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Abstract—To tackle problems emerging with rapid growth
of information networks in scale and complexity, bio-inspired
self-organization is considered one of promising design princi-
ples of a new generation network, which is scalable, robust,
adaptive, and sustainable. However, self-organizing systems
would fall into a local optimum or converge slowly under
some environmental conditions. Therefore, it may take a long
time for self-organizing systems to adapt to environmental
changes. In order to adapt to dynamically changing conditions
of information networks, each component needs to predict
the future state of its neighbors from their past behaviors
and to adapt its movement to conform to the predicted
states. There are several investigations into self-organization
with prediction in the field of biology, but its application
to information network systems and technologies needs more
discussion. In this paper, we take AntNet, an ant-based routing
protocol, as an example and consider a mechanism to accelerate
path convergence with prediction. The proposed mechanism is
compared with AntNet from viewpoints of the recovery time,
path length, and control overhead. Simulation results show
that our predictive mechanism can accelerate path convergence
after environmental changes.
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I. I NTRODUCTION

Due to rapid growth of information networks in scale
and complexity, conventional information network systems
and technologies, which are based on central control or
distributed control with global information, are to face
limitations. An information network system adopting con-
ventional control technologies suffers from the considerable
overhead in managing up-to-date information to grasp dy-
namically changing conditions as the scale and mobility
increase. Considering the problems that would emerge in
future networking, there have been research activities such
as GENI [1] and NSF FIA [2] in the USA, FP7 [3] in
Europe, and the AKARI Project [4] in Japan to establish a
novel network architecture and relevant technologies. Taking
into account requirements for new generation networks,
i.e., scalability, adaptability, robustness, and sustainability
higher than ever before, the paradigm shift is needed to
organize and control the whole network system in a fully
distributed and self-organizing manner. Moreover, in order

to realize information network systems and technologies,
which can adapt to dynamically changing conditions in
a timely manner, it is necessary that systems should be
controlled considering the future state of systems, which is
predicted by observing behaviors of systems.

Self-organization is a natural phenomenon of distributed
systems, where components behave individually and au-
tonomously. In a self-organizing system, they behave in
accordance with simple rules and information locally avail-
able to a component. Through direct or indirect interactions
among components, a global behavior or pattern emerges
on a macroscopic level without central control. In a self-
organizing system, the cost of information management
can be considerably reduced since none needs up-to-date
information of the entire system or many other compo-
nents. Moreover, local failures and small environmental
changes are handled locally and immediately by neighbor
components without involving the entire system. Therefore,
self-organizing system can recover from failures and adapt
environmental changes automatically. In particular, biology
is mines of self-organization models that can be applied
to information networking such as routing, synchronization,
and task assignment since biological systems are inherently
self-organizing [5].

However, it is pointed out that self-organizing control
has some disadvantages [6]. First, in a large-scale system,
it may take a long time for a global pattern to emerge
because it appears as a consequence of interaction between
autonomous components. Second, self-organization, which
uses only local information, would fall into a local optimum
while a conventional system using global information can
reach an optimal solution in most cases. Furthermore, a self-
organizing system is not controllable in general, whereas
unnecessity of control is one of the significant aspects
of self-organization. These disadvantages lead to the slow
adaptation to environmental changes in a self-organizing
system. Ant Colony Optimization (ACO), which is a heuris-
tic in the traveling salesman problem, is a mathematical
model of foraging behavior of ants [7]. Because of the
similarity, it has been adopted as a routing mechanism by
many researchers [8], [9], [10]. Previous research shows



that AntNet is superior to conventional mechanisms in
robustness against failure, control overhead, and commu-
nication performance [11]. However, the time required for
path establishment to converge depends on the length of
the path, i.e., the distance between a source node and a
destination node [12]. Moreover, a considerable amount of
control messages generated in path establishment depletes
network bandwidth and hinders data message transmission.

In [13], a predictive mechanism was proposed for faster
consensus in flocking birds. In self-organized flocking with
a predictive mechanism, each component predicts the fu-
ture state of its neighbors from their past behaviors and
adapts its movement to conform to the predicted states.
When applied to self-organized behavior of flocking birds,
a predictive mechanism is considered to contribute to faster
self-adaptation to environmental changes. There are several
investigations into self-organization with prediction in the
field of biology [14], [15], but its application to information
network systems and technologies needs more discussion.
In this paper, we adapt a predictive mechanism to ant-
based routing since ant-based routing is a typical self-
organizing system and its property and performance have
been researched well.

