパス上に存在 するボトルネック箇所の利用可能帯域の値のみを計測するだけで,ボトルネック区間がそのもの を特定するものではない.また,パスの区間それぞれの利用可能帯域を計測することはできない. しかし,ネットワークパス上の複数区間の利用可能帯域を個別に計測することができれば,例え ば,オーバレイネットワークを構築してビデオや音声会議を行うようなアプリケーションにおい て,エンド端末がボトルネック区間を特定し,必要に応じてオーバレイノードの追加,削除を行 うことによって,アプリケーション品質を向上することができると考えられる.

そこで,我々の研究グループでは,エンド端末間パスの複数区間の利用可能帯域を計測する手 法を提案した [1].提案手法は,パス上のルータにおいて通過するパケットの通過時刻をタイムス タンプとしてパケットに書き込むことができる環境を前提とし,受信側端末で受信されたパケッ トのタイムスタンプ情報を基に,パス上の各区間の利用可能帯域を推定する.提案手法の有効性 は,コンピュータシミュレーションによってのみ検証が行われている.そのため,提案手法が実 ネットワーク上において有効であることを示すためには,実機を用いた実験によって提案方式の 性能評価を行うことが重要である.

そこで本報告では、エンド端末間パスにおける複数区間の利用可能帯域計測手法の実験評価を 行い、手法の実ネットワークにおける有効性を検証する.具体的には、パケットにタイムスタン プを記録することができるルータを用いて複数区間を持つ実験ネットワークを構築し、各区間に 異なるレートの背景トラヒックを発生させ、提案手法に基いて各区間の利用可能帯域の計測を行 う.さらに、得られた実験結果から、計測精度を向上させるための方法について検討し、その有 効性を検証する.

本報告の構成は次のとおりである.2章では我々の研究グループで提案している,エンド端末間 パスの複数区間の利用可能帯域を計測する手法について説明する.3章では提案手法の実験内容と その結果を示し,提案手法の実ネットワークへの適用可能性について議論する.最後に4章で本 報告のまとめを行い,今後の課題について述べる.

6

2 複数区間の利用可能帯域計測手法

2.1 既存の利用可能帯域計測手法の原理

エンド端末間パスの利用可能帯域を計測するツールとして近年提案されているものには, Pathload [13], pathChirp [18] などがある.これら既存のツールの帯域計測手法の概要を以下に示す.

- 1. 送信側端末から受信側端末へ計測パケットを指定した送信レートで送信する.
- 2. 受信側端末において, 計測パケットの受信間隔を観測する.
- 3. 計測パケットの送信レートと受信レート,あるいは,送信間隔と受信間隔の大小関係を比較 することにより,送信レートが利用可能帯域より大きいかどうかを判定する.
- 4. 様々な送信レートで1から3を行うことにより、利用可能帯域を推定する.

ここで,送信側端末が受信側端末に向けて K 個の計測パケットを送信するものとし,そのうち k 番目 (1 $\leq k \leq K$)の計測パケットの送信側端末における送信時刻を t_k ,受信側端末における受 信時刻を t'_k とする.この時,送信側端末と受信側端末の時刻同期が行われている環境では,片道 遅延時間は $D_k = t'_k - t_k$ となる.さらに,k 番目と (k + 1) 番目の計測パケットの送信側端末に おける送信時刻の差を Δt_k ,受信側端末における受信時刻の差を $\Delta t'_k$ とすると,それら2つのパ ケットが経験するエンド端末間の片道遅延時間の差 ΔD_k は以下のように導出される.

$$\Delta D_k = D_{k+1} - D_k = (t'_{k+1} - t_{k+1}) - (t'_k - t_k) = (t'_{k+1} - t'_k) - (t_{k+1} - t_k) = \Delta t'_k - \Delta t_k$$
(1)

式(1)より,ある2つの計測パケットの片道遅延時間の差は,送信側端末における送信間隔と,受 信側端末における受信間隔との差に等しいことが分かる.また,式(1)は,送信側端末と受信側端 末の時刻同期を必要とせずに算出することができる.

