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Abstract

The rapid growth of information networks in size, complexity, and dynamics makes traditional

and conventional mechanisms unsuccessful and unfeasible. As an example, a standard routing

protocol called Open Shortest Path First (OSPF) [1] requires complete and consistent information

about the whole network and computes shortest paths with Dijkstra algorithm. Whereas it can

construct optimal paths under the given network condition, it incurs much control overhead in

topology information exchanges and takes long time for path computation in a large scale network.

Therefore, OSPF becomes infeasible for the large and dynamic network environment.

In our former research, we adopted a biologically-inspired nonlinear model, called attractor

selection [2], to realize highly scalable, robust, and adaptive routing mechanisms [3, 4, 5]. It im-

itates adaptive gene expression of bacteria cells, which autonomously and adaptively synthesize

nutrients in accordance with the environmental conditions. The proposal required lower compu-

tational cost and exhibited more robust and adaptive behavior than OSPF. However, because of a

hop-by-hop based path construction, our proposal sometimes makes looping paths which require

long time to resolve and lead to large delay and high loss probability. In this thesis, we take an-

other approach to prepare multiple connected paths beforehand and adaptively choose the most

suitable one from candidates, that is, multipath routing.

In multipath routing, each node pair has k-alternative paths and use them for the purpose of

high robustness and load balancing [6, 7, 8]. In multipath routing, establishment of multiple paths

and selection of a path used for packet transmission decide the robustness and performance of

routing. From a viewpoint of robustness, paths should be as short as possible and as disjoint as

possible. From a viewpoint of performance, a node should select a path leading to short end-to-end

delay and high packet arrival ratio.
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In this thesis, we consider three methods of multipath establishment and adopt the attractor

selection model to path selection. We first compare multipath establishment methods in the ro-

bustness to link failures. Then, we compare our proposal with OSPF and mutlipath routing with

greedy path selection from viewpoints of the average delay, packet arrival ratio, and path change

ratio. Through simulation experiments, we show that attractor selection-based selection of path

from a combination of link-disjoint and node-dispoint paths leads to the high robustness and per-

formance.
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1 Introduction

The rapid growth of information networks in size, complexity, and dynamics makes traditional

and conventional mechanisms intended to achieve the optimal control and best performance un-

successful and unfeasible. Optimization often requires the complete information about the targeted

system. In a case of information networks, a central control unit or an administrator needs to col-

lect the complete and up-to-date information about the whole network and conduct complicated

computation to obtain the optimal solution. Even if control or decision is distributed among mul-

tiple entities, they require information consistent with each other to control and manage a network

in a coherent way.

As an example, Open Shortest Path First (OSPF) [1], which is a standard Interior Gateway

Protocol (IGP), derives shortest paths by using Dijkstra algorithm based on the topology informa-

tion of a network. For this purpose, each node or each area exchanges a control message called

Link State Advertisement (LSA), which contains information about adjacency relationship and

link capacity, by means of periodic flooding. Flooding, where a message is repeatedly copied

and forwarded to all neighbors by all nodes, is a powerful means of information dissemination.

However, it takes time for LSA information to propagate to all nodes. Therefore, as the size of

a network increases, the possibility of inconsistency in established paths becomes high. This fact

further implies that OSPF cannot use dynamic link cost, e.g. delay and utilization, in derivation of

shortest paths. Furthermore, OSPF also suffers from increased computational time. The compu-

tational complexity of Dijkstra algorithm ranges from O(E +N logN) to O(N2), where N and

E are the number of nodes and links, respectively [9]. Because of these shortcomings, OSPF is

inappropriate in a large and dynamic environment.

In our former research, we adopted a biologically-inspired nonlinear model, called attractor

selection [2], and realize a highly scalable, robust, and adaptive routing mechanism [3, 4, 5]. The

attractor selection model imitates adaptive gene expression of bacteria cells. Despite that the do

not have any preprogrammed rule of adaptation, a cell autonomously and adaptively synthesizes

nutrients to compensate nutrients missing in the environment and improve its growth rate. In [3],

we applied the model to hop-by-hop routing for wired networks. We related selective nutrient

synthesis to next-hop selection in packet forwarding. Each node calculates the attractor selection

model and decides a next-hop node for a given destination node without the information about
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the whole network. As a consequence of autonomous decision of nodes, a packet is sent to a

destination node. Assuming that the number of nodes in the network is N , the proposal required

the computational cost in the order of N and exhibited more robust and adaptive behavior than

OSPF. However, because of nature of hop-by-hop routing, our proposal sometimes suffers from

looping paths. If path establishment fully depends on autonomous and independent decisions of

nodes, even with limitation on the maximum number of hops, say h, the number of possible paths

amounts to dh where d is the average degree of node. In this thesis, we take another approach to

prepare multiple connected paths beforehand and adaptively choose the most suitable one from

candidates, that is, multipath routing. This approach however incurs two problems to solve: how

to establish candidate paths and how to select a path to use.

In multipath routing, each node uses one of paths in candidates to transmit packets in ac-

cordance with network condition [6, 7, 8]. Here, both of establishment of candidate paths and

selection of a path influence the robustness and performance. For example, paths established for

a pair of nodes have common nodes or links, a single failure of node or link will disconnect all

of paths and no path remains between them. Therefore, candidate paths should be independent

from each other, that is, disjoint to prevent a single failure from affecting multiple candidate paths.