In this paper, we take AntNet [16], which is an ant-
based routing, as an example of self-organization based
control and propose a predictive mechanism for AntNet. In
an ant-based routing mechanism, a shorter path collects more
pheromones than longer paths. Then the preferentially accu-
mulated pheromones attract more ants that further deposit
pheromones on the path. Such positive feedback eventually
leads to all ants’ following a single path. Therefore, a
increase rate of pheromone values implicitly indicates the
goodness of a path. In our mechanism, each node predicts
a path that will obtain a large amount of pheromones from
historical information about pheromone accumulation. Then,
it boosts pheromone accumulation on the predicted path for
faster convergence. We show that prediction helps adaptation
to environmental changes through simulation experiments.

The reminder of this paper is organized as follows. First,
we describe AntNet in Section II. Then we propose and
explain a predictive mechanism for AntNet in Section III
and give simulation results and discussion of our proposal
in Section IV. Finally, in Section V, we provide conclusion
and future work.

II. A NTNET

We use AntNet as a basis of our investigation of self-
organization with prediction. In this section, we give a
summary of a mechanism of AntNet.

A. Overview

AntNet [16] is an adaptive best-effort routing algorithm
in packet-switched wired networks based on the principles
of ACO. AntNet introduces two types of control messages

called ants, i.e.,forward antsandbackward ants. A source
node proactively launches mobile agents called forward ants
at regular intervals. A forward ant stochastically selects
a neighbor node to visit in accordance with the amount
of pheromones, which are laid by ants. On a way to a
destination node, a forward ant records its path and the time
of arrival at each node in order to evaluate the quality of the
travelled path.

When a forward ant arrives at the destination node, it
changes to a backward ant. A backward ant returns to the
source node on the disjoint reverse path of the forward
ant, updating pheromone values along the way. When the
path has better quality, i.e., smaller delay, a backward ant
increases a pheromone value for the neighbor node it came
more.

Each data packet is forwarded to a neighbor node as
a next hop node according to the pheromone values that
backward ants have updated. Since a neighbor node with a
larger pheromone value is more likely to be selected, a data
packet reaches a destination node following a shorter path.

B. Self-Organization based Path Establishment and Main-
tenance

In AntNet, each node has a pheromone tableT k as routing
information.T k = {T k

d } whereT k
d is a list of pheromone

valuesτknd ∈ [0, 1] for all neighbor noden ∈ Nk regarding
destination noded, i.e.,T k

d = {τknd}. Nk is a set of neighbor
nodes of nodek. Source nodes establishes and maintains a
path to destination noded by sending forward ants at regular
intervals. A forward ant stochastically selects a next hop
node to visit. The probabilitypnd that neighbor noden ∈ Nk

is selected as a next hop node of nodek for destination
noded is given as follows.

If there is no pheromone information for destination
noded at nodek, a next hop node is randomly chosen.

pnd =


1, if |Nk| = 1

1
|Nk|−1 , if |Nk| > 1 ∧ n ̸= vi−1

0, otherwise
(1)

Otherwise, selection is performed based on the pheromone
valueτnd.

pnd =


1, if |Nk| = 1

1
|Nk|−1 , if |Nk| > 1 ∧ ∀n ∈ Vs→k ∧ n ̸= vi−1

τk
nd+αln

1+α(|Nk|−1) , if |Nk| > 1 ∧ ∃n /∈ Vs→k

0, otherwise
(2)

whereVs→k = {s, v1, v2, · · · , vi−1} is a list of nodes that
the forward ant has visited before arriving at nodek at thei-
th step andvi−1 is an identifier of the(i−1)-th node on the
path.ln is a variable indicating the degree of congestion for
neighbor noden at nodek, which is given by1− qn∑

j∈Nk
qj

and qn is the number of messages waiting in a sending
buffer for neighbor noden. α ∈ [0, 1] is a coefficient. A



larger α allows forward ants to select a next hop node in
accordance with local traffic condition. As a consequence,
path convergence becomes hard to accomplish. On the
contrary, withα close to zero, a path traversing congested
links would be established. A forward ant whose travelled
hop count reaches the predetermined TTL is discarded at a
node.

A forward ant changes to a backward ant when it reaches
the destination noded and returns to the source nodes
following the disjoint path that the forward ant traversed
while updating pheromone values at visited nodes. The
pheromone valueτknd for neighbor noden ∈ Nk at nodek
is updated by (3).