計測パケットの送信レートがエンド端末間パスの利用可能帯域より大きい場合には,ボトルネッ ク箇所において計測パケットの間に背景トラヒックが割り込むことにより,計測パケットの受信 間隔は送信間隔より大きくなる.従って,式(1)は正の値となる.一方,計測パケットの送信レー トが利用可能帯域より小さい場合には,計測パケットの受信間隔は送信間隔とほぼ等しくなると 考えられるため,式(1)は0に近い値となる.このことから,計測パケットを様々なレートで送信 し,その送信間隔と受信間隔を観測することにより,計測パケットの送信レートと利用可能帯域 の大小関係を推定することができる.既存の計測手法の多くは,これを利用して,エンド端末間 パスの利用可能帯域を推定している.この時,利用可能帯域を推定するためには,計測パケット の送信レートが利用可能帯域より大きい場合が必要となる.

2.2 複数区間の利用可能帯域計測の実現可能性

本節では、2.1 節で述べた利用可能帯域の計測原理に基づき、エンド間パス上の複数区間の利用 可能帯域を計測する手法に関する議論を行う.

図1に、本節における議論で用いるネットワークモデルを示す.ネットワークはルータによって N個のネットワーク区間に分けらる.送信側端末から*j*番目のネットワーク区間を区間*j*と呼び, 区間*j*における物理帯域を*C*(*j*),利用可能帯域を*A*(*j*)とする.送信側端末から送信された計測パ ケットが、ネットワーク区間に到着する際のレートを流入レートと呼び、ネットワーク区間から 送出される際のレートを流出レートと呼ぶ.

あるネットワーク区間への計測パケットの流入レートは、それより手前のネットワーク区間の 物理帯域や利用可能帯域の影響を受ける. 2.1 節で述べたように、利用可能帯域を計測するために は、利用可能帯域よりも大きなレートを持つ計測パケットを送信する必要がある. したがって、あ るネットワーク区間への流入レートが、その区間の利用可能帯域より常に小さい場合は、利用可 能帯域の正確な計測はできない. ここで、ある区間からの計測パケットの流出レートが、その区 間の利用可能帯域より大きくなることは無いと仮定する. このとき、区間 *j* の利用可能帯域 *A*(*j*) を計測するための条件は、それより手前の区間の利用可能帯域が、区間 *j* の利用可能帯域より大 きいことが求められる. このことは次式で表現される.

$$\min_{1 \le k \le j-1} A(k) > A(j) (1 \le j \le N)$$

$$\tag{2}$$

しかし,式(2)が満たされない場合であっても,区間 *j*の利用可能帯域を計測できる場合がある. それは,計測パケットを高いレートで送信することによって可能となる.なぜなら,ある区間に, その利用可能帯域よりも大きなレートでパケットが流入すると,そのパケットは,利用可能帯域 よりも大きなレートで流出することがあるためである[30].

文献 [1] では、上述の原理に基づいた、複数区間の利用可能帯域の計測可能性をシミュレーショ ンによって検証している.以下ではその概要を示す.図2に、[1]における検証で用いられたネッ トワークモデルを示す.このネットワークにおいて、背景トラヒック送信端末1から背景トラヒッ ク受信側端末1へ送られる背景トラヒックを50 Mbps,背景トラヒック送信端末2から背景トラ ヒック受信側端末2へ送られる背景トラヒックを40 Mbpsとし、送信側端末から受信側端末に向 けて様々なレートで計測パケットを送信する.そして、2段目のリンクにおける、計測パケットの 流入レートと流出レートを観測する.ここで、計測パケットの流入レートと流出レートは、連続 した K₀ 個の計測パケットの平均レートとする.ここで、背景トラヒックのレートから算出され