Furthermore, when we assume that a link has the identical probability of failure, a longer path has

the higher probability of being affected by link failure. The probability that a path consisting of l

links is disconnected is estimated as 1− (1− p)l where p is a link failure probability. Therefore,

a nodes should as short candidates as possible to reduce a risk of disconnection.

Path selection can be regarded as an optimization problem. Existing proposals consider, for

example, maximization of utility and maximization of max-min fairness [10, 11]. If a centralized

control is possible, some heuristic algorithm can derive the optimal or sub-optimal solution. How-

ever, for the same reason that OSPF faces, such centralized optimization is not possible. Therefore,

we need a method to accomplish the optimal or sub-optimal solution in a fully distributed manner.

For this purpose, we adopt the attractor selection model which has the ability of distributed adap-

tation and optimization as explained above. By combining the multipath establishment method

and the attractor selection-based path selection method, our proposal achieves both of robustness

and performance.

The reminder of this thesis is organized as follows. First, we describe related work in section

2. In section 3, we describe attractor selection and introduce example of applications to routing.
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In section 4, we propose multipath establishment methods and path selection method based on

attractor selection. Then we conduct comparative evaluation these proposals in section 5. Finally,

in section 6, we provide conclusion and future work.
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2 Multipath routing

Basically, multipath routing is intended for higher reliability by holding an alternative backup

path, better performance achieved by path diversity, and load balancing leading to congestion

mitigation [10]. Current off-the-shelf routers such as products of Cisco and Juniper have capability

of multipath routing, called ECMP. ECMP is an extension to OSPF. It splits traffic among paths

which are equal in cost. In a case of path disconnection, traffic is concentrated on a remaining

path. Therefore, it aims at load balancing and fault tolerance. However, paths are determined

based on stable information and may not reflect the congestion state of the network.

Several multipath routing schemes have been proposed [6, 7, 8], which do not limit to equal

cost paths. For example, in [6], authors propose Game Theoretic Stochastic Routing (GTSR)

and show how many paths are needed for robust multipath routing in today’s Internet. GTSR

establishes multiple paths based on a stochastic flooding algorithm and decides traffic proportion

distributed among the paths by resolving a maximum flow problem between each of source and

destination pairs with the game theory. The authors show that GTSR can find paths by a simple

algorithm and discuss tradeoff between robustness and packet loss rate. However, GTSR cannot

reflect the network congestion, because a node decides the traffic proportion taking into account

only traffic emitted by itself. On the other hand, in [8], authors propose a method to establish

multiple paths based on global information and determine traffic proportion based on local in-

formation. They use an algorithm called Widest Disjoint Path (WDP). They define an indicator

which reflects available link capacity of bottleneck links contained in a set of paths. WDP estab-

lishes paths which minimize the indicator by using global information about capacity of all links

and traffic demand of all sessions in a network. To determine the traffic proportion among paths,

they use an algorithm called Equalizing Blocking Probability (EBP). EBP equalizes the blocking

probability of each path from observation of blocking probability of each path. Although a com-

bination of WDP and EBP enables multipath routing adaptive dynamic changes in traffic demand,

each node has to gather the global information frequently.
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3 Attractor selection model

In this section, we briefly introduce explain the attractor selection model, on which our algorithm

for adaptive selection of path depends. Then, we additional introduce some examples of applica-

tion of the model to network control.

3.1 Mechanism of attractor selection

The attractor selection model is in the form of nonlinear stochastic differential equations. It is de-

rived from autonomous and adaptive nutrient synthesis of E.coli cells in the dynamically changing

environment of nutrient condition [2]. In [2], authors genetically modified an E.coli cell to have

a metabolic network consisting of two mutually inhibitory sequences of chemical reactions corre-

sponding to synthesis of two different nutrients. When one of the nutrients becomes scarce in the

environment, the protein concentration activating a sequence for the missing nutrient eventually

increases. Then, a cell stably maintains the state, i.e. gene expression, because it can compensate

the missing nutrient and grow well. In [2], the model describing dynamics of protein concentra-

tions m1 and m2 is formulated as,

dm1

dt
=

s(α)

1 +m2
2

− d(α)m1 + η1, (1)

and

dm2

dt
=

s(α)

1 +m2
1

− d(α)m2 + η2, (2)

s(α) and d(α) are functions of protein synthesis and degradation, respectively. Both of them

depend on α which is called activity representing the cell activity or cell volume growth. Terms

η1 and η2 are independent white noise in gene expression.

According to [2], equilibrium conditions in the metabolic network are called attractors. The

above equations have two attractors, each of which corresponds to synthesis of one of nutrients. In

a static environment a cell stays in a certain attractor, whereas it is influenced by internal and ex-

ternal noise. However, when the environment changes and affects the growth of a cell, it becomes

unstable. Since instability allows a cell to stochastically change its gene expression, it eventually

reaches a state, that is an attractor, which is suited for the new environment.

A generalized model can be formulated by Eq. (3). m⃗ is an M -dimensional vector and m⃗ =

(m1, ...,mM ), which expresses a state of a nonlinear system, e.g. bacteria. Each mi is a scalar
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Figure 1: Behavior of attractor selection

and called state value. f(m⃗) is an energy function which defines the potential space and attractors.