τknd ←
{

τknd + r(1− τknd), if n = f
τknd − rτknd, otherwise

(3)

wheref corresponds to the previous node that the backward
ant visited just before arriving at nodek, i.e., the first node
of the path from the node to the destination node.r reflects
the goodness of the path, on the transmission delay from
nodek to the destination noded. The smaller the delay is, the
largerr is. Consequently, the shortest path among paths that
forward ants found has the largest amount of pheromones
and attracts most of forward ants.

The parameterr, which determines the increasing amount
of pheromones, is evaluated from the trip timeTk→d and
the local statistical modelMk = {Mk

d}, whereMk
d =

{W d
k , µ

k
d, σ

k
d}.

r = c1

(
W d

k

Tk→d

)
+ c2

(
Isup − Iinf

(Isup − Iinf ) + (Tk→d − Iinf )

)
(4)

whereTk→d is the ant’s trip time from nodek to destination
noded. W d

k is the best traveling time of ants from nodek
to destination noded over the last observation window of
sizew, and (µk

d, σk
d ) are the average and dispersion of the

traveling time of ants over the last observation window.
Isup and Iinf are estimates of the limit of an approximate
confidence interval forµ, which are given by (5) and (6).

Iinf = W d
k (5)

Isup = µk
d + z(σk

d/
√
w), with z = 1/

√
1− γ (6)

wherec1, c2, andγ are coefficients, and(c1, c2, γ) is set to
(0.7, 0.3, 1.7) in [16].

C. Transmission of Data Messages

A data message is forwarded to a next hop node based on
pheromone values, where the selection probabilityRk

nd that
neighbor noden is chosen as a next hop node for destination
node d is given as (τk

nd)
ϵ∑

j∈Nk
(τk

jd
)ϵ

(ϵ ≥ 0). Therefore, data

messages follow the shortest path established by forward
and backward ants.

III. PREDICTIVE MECHANISM FORANTNET

In this section, we propose a predictive mechanism
for AntNet. We consider prediction only from pheromone
changes and pheromone control with updating it indepen-
dently of internal control in AntNet.

A. Overview

It is difficult for components to adapt faster to dynamically
changing conditions of networks in a self-organizing system
because each component uses only local current information.
Therefore, we take AntNet as example of self-organization
based control and consider a predictive mechanism in which
components observe their past behaviors, predict the future
state of the system, and then control their behaviors in
accordance with the predicted future state.

In our proposal, we introducepredictive antsin addition
to two types of control messages, i.e., forward ants and
backward ants, andincrease rates of pheromone valuesare
adopted as an indicator for predictive control. Each node
launches predictive ants at regular intervals. A predictive
ant that arrives at a neighbor node remembers increase
rates of pheromones in the neighbor node and returns to
its originating node. On its return, the predictive ant boosts
pheromone accumulation for the neighbor node for faster
path convergence if its increase rates are high.

Each node has a pheromone tableT k as routing infor-
mation. T k = {T k

d } where T k
d is a list of pheromone

valuesτknd ∈ [0, 1] for all neighbor noden ∈ Nk regarding
destination noded, i.e.,T k

d = {τknd}. Nk is a set of neighbor
nodes of nodek. At the beginning,τknd is initialized to 1

|Nk| .
In our proposal, forward ants and backward ants behave
similar to AntNet. That is, a forward ant stochastically se-
lects a next hop node to visit in accordance with pheromone
values by (1) and (2), and the pheromone value is updated
by backward ants by (3). The pheromone value is used for
next-hop selection by ants and data messages.

B. Increase Rates of Pheromone Values

In our proposal, each node also has a increase rate tableEk
for prediction.Ek = {Ekd } where Ekd is a list of increase
rates of the pheromone valueseknd ∈ [0, 1] for all neighbor
noden ∈ Nk regarding destination noded. At the beginning,
eknd is initialized to zero.

Nodek that receives a backward ant from nodef ∈ Nk

updates the increase rateeknd ∈ [0, 1] of all its neighbor
nodesn ∈ Nk regarding destination noded by (7).

eknd ←
{

(1− β)eknd + β, if n = f
(1− β)eknd, otherwise

(7)

whereβ ∈ [0, 1] is a parameter that determines the weight
of individual increment of pheromones.