図 1: ネットワークモデル

図 2: [1] で用いられているネットワークトポロジ

る,1段目のリンクと2段目のリンクの利用可能帯域は,それぞれ 50 Mbps 及び 60 Mbps となる ため,式(2)を満たしていない.図3に,K₀を様々な値に設定した場合における,2段目のリン クに対する流入レートと流出レートの観測結果を示す.この図から,2段目のリンクへの流入レー トが,利用可能帯域である 60 Mbpsよりも大きくなる場合があることがわかる.このことは,あ る区間の利用可能帯域がそれより手前の区間の利用可能帯域よりも大きい場合であっても,利用 可能帯域を計測できる可能性があることを示唆している.

2.3 複数区間の利用可能帯域計測手法

ここでは、[1] で提案されている,エンド端末間の複数区間の利用可能帯域を計測する手法 (以 降では単に「提案手法」と呼ぶ)を概説する.提案手法は,エンド端末間パスに存在するルータが, 通過するパケットの受信及び送信時刻を,タイムスタンプとしてパケットに書き込むことができ ることを前提としている.また,エンド端末間パスは,そのようなルータによって区間に分けられ るものとし,区間を分けるルータを境界ルータと呼ぶ.提案手法においては,送信側端末は,計 測パケットを様々なレートで受信側端末に送信する.送受信端末と境界ルータは,計測パケットが 通過する時刻をタイムスタンプとしてパケットに書き込む.受信側端末にすべての計測パケット が到着すると,受信側端末は計測パケットに書き込まれたタイムスタンプを基に,各ネットワー ク区間に対する流入レートと流出レートを算出する.最後に,流入レートと流出レートの結果か ら,各ネットワーク区間の利用可能帯域を推定する.

提案手法は、ネットワーク区間への流入レートと流出レートの関係を基に、利用可能帯域を推 定する.以下では、図4を用いて、その手法を説明する.図4における点は、計測パケットのタ イムスタンプから算出された、あるネットワーク区間への流入レートと流出レートの結果を模式 的に表している.以降では、この点をそれぞれ計測サンプルと呼ぶ.流入レートがネットワーク 区間の利用可能帯域よりも小さい場合には、流入レートと流出レートは等しくなると考えられる. 図4においては、領域(i)がその場合に相当する.一方、流入レートが利用可能帯域よりも大きい 場合には、その区間に流れている背景トラヒックのレートと、計測パケットの流入レートの和が、 物理帯域よりも大きいため、計測パケットの流出レートは、流入レートよりも小さくなると考え られる.図4においては、領域(ii)がその場合に相当する.提案方式においては、領域(ii)にお いて、流入レートが、物理帯域に対する利用可能帯域の割合で減少し、流出レートになると仮定 する.これは、背景トラヒックと計測パケットによるトラヒックが、それぞれのレートに比例し て物理帯域を分け合うことを意味している.

ここで、計測パケットの流入レートをx bps,その時の流出レートをy(x) bps,物理帯域をC Mbps,利用可能帯域をA Mbpsとすると、上述の議論により、流入レートと流出レートの関係は

10

図 3: 流入レートと流出レートの観測結果 ([1])

次式のようにまとめられる.

$$y(x) = \begin{cases} x & x \le A \\ \frac{Cx}{x + (C - A)} & x > A \end{cases}$$
(3)

提案手法は、図4中の点に相当する、流入レートと流出レートの関係から得られた計測サンプル 群に対して、式(3)を用いたフィッティングを行い、利用可能帯域Aを推定する.以下に、ある ネットワーク区間の利用可能帯域を計測するための提案手法の具体的なアルゴリズムを示す.