η⃗ = (η1, ..., ηM ) is a vector of noise elements.

dm⃗

dt
= f(m⃗)× α+ η⃗ (3)

Figure 1 shows a schematic image of the generalized attractor selection model. In this case,

function f(m⃗) defines a double-well potential space. The x-axis is a projection of an M -dimensional

state. Tails of arrows indicate states corresponding to attractors. The y-axis is the activity and the

z-axis is the energy potential. The grid surface shows a potential space where a state of a system

indicated by a ball moves along. A state always fluctuates slightly due to a noise term. How-

ever, when the activity is high, the dynamic is dominated by the term f(m⃗) × α and a ball is

trapped to one of attractors. When the activity becomes low on the other hand, due to for exam-

ple a change in the environmental condition, the potential landscape becomes shallow and a ball

moves more randomly than steadily. When it occasionally approaches an attractor suitable for

the new condition, the activity slightly increases. The increased activity reinforces the potential

landscape leading to further increase in the activity which plays a role of the driving force toward
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the attractor. Consequently, the new appropriate attractor is statically selected. As explained, the

attractor selection model enables selection of a suitable attractor among possible stable conditions

by switching stochastic behavior caused by noise term η⃗ and deterministic behavior controlled by

potential function f(m⃗) with mediation of the activity.

3.2 Applications to routing

In this section, we introduce examples of applications of the attractor selection model, especially

in the area of routing.

3.2.1 Mobile Ad Hoc Routing with Attractor Selection (MARAS)

MARAS [5] is an attractor selection based on-demand routing mechanism designed for Mobile Ad

hoc Networks (MANET) to achieve high delivery efficiency. In MARAS, each node establishes

and maintains a path to a destination following 2 steps.

1. Route establishment

A node establishes an initial path by disseminating Route Request Packet (RREQ) and Route

Reply Packet (RREP) like Ad hoc On-Demand Distance Vector (AODV) [12]. When a

demand to communicate with a certain destination comes up, a source node broadcasts a

RREQ packet to neighbors. The RREQ packet is re-broadcasted by other node, that is

, flooding. Each RREQ has a unique ID, which is used to detect and drop a duplicated

RREQ. On relaying a RREP packet, each node remembers which node it comes from. When

a RREQ arrives at a destination node, a RREP is generated. A RREP is transmitted over a

reverse path to the source node by unicasting.

On the way of RREP to the source node, each intermediate node makes an entry for the

destination node in its routing table. A routing entry has six fields shown in Table 1. A

routing vector is in the form of a state vector of the attractor selection model. Initially, one

state value corresponding to a neighbor from which it received the RREP is set at 1. All

other state values are 0. In addition, the initial activity is set at 1 as well. When a source

node receives a RREP, it first makes a routing entry. Then, it begins emission of data packets.

At the source and intermediate nodes, a data packet is sent to a neighbor node having the

maximum state value in a routing entry for the corresponding destination.
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Table 1: Routing information of MARAS

Destination address Address of destination node

Neighbor list n⃗ = (n1, ..., nM ) Maintained by Hello message exchanges

Routing vector m⃗ = (m1, ...mM ) State values of neighbors

Activity α Goodness of current condition

Precursor list List of address pairs of source and previous hop

Feedback window Sliding window of hop count to destination

2. Route maintenance

MARAS maintains and updates a path as long as it is being used. In order to keep a routing

table up-to-date, a source node has to know the latest condition of the current path. For

this purpose, a destination node sends a feedback packet on reception of a data packet. A

feedback packet traverses the reverse path of the corresponding data packet and informs a

source node and intermediate nodes of the number of hops it took from the destination. A

source node and intermediate nodes derive the new activity by using the following equation.

α =
mint0−T<t≤t0 w(t)

w(t0)
, (4)

where w(t) is the travelled hop count of the feedback packet received at time t. t0 is the

current time. Parameter T determines the duration that a node deposits past information. It

is called feedback window and T is a feedback window size. Then, a node updates state

values by using the following equation.

dmi

dt
=

s(α)

1 +m2
max −m2

i

− d(α)×mi + (1− α)× ηi, (5)

where

mmax = max
j=1,...M

(mj),

s(α) = α(βαγ + φ∗),

d(α) = α,

φ∗ = 1/
√
2.

ηi is independent white noise with mean of 0 and variance of 1. Parameters β and γ control

the influence of activity over state values. The term 1−α additionally suppresses the effect
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of noise when the activity is high. If a path to a destination becomes long due to node move-

ment for example, the hop count increases and the activity decreases. Then, the state values

changes more randomly and as a result a next hop is selected randomly from neighbors to

find a shorter path. When a shorter path is occasionally found, the activity increases and the

diversity of state values are reinforced. As a result, a new and shorter path becomes stably

selected.

Based on experiments simulating node movement and failures, it is shown that MARAS can

achieve high delivery efficiency in a robust and adaptive manner. More details can be found in

[5].

3.2.2 Attractor selection-based hop-by-hop routing for wired networks

In [3], we proposed a Hop-by-Hop routing mechanism for wired networks by adopting the attractor

selection model to accomplish robust and lightweight routing in wired networks. It is based on

MARAS, but we made improvements to fit to wired networks. First, since the length of a path

in the number of hops does not reflect the status of a wired network such as congestion level, we

defined the activity based on the end-to-end delay. It enables QoS-aware adaptive routing in a

wired network, whereas OSPF employs static link cost. Second, we introduced a mechanism to

reduce control overhead. Differently to MANET, where a path is established on demand, paths are

required to always exist among all pairs of nodes in a wired network. Therefore, modification from

a reactive mechanism to a proactive mechanism was required. In our proactive routing mechanism,

each node periodically emits route control messages to all the other nodes for probing the quality

of paths and updating routing tables. The amount of control messages considerably increases in a

large-scale network and it must be reduced for higher scalability.