C. Behavior of Predictive Ants

In our proposal, each nodek predicts better paths that will
obtain a large amount of pheromones from sending predic-
tive ants to its all neighbor node at regular intervals∆tp.
A predictive ant that arrives at neighbor nodef ∈ Nk

remembers nodef ’s increase rate table, i.e.,Ef , and returns
to its originating nodek while updating pheromone values at
nodek. The pheromone valueτknd for neighbor noden ∈ Nk

at nodek is updated by (8) if the max value in the increase
rate table of nodef regarding destination noded, i.e.,
max efn′d (n′ ∈ Nf ), exceeds 0.5.

τknd →
{

τknd + p(1− τknd), if n = f
τknd + pτknd, otherwise

(8)

wherep is a parameter that determines the increasing amount
of pheromones. Even if the max value ofefn′d exceeds 0.5,
the pheromone values are not updated whenEfd has not been
updated since nodef received a predictive ant from nodek
at the last time.

Each node starts to send predictive ants when it receives
a backward ant, and it stops sending predictive ants when it
does not receive backward ants for a fixed period of time.

D. Transmission of Data Messages

A data message selects a next hop node based on
pheromone values in the same way as AntNet, where the
selection probabilityRk

nd that neighbor noden is chosen as a

next hop node for destination noded is given as (τk
nd)

ϵ∑
j∈Nk

(τk
jd

)ϵ

(ϵ ≥ 0). Therefore, data messages follow the shortest path
established by forward and backward ants.

IV. PERFORMANCEEVALUATION

In order to evaluate adaptability to environmental changes
of our proposal, we evaluate the time to recover from traffic
changes.

A. Simulation Settings

We distribute 100 nodes on a10×10 grid with separation
of 30 m. We appoint a node at the top-left corner as
a source node and one at the bottom-right corner as a
destination node. The communication range is set to 30 m.
Therefore, each node can communicate with four neighbors.
The coefficientα in (2) is set to 0.004. Other parameters of
AntNet are set in accordance with their default settings [16].

In order to establish the path considering the traffic,ln,
which is a variable indicating the degree of congestion for
neighbor noden at nodek, is given by

ln = 1− λknTs∑
j∈Nk

λkjTs
(9)

whereλnk corresponds to the average arrival rate of data
packets to the queue for sending to noden at nodek, and
Ts corresponds to the average processing time per one data

Figure 1. Network and congestion model in simulation where traffic near
the center of the network increases after the network converges as shown
in Table I.

Table I
TRAFFIC CHANGES IN SIMULATION

(a) (b) (c)
λ (before) 20 +R 10 +R 5 +R
λ (after) 20 +R 40 +R 60 +R

packet. The one-hop transmission delay at link(n, k) is
given by

cost(n, k) =
|(n, k)|
15

+
ρnk

1− ρnk
Ts [ms] (10)

whereρnk is the average utilization rate of link(n, k), which
is given by(λnk + λkn)Ts, and |(n, k)| corresponds to the
Euclidean distance between noden and nodek (= 30 m).
The average processing timeTs is set to 6.5 ms.

In this evaluation, we evaluate the recovery time, control
overhead, convergence rate of AntNet with and without
prediction. We first have the network converge to a state
where ants repeatedly select the same path using original
AntNet. Convergence of the network is defined as a state
where the same path is selected by forward ants for 10
consecutive times. Convergence check is done everytime
a backward ant reaches a source node. After the network
converges, we cause traffic changes. At the beginning of the
simulation,λnk of links between6×6 nodes in the center of
the network is set to10+R packet/s,λnk of links between
4 × 4 nodes in the center of the network is set to5 + R
packet/s, andλnk of other links is set to20 + R packet/s
(R is a random number in[−0.5, 0.5]). Once the network
converges,λnk of links between6 × 6 nodes in the center
of the network is increased to40 + R packet/s, andλnk

of links between4 × 4 nodes in the center of the network
is increased to60 + R packet/s as shown in Figure 1 and
Table I.

Regarding performance measures, the recovery time is
defined as the time from the occurrence of environmental
change till path recovery. Path recovery is defined as the
time when the network is converged and total delay of a
created path from the source node to the destination node
is smaller than(the minimum delay)× 1.05. Path recovery
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Figure 2. Path recovery time (∆tp = 100 ms)

check is done everytime a backward ant reaches a source
node. The control overhead corresponds to the total number
of travelled hops of control messages until path recovery.
The convergence rate is defined as ratio of path recovery
within given simulation time, i.e., 1,000 s, to 300 simulation
runs.