- 送信側端末は K 個の計測パケット (P₁, P₂, ..., P_K)を一定のレートで受信側端末に向かって 送信する.
- 受信側端末は、受信した K 個の計測パケットから、K₀ 個の連続したパケット (P_i,..., P_{i+K0-1}) を抽出し、タイムスタンプの情報を基に、ネットワーク区間への流入レート x_i と流出レート y_i を算出する.その結果、(K - K₀ + 1) 個の計測サンプル (x₁, y₁), (x₂, y₂),..., (x_{K-K0+1}, y_{K-K0+1})を得る.
- 3. 得られた計測サンプルを,その流入レートの値によってグループ分けを行う.利用可能帯域の 推定粒度を R_0 とすると,グループ数は $[C(j)/R_0]$ とする.グループ l $(1 \le l \le \lceil C(j)/R_0 \rceil)$ に含まれる計測サンプルは以下のように定義される.

$$G_l = \{(x, y) | (l-1)R_0 \le x < lR_0\}$$
(4)

- 4. 各グループにおける流入レートの平均と流出レートの平均を算出し、その組 (\hat{x}_l, \hat{y}_l) $(1 \le l \le [C(j)/R_0])$ を平均化サンプルと呼ぶ.
- 5. 平均化サンプルに対して,式(3)によるフィッティングを行い,利用可能帯域 Ā(j)を推定 する. 具体的には,次式によって得られる.

$$\bar{A}(j) = \arg\min_{A(j)} e(A(j))$$
(5)

$$e(A(j)) = \sum_{\hat{x}_i \le A(j)} (\hat{y}_i - \hat{x}_i)^2 + \sum_{\hat{x}_i > A(j)} \left(\hat{y}_i - \frac{C(j) \cdot \hat{x}_i}{\hat{x}_i + (C(j) - A(j))} \right)^2$$
(6)

3 実験評価

3.1 実験環境

図5に,実験に用いるネットワークを示す.実験ネットワーク中の端末及びルータは全て PC を用いて構築した.計測パケット送信用端末,及び計測パケット受信用端末の OS には Ubuntu Desktop 12.04 32bit を用い,ルータの OS には Ubuntu Server 11.10 32bit を用いた.背景トラ ヒック送受信用端末の OS には, Ubuntu Server 11.10 32bit を用いた. PC 端末をルータとして機 能させるために,Linux カーネルが持つパケット転送機能を用いた.ネットワークリンクの物理帯 域を変更する際は,端末及びルータのインタフェースに対して ethtool コマンド [31] を用いるとと もに,イーサネットスイッチの設定を変更した.

計測パケットのパケット長は 1470 byte とした.背景トラヒックは, iperf コマンド [32] を用い て発生させた.具体的には,背景トラヒック送信端末1からはルータ1に,背景トラヒック送信端 末2からはルータ2に,それぞれ背景トラヒックを発生させた.以降,計測パケット送信端末と ルータ1の間の区間を区間1,ルータ1とルータ2の間の区間を区間2と呼ぶ.また,区間*i*の利 用可能帯域の真の値は,区間*i*のネットワークの物理帯域から,背景トラヒックのレートを引いた ものに等しいとし,それを *A*(*i*) Mbps と表記する.背景トラヒックの送信レートを変化させるこ とによって,各区間の利用可能帯域を変化させ,提案手法の利用可能帯域の計測精度を評価する.

3.2 実験結果

3.2.1 基本性能の評価

図 6 に、物理帯域を 10 Mbps, R_0 を 0.1 Mbps とし、A(1) を様々な値に変化させた場合における、区間 2 の利用可能帯域の計測結果を示している。グラフにおいては、 K_0 の値を 2, 4, 8, 16, 32, 64 と変化させた場合の、計測結果の平均値と 95%信頼区間をエラーバーを用いてプロットしている。計測パケット送信端末からは、1 Mbps から 10 Mbps まで、1.0 Mbps 間隔で送信レートを設定し、各送信レートにおいて 1 秒間計測パケットを送信した。