Figure 2 illustrates an overview of periodic exchanges of control messages and update of

routing tables without control overhead reduction. Now assume that a certain node begins the

procedure to update a routing table of a path to another node, say i. The former is a source and

the latter is a destination in the following descriptions. The source first emits a route control

message to the destination. The message takes the current path to the destination. On receiving

the route control message, the destination sends back a feedback message to the source along the

reverse path. A feedback message tells time when the route control message was received by the

14
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Figure 2: Overview of periodic update routing information

destination. By using this information, nodes on the path can calculate the end-to-end delay to the

destination. Next, the activity is calculated by using the following equation.

α
′
i(h) =

min0≤k≤W−1 di(h− k)

d(h)
, (6)

αi(h) =


α

′
i(h), if αi(h− 1) ≤ α

′
i(h)

cα
′
i(h) + (1− c)αi(h− 1), otherwise,

(7)

where αi(h) and di(h) represents the activity and delay at h-th exchange of control messages. W

is a feedback window size and c is a smoothing factor. Then, each node updates state values of the

corresponding entry in a routing table.

mi,j(h) = mi,j(h− 1) +
s(αi(h))

1 +m2
max(h− 1)−m2

i,j(h− 1)
− d(αi(h))mi,j(h− 1) + ηi,j , (8)
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where

mmax = max
j=1,...M

(mj),

s(α) = α(βαγ + φ∗),

d(α) = α,

φ∗ = 1/
√
2,

and mi,j(h) represents a state value corresponding to neighbor j for destination i at h-th exchange

of control messages. ηi,j is independent white noise with mean of 0 and variance of 1.

When the number of nodes is N , control messages are periodically exchanged among N ×

(N − 1) pairs. To reduce the number of control messages, we proposed an overhead reduction

method. As stated above, an intermediate node can update a routing entry for destination i by

using a feedback message sent for the original source node, it does not need to emit a route

control message for destination i by itself. Although details are not explained here, there are other

occasions that a node can reuse a route control message and a feedback message exchanged among

other nodes. By allowing such reuse, we could reduce the control overhead to 45%. Furthermore,

we introduced a mechanism to mitigate a routing loop problem by passively and actively detecting

a loop. It helped in increasing the packet delivery ratio from 56% to 98%. More details can be

found in [3].

16



Figure 3: Overview of our proposal

4 Multipath routing with attractor selection

4.1 Outline of mechanism

Figure 3 illustrate an overview of our proposal. Our proposal mainly consists of two processes

which are Multipath establishment and Path selection. The multipath establishment process de-

rives candidate paths to all destinations based on network topology information at regular intervals

of period I [s]. We should note here paths are not established in reality, which involves config-

uration of routing tables of all intermediate nodes. Since we consider so-called source routing,

only a sender of a packet knows the complete path information, i.e. a set of links and nodes con-

sisting a path. A sender embeds a list of nodes in a packet so that each intermediate node can

know a neighbor to which it should forward the packet. The path selection process selects a path

for packet forwarding from the created candidate paths at regular interval T [s]. On the contrary

to the multipath establishment process which considers paths to all destinations, a node has path

selection processes on a per-destination basis.

Before going into details of these processes, we first describe information that a node maintains

for multipath routing.
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Neighbor List

A neighbor list has addresses of neighbors, which a node is directly connected with. It is

updated by Hello messages exchanged with neighbors with a period of Thello [s]. When

a node receives a Hello message from a node whose address is not in a neighbor list, it

adds the sender’s address to the neighbor list. Then, the node sets a HelloTimeoutTimer to

4 ∗ Thello. When timer expires for not receiving any Hello message from the sender, the

node removes the corresponding address from the list.

Destination list

A destination list maintains addresses of all nodes in a network for proactive path establish-

ment and maintenance. A node recognizes other nodes through LSA message exchanges,

which will be explained later. When a node finds a new node, it generates a new rout-

ing entry. When an LSA is removed, a node removes corresponding destination from the

destination list.

Routing table

A routing table is a list of routing entries. An entry is created when a new node is added to

a destination list and maintained for each of nodes in a destination list. An entry consists

of a destination address, information about candidate paths, i.e. a list of nodes, an activity,

state values, and a list of past measurements of the size W . When a node transmits a packet,

a path with the maximum state value is selected among candidate paths established for the

destination. An activity and state values are initially set at 0 and a random value ranging

from 0 to 1, respectively.

LSA database

The multipath establishment process uses an LSA database to know the network topology. It

is updated by reception of an LSA message. Each node periodically emits an LSA message

containing an LSA of the node. An LSA includes an address of itself, a sequence number,

the lifetime, and a neighbor list. The lifetime is initially I [s]. The lifetime decrease with

passage of time. When the lifetime becomes to 0, a node deletes a corresponding LSA from

an LSA database. Additionally, the node deletes corresponding destination from destination

list and corresponding routing entry from routing table.