B. Results and Discussion

In this evaluation, the interval of predictive ant emissions,
i.e., ∆tp, is set to 100 ms, and we change the interval of
forward ant emissions from 100 ms to 1 s. The parameterβ,
which determines the weight of individual increment of
pheromones in the increase rate of pheromones ((7)), is set
to 0.2. The parameterp in (8) is changed from 0.06 to 0.6.

In each simulation, a path that runs through the center
of the network is established by AntNet at first because
the amount of traffic in the center of the network is small
at the beginning of the simulation. Then, another path is
reestablished avoiding the center of the network by AntNet
or our proposal after traffic changes, i.e., the amount of
traffic in the center of the network increases.

We show simulation results in Figures 2, 3 and 4. In
these figures, the recovery time, convergence rate, and
control overhead for the interval of forward ant emissions
are depicted. The recovery time and control overhead in
these figures show averaged values over 300 simulation
runs for each interval of forward ants except for cases that
convergence cannot be achieved by the end of a simulation
run, i.e., paths fluctuate.

As shown in Figures 2 and 3, the recovery time of our
proposal is shorter and the convergence rate of our proposal
is higher than AntNet. Furthermore, our proposal is superior
to AntNet regardless of the value of parameterp although
we changesp widely. In original AntNet, a forward ant
selects a next hop node in accordance with only current
pheromone values. Then, most forward ants go through the
path that has more pheromones than others even if there
are other better paths. Therefore, it takes a long time to
reestablish a shorter path when the quality of the existing
path falls off because of environmental changes such as
traffic changes. On the contrary, a next hop node is selected
while taking changes of pheromone values into account in
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Figure 4. Cumulative overhead (∆tp = 100 ms)

our proposal. Our proposal boosts pheromone accumulation
on a shorter path whose pheromone values are still low but
increasing, and this is the reason why path reestablishment
after environmental changes is accelerated.

In our proposal, the recovery time is shorter and the
convergence rate is higher especially when the parameterp
is low as shown in Figures 2 and 3. In an ant-based routing
mechanism, the stochastic path exploration in accordance
with pheromone values plays an important role in the
discovery of shorter paths. However, a forward ant selects
a next hop node in an almost deterministic manner if the
increasing amount of pheromones in our proposal is too
large, i.e.,p is too high. In consequence, a loose control
with lower p leads to a better recovery time and a high
convergence rate. Moreover, whenp ranges between 0.06
and 0.2, there is not much difference in the recovery time
and convergence rate in our proposal. In other words, we do
not need to take so much care of parameterp setting.

As shown in Figure 4, control overhead of our proposal
is much higher than that of AntNet. It is because each
node that receives a backward ant regularly sends predictive
ants to all its neighbor nodes for a fixed period of time in
order to obtain neighbor nodes’ information in our proposal.
However, overhead of forward and backward ants is reduced
because the recovery time is shortened with prediction.
Moreover, overhead of predictive ants becomes trivial as the
number of sessions becomes larger since predictive ants can
collect increase rates for different destination nodes at one
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Figure 5. Path recovery time (∆tp = 1.0 s)
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Figure 6. Cumulative overhead (∆tp = 1.0 s)

time. It is noteworthy that control overhead can be much
reduced with a larger interval (∆tp = 1.0 s) of predictive ant
emissions while the recovery time is kept shorter as shown
in Figures 5 and 6.

In conclusion, the path recover from traffic changes is
accelerated with prediction in this simulation settings. How-
ever, we need more discussion because the simulation setting
is mere one case of network conditions.

V. CONCLUSION AND FUTURE WORK

In a self-organizing system, each component behaves in
accordance with only local current information, which leads
to slow adaptation to environmental changes. Therefore,
in order to adapt to dynamically changing conditions in
a timely manner, it is necessary that systems should be
controlled considering the future state of systems, which
is predicted by observing behaviors of systems. In this
paper, as an example of a predictive mechanism for self-
organizing system, we propose and evaluate a predictive
mechanism for AntNet. Simulation results show that our
proposal can facilitate path reestablishment when the en-
vironment of the network changes. Even in a more realistic
environment where ants are lost in the network, ants can
reestablish other paths fast because they explore the network
not deterministically but stochastically and positive feedback
through pheromones leads to ants’ following shorter paths.

As future work, we will evaluate our predictive mecha-
nism in more real network environment, such as multiple
sessions and a random topology.
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