図から, A(2) が A(1) より小さい場合には, K₀ が 2 である場合を除いて, 概ね高い精度で計測 できていることがわかる.しかし, 特に A(2) が小さい場合には, 計測される利用可能帯域が真の 値よりも若干大きくなっている.この原因を説明するために, 図 7 に, A(1)=8 Mbps, A(2)=2 Mbps とした場合における, 区間 2 に対する計測サンプルの流入レートと流出レートの関係をを示 す.この図より, A(2) が小さい場合に計測精度が低下する原因として, 計測パケットの送信レー ト間隔が物理帯域に対して大きく, 様々な流入レートに対するサンプルが得られないため, 提案 方式における式 (3) を用いたフィッティングの精度が低下していることが挙げられる.また, 流出

図 4: 提案手法における利用可能帯域の計測原理

図 5: 実験ネットワーク

図 6: 物理帯域が 10 Mbps の時の計測結果

図 7: A(1)=8 Mbps, A(2)=2 Mbpsの場合の流入レートと流出レートの関係

レートが流入レートに比べて非常に大きくなっているサンプルが多数存在することが挙げられる. これらに対する改善方法の検討は次節以降で行う.

図6より,一方,A(1)よりもA(2)が大きく,特にA(2)が10 Mbpsに近づいた場合に,計測 精度が低下していることがわかる.この原因を説明するために,図8に,A(1)=2 Mbps,A(2)=8 Mbpsである場合の,区間2における流入レートと流出レートの関係を示す.図より,A(2)が8 Mbpsであるにもかかわらず,8 Mbpsを超える流入レートの計測サンプルが存在しないことが分 かる.このような場合には,提案手法は,計測結果として計測サンプルが持つ流入レートの最大 値に近い値を与えるため,計測精度が低下する.しかし,従来の計測手法においては,ボトルネッ ク区間の利用可能帯域の値のみを計測するため,A(1)=2 Mbps,A(2)=8 Mbpsの場合では,仮 に区間1の計測精度が非常に高いとすると,区間2の利用可能帯域を2 Mbpsと推定する.しか し,提案方式を用いることで,区間1の利用可能帯域が2 Mbpsであり,かつ,区間2の利用可能帯域を 正確に推定できない場合においても,提案方式は既存方式よりも有用な情報が得られると言える.

3.2.2 計測パケットの送信レートの影響

3.2.1 節において,特に A(2) が小さい場合において計測精度が低下する原因として,計測パケットの送信レート間隔が大きいため,様々な流入レートを持つサンプルが得られないことを挙げた. そこで,物理帯域が 10 Mbps の場合において,計測パケットの送信間隔を 1 Mbps から 0.1 Mbps に変更した場合の計測結果を図 9 に示す.図6と図 9 を比較することにより,計測精度が大きく向上していることがわかる.また,図 10 に,A(1)=8 Mbps,A(2)=2 Mbps の場合における,区間 2 に対する流入レートと流出レートの関係を示す.図より,計測パケットの送信間隔が 1 Mbps である図 7 の場合に比べて,より様々な流入レートのサンプルが得られていることがわかる.これにより,式(3)を用いたフィッティングの精度が向上し,計測精度の改善につながっていると言える.しかし,計測パケットの送信間隔を小さくすることによって,計測パケットの送信間隔を 調整することによって計測精度を向上させる手法を検討することは今後の課題としたい.

3.2.3 計測サンプルの選別

式 (3) 及び図 4 で示した提案手法の計測原理では,流出レートが流入レートよりも大きくなる ことは想定していない.しかし,図 7 および図 10 から,実験結果においては,流入レートに比べ て流出レートが非常に大きなサンプルが多数得られていることがわかる.これは,流入レートと 背景トラヒックの総和が物理帯域よりも大きい場合に,実験ネットワークおけるイーサネットス イッチにおいてネットワーク輻輳が発生し,出力ポートにおいてパケットのキューイングが発生

図 8: A(1)=2 Mbps, A(2)=8 Mbps の場合の流入レートと流出レートの関係

図 9: 送信レートの間隔が 0.1 Mbps である場合の計測結果

図 10: 送信レートの間隔が 0.1 Mbps の場合の流入レートと流出レートの関係

するため,計測パケットがスイッチから創出される際の間隔が,スイッチに到着した時の間隔よ りも短くなることが原因として挙げられる.提案手法においては,この現象が発生することを想 定していないため,この現象によって得られた計測サンプルを含めてフィッティングを行うと,計 測精度が大きく低下する.