18



LSA sequence number

It is the an identifier of an LSA that a node creates. When a node creates a new LSA, it sets

an LSA sequence number to the LSA for other nodes to detect duplicated reception of an

LSA.

Topology change flag

It is a boolean value to indicate whether topology change has occurred since the preceding

multipath establishment.

Next, we explain a mechanism to maintain an LSA database, which is similar to that of OSPF.

Each node generates an LSA at regular intervals of period I [s] or when a neighbor list changes.

An LSA consists of an address of the node, a sequence number, the lifetime, and a neighbor list.

Then, the LSA message including the LSA is sent to all neighbors. At the same time, the LSA is

stored in a local LSA database. The process on receiving LSA message is shown Figure 4. When a

node receives a LSA, the node checks whether the source address of the received LSA exists in the

destination list or not. If the source address does not exist in the destination list, the node having

received LSA adds the source address to destination list and adds the LSA to LSA database. In

addition the node creates a routing entry to the destination and stores it in routing table, and then

executes multipath establishment process explained in section 4.2. If the source address exists in

the destination list, the node receiving LSA check whether the sequence number of received LSA

is larger than that of LSA in LSA database. If the sequence number of received LSA is not larger

than that of LSA in LSA database, the node delete received LSA and end this process. Otherwise,

the node replaces the old LSA in the LSA database to received LSA. If the neighbor list of new

LSA is different from old LSA, the node set the topology changed flag. If one of address of the

neighbor list of old LSA does not exist in the neighbor list of new LSA, the node deletes paths

including the disappeared link from candidate paths in all routing entry. After above processes,

the node re-broadcast the received LSA to all neighbors.

Based on the above information, candidate paths are established and a primary path is selected.

A multipath establishment process begins in the following cases.

(a) Periodic timer expires

A node has a periodic timer to regularly initiate the multipath establishment process. The

timer is set at I [s]. When it becomes 0, it is reset to I again. It means that the timer
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Figure 4: Flow chart of LSA reception
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precisely maintains the pace even if any of the following conditions is met. However, if a

topology change flag is set on expiration of the timer, a node does not start the multipath

establishment process.

(b) New destination is found

When a node finds a new node in a received LSA, it begins the multipath establishment pro-

cess to make paths to the new node and update paths to other nodes expecting that traversing

the new node results in a better path.

(c) All paths are lost for destination

When there is a path suffering from a link or node failure, it is removed from candidate

paths. If no path remains for a certain destination, a node begins the multipath establishment

process to rebuild candidate paths.

Therefore, in our proposal, a node does not establish, i.e. calculate, paths against topology changes

caused by failures or others as far as it does not disconnect all candidate paths. On the other hand,

all nodes need to calculate paths to all destinations even for a single and small change in the

network topology.

A path selection process is executed always periodically with a period of T [s]. When a node

detects a new node and establishes candidate paths, it does not begin a path selection process

immediately. Since an LSA may contain multiple new nodes, we need to distribute timing of

path selection to avoid synchronous behavior leading to instable control. For this purpose, a node

defers execution for a random period ranging from 0 to T [s]. After a path selection process, a node

execute a next path selection process in Trand, where Trand is random value ranging from 0.9×T

to 1.1× T . A node calculates Trand every after a path selection process, to avoid synchronization

of path selection.

4.2 Multipath establishment

As the way of multipath establishment decide the robustness of multipath routing mechanism as

mentioned in section 1, we need to contemplate how to establish multipath to enhance robustness

of our multipath routing mechanism. The GTSR [6] and WDP [8] could be suitable for this

purpose, but the design concept of these algorithm is different from the purpose of robustness.
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Therefore, we adopt k-shortest path because we can easily extend it to achieve high robustness.

However, it is our future work to find the method that can find more robust multipath.

The k-shortest path algorithm [13] is an algorithm to find the k-th shortest path in a given

graph. We extend k-shortest path to be more robust by following 3 methods.

(a) Node Disjoint (ND)

In ND, no pair of paths contains the same intermediate node. Therefore, a failure of a single

node does not affect multiple candidate paths established among a pair of nodes, which

leads to the high robustness of multipath routing. However, depending on the topology of a

network, it is not always possible for all node pairs can find n node-disjoint paths. In that

case, a constraint must be relaxed to have the sufficient number of alternative paths. The

detailed algorithm is give below.

Step 1: A node finds shortest path by Dijkstra from complete topology information (TI(1))

and sets n to 1. Here, TI(∗) is initially complete topology information.

Step 2: If n == k, a node finishes this algorithm.

Step 3: A node deletes nodes included in n-th path from TI(n+ 1).

Step 4: A node tends to find path by Dijkstra from TI(n + 1). If a node finds a new path,

n = n+ 1 and go to step 2. Otherwise, go to step5.

Step 5: Restore TI(n+ 1) to original topology information and set p to 1.

Step 6: If p > n, a node finishes this algorithm. Otherwise, a node set l to 1 and set H to

the number of intermediate nodes in p-th path.

Step 7: If l == H , p = p+ 1 and goes to step 6.

Step 8: A node tends to find a path from TI(p) under the each condition which l nodes in

p-th path can be shared. Once a node find a new path and the path is not completely

same as j-th path (1 ≤ j ≤ n), a node increments n, set T (n) to TI(p) and delete

unshared nodes in p-th path from T (n), then if n == k finish this algorithm.