そのため、計測サンプルを選別し、輻輳によるキューイングの影響を受けた計測サンプルを、式 (3)を用いた利用可能帯域の推定に用いないようにすることによって、計測精度の向上を図る.具 体的には、流出レートが流入レートよりも大きい計測サンプルを除外する.図11に、流出レート が流入レートよりも10%以上大きい計測サンプルを除外した場合の、区間2の利用可能帯域の推 定結果を示している.図より、図6や図9の場合に比べて、計測時精度が向上していることがわ かる.

3.2.4 物理帯域の影響

図 12 に、物理帯域を 100 Mbps, R_0 を 10 Mbps とし、計測パケットの送信レートの間隔を 10 Mbps とした場合の、区間 2 における計測結果を示す.背景トラヒック送信端末からは、10 Mbps から 80 Mbps まで、10 Mbps 間隔で背景トラヒックを送信した.計測パケット送信端末からは、10 Mbps から 100 Mbps まで、10.0 Mbps 間隔で送信レートを設定し、各送信レートにおいて 1 秒間計測パケットを送信した.図 6 と図 12 の比較から、計測精度は物理帯域が 10 Mbps の場合と ほぼ同等であることがわかる.このことから、提案方式においては、物理帯域の値は計測精度に は影響を与えないと言える.

3.2.5 3つの区間を持つネットワークにおける評価

最後に、パス上に3つの区間を持つネットワークにおける提案手法の性能評価結果を示す.実験 においては図13に示すネットワークを用いる.これまでに示した実験における背景トラヒックに 加えて、背景トラヒック送信端末3から受信端末に背景トラヒックを発生させた.計測パケット 送信端末3と受信端末の間の区間を区間3と呼ぶ.物理帯域を10 Mbpsとし、送信レートの間隔 は0.1 Mbpsとした.また、利用可能帯域推定の際には、3.2.3節で説明した計測サンプルの選別 を行っている.図14(a)は、区間1、区間2、区間3の利用可能帯域をそれぞれ3 Mbps、7 Mbps、 3 Mbpsとした場合の計測結果であり、図14(b)は、それぞれ7 Mbps、3 Mbps、7 Mbpsとした 場合の計測結果である.図より、K₀を適切に設定することによって、3つの区間における利用可 能帯域を高い精度で計測できることが分かる.これらの結果から、提案手法を用いることによっ て、パス上のネットワーク区間の利用可能帯域をそれぞれ推定し、ボトルネック区間の位置を特 定することができることが分かった.

図 11: 計測サンプルの選別を行った場合の計測結果

図 12: 物理帯域が 100 Mbps の時の計測結果

図 13: 実験ネットワーク 2

(a) A(1)=3 Mbps, A(2)=7 Mbps, A(3)=3 Mbps の場合の 計測結果

(b) A(1)=7 Mbps, A(2)=3 Mbps, A(3)=7 Mbps の場合の 計測結果

図 14:3つの区間を持つネットワークにおける計測結果

4 まとめと今後の課題

本報告では,我々の研究グループにおいて提案している,エンド端末間パスの複数区間の利用 可能帯域を個別にかつ同時に計測する手法の,実ネットワークにおける有効性を実験評価を通じ て検証した.送信側端末に近いネットワーク区間の利用可能帯域よりも,受信側端末に近いネッ トワーク区間の利用可能帯域が大きい場合に,後者の利用可能帯域を計測することは,従来の計 測手法では原理的に不可能であるが,提案手法を用いることで,両区間の利用可能帯域を高い精 度で計測できることを,実験ネットワーク環境において確認した.また,計測精度が低下する原 因を特定し,精度低下を防ぐための方策を検討し,その有効性を確認した.

今後の課題として,計測精度を損なわずに,計測に用いるパケット数を削減することが上げら れる.また,より実際のネットワークに近い環境での性能評価も重要であると考えられる.

謝辞

本研究を進めるにあたり、多くの方々のお世話になりました.

本報告の指導教員である松岡茂登教授には,この研究を行う機会を与えて頂き,研究の進め方 について多大なる御指導を頂きました.また,村田正幸教授,長谷川剛准教授,谷口義明助教に は,評価の方法や執筆の方法について終始懇切なる御指導を頂きました.本報告がこのような形 で完成することが出来たのは,先生方のおかげであり,この場を借りて厚く御礼申し上げます.

参考文献

- [1] K. Koitani, "An Available Bandwidth Measurement Method for Arbitrary Parts of Endto-End Path," Master's thesis, Osaka University, February 2013.
- [2] SONY, "PSP ® 「プレーステーションポータブル」| プレーステーションオフィシャルサイ
 ト." available at http://www.jp.playstation.com/psp/.
- [3] R. H. Zakon, "Hobbes' Internet Timeline 11." available at http://www.zakon.org/ robert/internet/timeline/.
- [4] M. Jain and C. Dovrolis, "Pathload: A Measurement Tool for End-to-End Available Bandwidth," in *Proceedings of PAM 2002*, March 2002.
- [5] T. Oetiker, "Tobi Oetiker's MRTG The Multi Router Traffic Grapher." available at http://oss.oetiker.ch/mrtg/.
- [6] G. Hasegawa and M. Murata, "TCP Symbiosis: Congestion Control Mechanisms of TCP Based on Lotka-Volterra Competition Model," in *Proceedings of Workshop on interdisci*plinary systems approach in performance evaluation and design of computer and communications systems (Inter-Perf 2006), vol. 11, October 2006.
- [7] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla, "Adaptive Bandwidth Share Estimation in TCP Westwood," in *Proceedings of Globecom 2002*, November 2002.
- [8] E. K. Lua, J. Crowcroft, M. Pias, and R. Sharma, "A Survey and Comparison of Peerto-Peer Overlay Network Schemes," Communications Surveys and Tutorials, vol. 7, no. 2, pp. 72 – 93, July – September 2005.
- [9] J. Ding, I. Balasingham, and P. Bouvry, "Management of Overlay Networks: A Survey," in *Proceedings of UBICOMM 2009*, pp. 249 – 255, October 2009.
- [10] A. Ghodsi, L. O. Alima, and S. Haridi, "Low-Bandwidth Topology Maintenance for Robustness in Structured Overlay Networks," in *Proceedings of HICSS 2005*, p. 302a, January 2005.
- [11] Y. Zhu, C. Dovrolis, and M. Ammar, "Dynamic Overlay Routing Based on Available Bandwidth Estimation: A Simulation Study," Computer Networks: The International Journal of

Computer and Telecommunications Networking - Overlay distribution structures and their applications, vol. 50, no. 6, pp. 742 – 762, April 2006.