Step 9: If n == k, a node finishes this algorithm. Otherwise, l = l + 1 and goes to step 7.
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(b) Link Disjoint (LD)

LD does not allow sharing of a link among two or more candidate paths established for

a certain destination. In comparison with ND, the length of paths are likely to be shorter

because ND must take a detour to find a node-disjoint path. However, a naive algorithm of

LD sometimes fails in finding n paths as ND does. Therefore, in that case, we allow paths to

share the minimum and necessary number of links. The detailed algorithm is shown below.

Step 1: A node finds shortest path by Dijkstra from complete topology information (TI(1))

and sets n to 1. Here, TI(∗) is initially complete topology information.

Step 2: If n == k, a node finishes this algorithm.

Step 3: A node deletes links included in n-th path from TI(n+ 1).

Step 4: A node tends to find path by Dijkstra from TI(n + 1). If a node finds a new path,

n = n+ 1 and go to step 2. Otherwise, go to step5.

Step 5: Restore TI(n+ 1) to original topology information and set p to 1.

Step 6: If p > n, a node finishes this algorithm. Otherwise, a node set l to 1 and set H to

the number of links included in p-th path.

Step 7: If l == H , p = p+ 1 and goes to step 6.

Step 8: A node tends to find a path from TI(p) under all condition which l links in p-th

path can be shared. Once a node find a new path and the path is not completely same

as j-th path (1 ≤ j ≤ n), a node increments n, T (n) = TI(p) and deletes unshared

links in p-th path from T (n), then if n == k a node finish this algorithm.

Step 9: If n == k, a node finishes this algorithm. Otherwise, l = l + 1 and go to step 7.

(c) Node Disjoint and Link Disjoint (NLD)

NLD is a combination of ND and LD. First, the optimal and shortest path is established.

Next, ⌊k/2⌋ paths are added from ND paths in an ascending order of path length, but except

for the first path which is identical to the shortest path. Then, ⌊k/2⌋ paths are added from

LD paths, but except for the first path and those identical to k/2 ND paths.
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After k-shortest path is found by each multipath establishment methods, each paths found by

the methods are stored to corresponding routing entry as candidate paths.

4.3 Path selection

A node selects a path to use for packet transmission by using the attractor selection model. Our

path selection process is based on a next-hop selection method proposed in [3].

At regular intervals of T [s], each node transmits a route control message for each of desti-

nations and a destination sends back a feedback message in response to a route control message.

Based on a feedback message, a node derives the one-way delay of the current primary path.

When a node does not receive a feedback packet, it decreases the activity by subtracting D where

0 < D < 1. Since a path from a node to a destination can be different from a path from an

intermediate of the path to the same destination, we do not adopt the overhead reduction method.

Based on the measurement, a node calculates the activity and updates state values by Eqs. (6),

(7), and (8). In comparison to [3] where a state value expresses the goodness of a neighbor as

a next-hop node for a destination, in our proposal, it indicates the goodness of a candidate path.

Then, a generated packet is sent to a destination over a path with the maximum state value.
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5 Evaluation

In this section, we show the performance of our proposal by comparative evaluation.

5.1 Targets for comparison

We adopt the following two routing mechanisms for this comparison.

OSPF

OSPF always selects the shortest path and does not have alternative paths. Therefore, it is

apparent that our multipath routing outperforms OSPF from a viewpoint of the robustness.

However, our proposal does not necessary select the shortest path among candidate paths,

which would lead to the longer delay.

Multipath routing with path selection

In multipath routing, path selection is in the form of an optimization problem. Existing

proposals aim at maximization of the utility, the max-min fairness, and so on [10, 11]. In

this paper, for the sake of simplicity and as a representative of path selection algorithms,

we consider a greedy approach. In multipath routing with greedy path selection, each node

has the same set of candidate paths as our proposal. It periodically measures delays of all

candidate paths at an interval of T [s] and selects a path with the minimum delay. We should

note here that measurement overhead is taken into account in the following evaluation.

In the following, AS stands for our proposal and Greedy does multipath routing with greedy

path selection.

5.2 Simulation setting

We generate network topology for evaluation by using the Waxman model [14]. The Waxman

model builds a flat structure imitating a real network, where a pair of distant nodes is less likely to

have a link. The probability that a pair of node u and v, whose Euclidean distance is d(u, v), has

a link is given by the following equation.

P (u, v) = µ exp(
−d(u, v)

νL
), (9)
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Figure 5: Example of Waxman topology

where L is the maximum distance between any arbitrary pair of nodes. µ and ν are parameters

affecting the number of links where 0 < µ and ν ≤ 1, An example of a generated network is

shown in Fig. 5. Table 2 shows simulation parameters defining a network. Additionally we show

the network topology setting we use in this evaluation in Table 2. We select pairs of nodes between

which a CBR (Constant Bit Rate) over UDP (User Datagram Protocol) session exists. Although

the most of traffic in a network employs TCP (Transmission Control Protocol) as a transport layer

protocol, multiplexed TCP streams becomes similar to CBR in a router level network [15]. The

data rate of each CBR traffic is set at 8 [Mbps] and packets are generated per 0.05 [s]. Node pairs

are selected in a way that the total load on a network amounts from 0.52 to 0.57 in reference to [8].