- [12] R. Wang, G. Pau, K. Ymada, M. Sanadidi, and M.Gerla, "TCP Startup Performance in Large Bandwidth Networks," in *Proceedings of INFOCOM 2004*, vol. 2, pp. 796 – 805, March 2004.
- [13] M. Jain and C. Dovrolis, "End-to-End Available Bandwidth: Measurement Methodology, Dynamics, and Relation with TCP Throughput," IEEE/ACM Transactions Networking, vol. 11, no. 4, pp. 537 – 549, August 2003.
- [14] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks, and R. Baraniuk, "Multifractal Cross-Traffic Estimation," in *Proceedings of ITC-SS 13*, September 2000.
- [15] L. T. M. Cao, Inline Network Measurement : TCP Built-in Techniques for Inferring Endto-End Bandwidth. PhD thesis, Osaka University, January 2007.
- [16] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy, "Bandwidth Estimation: Metrics, Measurement Techniques, and Tools," IEEE Network, vol. 17, no. 6, pp. 27 – 35, November – December 2003.
- [17] R. L. Carter and M. E. Crovella, "Server Selection Using Dynamic Path Characterization in Wide-Area Networks," in *Proceedings of INFOCOM* '97, p. 1014, April 1997.
- [18] V. J. Ribeiro, R. H. Reidi, R. G. Baraniuk, J. Navratil, and L. Cortrell, "pathChirp: Efficient Available Bandwidth Estimation for Network Paths," in *Proceedings of PAM 2003*, April 2003.
- [19] L. T. M. Cao, H. Go, and M. Masayuki, "ICIM: An Inline Network Measurement Mechanism for Highspeed Networks," in *Proceedings of the E2EMON 2006*, pp. 66 – 73, April 2006.
- [20] N. Hu and P. Steenkiste, "Evaluation and Characterization of Available Bandwidth Probing Techniques," IEEE Journal on Selected Areas in Communications, vol. 21, no. 6, pp. 879 – 894, August 2003.
- [21] J. Navratil and R. L. Cottrell, "ABwE: A Practical Approach to Available Bandwidth Estimation," in *Proceedings of PAM 2003*, pp. 1 – 5, April 2003.
- [22] E. Bergfeldta, S. Ekelinb, and J. M. Karlssona, "Real-time Available-Bandwidth Estimation using Filtering and Change Detection," Computer Networks, vol. 53, no. 15, pp. 2617 – 2645, October 2009.

- [23] M. Jain and C. Dovrolis, "End-to-End Estimation of the Available Bandwidth Variation Range," in *Proceedings of SIGMETRICS 2005*, pp. 265 – 276, June 2005.
- [24] L. Lao, C. Dovrolis, and M. Y. Sanadidi, "The Probe Gap Model can Underestimate the Available Bandwidth of Multihop Paths," ACM SIGCOMM Computer Communication Review, vol. 36, no. 5, pp. 29 – 34, October 2006.
- [25] X. Hei, B. Bensaou, and D. H. K. Tsang, "Model-based End-to-End Available Bandwidth Interference using Queueing Analysis," Computer Networks, vol. 50, no. 12, pp. 1916 – 1937, August 2006.
- [26] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M. Fomenkov, and K. claffy, "Comparison of Public End-to-End Bandwidth Estimation Tools on High-Speed Links," in *Proceedings of PAM 2005*, pp. 306 – 320, March 2005.
- [27] C. Tang and P. K. McKinley, "On the Cost-Quality Tradeoff in Topology-Aware Overlay Path Probing," in *Proceedings of ICNP 2003*, pp. 268 – 279, November 2003.
- [28] S. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J. E. Mangs, B. Melander, and M. Bjorkman, "Real-Time Measurement of End-to-End Available Bandwidth using Kalman Filtering," in *Proceedings of IEEE/IFIP NOMS 2006*, pp. 73 – 84, April 2006.
- [29] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, "Locating Internet Bottlenecks: Algorithms, Measurements, and Implications," in *Proceedings of ACM SIGCOMM 2004*, pp. 41 – 54, September 2004.
- [30] C. Dovrolis, P. Ramanathan, and D. Moore, "What Do Packet Dispersion Techniques Measure?," in *Proceedings of INFOCOM 2001*, vol. 2, pp. 905 – 914, April 2001.
- [31] "ethtool Utility for Controlling Network Drivers and Hardware." available at https: //www.kernel.org/pub/software/network/ethtool/.
- [32] "Iperf The TCP/UDP Bandwidth Measurement Tool." available at http://iperf.fr/.