The load is defined as SHT
LC where S is the number of sessions, H is the average number of hops

of the shortest paths of the sessions, T is the data rate, and L is the number of links in a network.

We call a set of node pairs having traffic a traffic matrix.

We use Omnet++ version 4.1 [16] in our evaluation. As for OSPF, we use a code of INET

framework with reference to RFC 2328 [17] and default parameters of a router of Cisco. We

summarize parameters of our proposal in Table 3.
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Table 2: Topology setting

µ 0.1

ν 0.58

Number of nodes 100

Number of links 219

Link capacity 50 [Mbps]

Propagation delay of link 100 [ms]

Packet buffer size 4.47 [Mbyte]

Packet loss rate per link 0

Table 3: Parameters of our proposal

Parameter Value

I 10000 [s]

T 10 [s]

Thello 10 [s]

k 3

W 20

β 10

γ 3

φ∗ 1/
√
2

c 0.1

D 0.3
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5.3 Performance measures

We use the following 4 measures for evaluation.

Disconnection ratio

We define a disconnection ratio at time t as the ratio of the number of node pairs whose

candidate paths are all disconnected at time t to the number of all node pairs , i.e. 100× 99

pairs. A disconnection probability indicates the robustness of routing, which is determined

by path establishment.

Path change ratio

We define a path change ratio at time t as the ratio of the number of sessions which select

another path than a path selected at time t − T to the number of sessions. A path change

ratio of 0 means that path selection converges and becomes stable at all sessions. A large

path change ratio results in large delay jitter and packet disordering. In a case of a real-time

communication application, a large play-out buffer is required to mitigate the influence of

delay jitter and it spoils interactivity of two-way communication.

Average delay

We define an average delay at time t as an average of one-way delay of all packets generated

at time t on all sessions. Since AS and Greedy tries to minimize the one-way delay, an

average delay shows the goodness of path selection.

Packet arrival ratio

We define a packet arrival ratio at time t as the ratio of the number of packets which are

generated at time t on all sessions and arrive at their destinations to the number of all packets

generated at time t. Since delay indicates the level of congestion of a path, delay-based path

selection should be able to avoid congestion and loss of packets. Therefore, a packet arrival

ratio is another measure of path selection methods.

5.4 Robustness to failures

In this section, we compare three multipath establishment methods, i.e. LD, ND, and NLD, ex-

plained in section 4.2, and OSPF which has only one path between each node pair. In Fig. 6,

the disconnection ratio is shown. The x-axis is the ratio of failed links to all links. We randomly
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Figure 6: Robustness of link failures

removed links from a network one after another to simulate link failures, while keeping the con-

nectivity of the whole network. Unsurprisingly, OSPF has the largest disconnection ratio among

four. We notice that NLD has the smallest disconnection ratio. One of reasons is in a difference in

the number of candidate paths that a node pair has. Figure 7 shows the number of candidate paths

that each node pair has against the number of failed links. As shown, the proportion of node pairs

which initially have three candidate paths is as much as 0.6 in ND, even when node sharing is

allowed. This explains the larger disconnection ratio of ND than LD and NLD. In addition, Table

4 shows the number of node pairs whose two or all candidate paths share one or more links. Com-

paring LD and NLD, the number of node pairs whose two candidate paths share links is smaller

with LD than NLD. However, the number of node pairs which do not have any disjoint candidate

path is larger with LD than NLD (see ’among 3 paths’). It means that a single link failure can

disconnect all candidate paths at once more often in LD than NLD. As a result, the disconnection

ratio of NLD becomes slightly smaller than that of LD. In conclusion, to achieve high robustness,

we need to establish as many disjoint candidate paths as possible.

Next we compare path selection methods, i.e. AS and Greedy. Candidate paths are established

by NLD in both cases. We evaluate temporal changes in the average delay, packet arrival ratio,

and path change ratio when link failures occur. In Fig. 8, we show results where 5% of links are

removed simultaneously at 600 [s]. To observe adaptive behavior of path selection, failed paths

are selected so that there is no disconnected session after 600 [s].
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Figure 7: Proportion of number of remaining paths

Table 4: Link sharing among candidate paths

ND LD NLD

among 2 paths 1476 1512 2054

among 3 paths 2370 2044 1932
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In Fig. 8(a), it is shown that the average delay is similar among AS and Greedy. However,

the average delay fluctuates more in Greedy than AS. That is, AS accomplishes more stable com-

munication. Figure 8(b) shows that AS achieves the higher packet arrival ratio than Greedy at the

beginning. When failures occur, the packet arrival ratio drops in both of AS and Greedy. The

speed of adaptation and recovery is faster with Greedy than AS, but we can see the tendency that

AS reaches the higher ratio than Greedy. Finally in Fig. 8(c), there is a significant difference

between AS and Greedy. The path change ratio is much larger with Greedy than AS. In Greedy,

most sessions change a path to use for packet transmission from one to another at every T [s].

When a node finds a path, say path A, other than the current one, say path B, has a shorter delay,

it moves to path A. However, as the load on path A increases, the delay of path A increases as

well. On the contrary, due to the reduced load, the delay of path B decreases. Therefore, at the

next selection, path B seems more attractive than path A. Then, the node returns to path B. Under

the competitive environment where sessions share links, sessions influence each other in path se-

lection and it causes flapping. In conclusion, despite faster adaptation in Fig. 8(b), AS superiors

to Greedy from viewpoints of stability.

5.5 Performance in stable condition

In this section, we evaluate the performance of six combinations of multipath establishment and

path selection. Simulation time 0 [s] is an instant when CBR sessions start transmitting UDP

packets. We do not change a traffic matrix from the beginning to the end of a simulation run.

First in Figs. 9(a) and 9(b), path change ratios are shown for combinations of multipath es-

tablishment methods with AS and combinations with Greedy, respectively. Although paths often

change at the beginning to find the best paths in AS, path change ratios gradually decreases for

convergence of path selection. On the contrary, Greedy always suffers from flapping of path. Re-

sults of these differences can be found in Figs. 9(c) and 9(d), where average delays are shown. At

the beginning, when AS searches for the best paths, the average delay is large independently of

multipath establishment methods. However, as paths converge, delay becomes small and stable.

On the contrary again, due to the flapping of path, the average delay fluctuates in Greedy. Figures

9(e) and 9(f) also support the superiority of AS to Greedy in terms of the packet arrival ratio.

Around 500 [s], all of AS-LD, AS-ND, and AS-NLD achieve the similar level of packet arrival

ratio.
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Figure 8: Comparison of path selection methods
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Figure 9: Performance in stable condition
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Figure 10: Performance comparison in stable condition

Finally in Fig. 10, we compare AS-NLD and Greedy-NLD to OSPF. Except for the initial tran-

sient period, the average delay is almost the same among three as shown in Fig. 10(a). However,

AS-NLD has more stable delay than the others. In addition, AS-NLD achieves the highest packet

arrival ratio in Fig. 10(b). A reason why OSPF results in the lowest packet arrival ratio is that

OSPF insists on the shortest path. A Waxman network has the higher betweeness centrality than

a random network. It means that there are nodes which many shortest paths contain. Therefore,

there is concentration of load on certain nodes and links. However, OSPF cannot avoid them and

suffers from congestion.

5.6 Adaptability to traffic changes

In this section, we change a traffic matrix and investigate adaptive behaviors. At 600 [s], i.e.

the end of simulations in the previous section, we change a traffic matrix. Previous sessions are

terminated and new sessions start.

Figure 11(a) shows that path change ratios first increase in AS to adapt to a new traffic matrix.

As time passes path change ratios gradually decreases, but it seems to require more time to reach

convergence than Fig. 9(a). On the other hand, Greedy keeps flapping. In Fig. 11(c) the average

delay of AS once increases. However as paths suitable for a new traffic matrix are selected, the

average delay gradually decreases and becomes stable. On the contrary, the average delay of

Greedy keeps fluctuating in Fig. 11(d). Figures 11(e) and 11(f) show the adaptive behavior of AS

and more stable performance of AS than Greedy.

34



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 600  700  800  900  1000 1100 1200 1300

P
at

h 
ch

an
ge

 r
at

io

Simulation time [s]

AS-LD
AS-ND

AS-NLD

(a) Path change ratio of AS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 600  700  800  900  1000 1100 1200 1300

P
at

h 
ch

an
ge

 r
at

io

Simulation time [s]

Greedy-LD
Greedy-ND

Greedy-NLD

(b) Path change ratio of Greedy

 0.35

 0.4

 0.45

 0.5

 0.55

 600  700  800  900  1000 1100 1200 1300

A
ve

ra
ge

 d
el

ay
 [s

]

Simulation time [s]

AS-LD
AS-ND

AS-NLD

(c) Average delay of AS

 0.35

 0.4

 0.45

 0.5

 0.55

 600  700  800  900  1000 1100 1200 1300

A
ve

ra
ge

 d
el

ay
 [s

]

Simulation time [s]

Greedy-LD
Greedy-ND

Greedy-NLD

(d) Average delay of Greedy

 0.6

 0.7

 0.8

 0.9

 1

 600  700  800  900  1000 1100 1200 1300

P
ac

ke
t a

rr
iv

al
 r

at
io

Simulation time [s]

AS-LD
AS-ND

AS-NLD

(e) Packet arrival ratio of AS

 0.6

 0.7

 0.8

 0.9

 1

 600  700  800  900  1000 1100 1200 1300

P
ac

ke
t a

rr
iv

al
 r

at
io

Simulation time [s]

Greedy-LD
Greedy-ND

Greedy-NLD

(f) Packet arrival ratio of Greedy

Figure 11: Performance in traffic change
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Figure 12: Comparison in traffic change

Finally in Fig. 12, we compare AS-NLD and Greedy-NLD to OSPF. As shown in Fig. 12(a),

the average delay of Greedy-NLD is the smallest but it fluctuate the most. Figure 12(b) shows that

the packet arrival ratio of AS-NLD is as high as that of Greedy-NLD.

In conclusion of the above results and discussion, while acceleration of convergence remains

future work, AS is the most adaptive and stable method of path selection.
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6 Conclusion

In this thesis, we propose the robust multipath routing mechanism based on attractor selection

model. Simulation results show LD and NLD behave robust to link failure, and we indicate abun-

dant paths and to suppress sharing are important for robust multipath routing. Furthermore, we

show our proposal moderately adapts to the traffic change by very few change of path selection.

As future work, we search more robust multipath establish method by reference to the knowl-

edge obtained in this thesis. Furthermore, we take additional comparative evaluation with other

multipath routing mechanism, e.g. ECMP.
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