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Abstract

In future, wireless sensor networks (WSN) are expected to be integrated into the Internet of

things and to play an important role not only for data collection but for communication infrastruc-

ture. In that situation, multi-vendor and heterogeneous WSNs should be federated to make a large

scale WSN. As one way to realize the integration of WSNs, virtualization technology in WSN is

of great significance. Although many techniques for virtualization of sensor networks have been

studied, environmental changes, such as diverse traffic patterns or addition or removal of virtual

nodes, are not considered. Since future WSNs will face with a wide variety of requirements, it is

critically important to construct a virtual sensor network (VSN) which provides short delay time

of packet communication and a guarantee of network connectivity in a network of arbitrary scale.

In this thesis, we propose a method for constructing a VSN inspired by brain functional networks

known for robustness, high efficiency and adaptive evolvability. To earn the advantages shown

above, we particularly pay our attention to modularity and small world property which brain func-

tional networks have and we apply them to virtual topology construction. Through simulation

experiments, compared to a VSN topology constructed by an existing clustering technique for

achieving small world properties, our VSN topology is highly robust in terms of connectivity and

average path length.
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1 Introduction

Wireless sensor networks (WSN) has a great importance because of the broad range of its com-

mercial applications such as smart home, health care and industrial automation [1]. Furthermore,

WSN is recently attracting a great deal of attention as a required technology to realize the In-

ternet of Things. WSN are expected to be integrated into the Internet of Things and to play an

important role not only for a specific application such as a data collection but for communication

infrastructure shared by multiple applications [2, 3]. In that situation, sensor nodes which have

various functions and properties are deployed in the same area by multiple vendors. Virtualization

of WSN is one of key solutions for integrating such heterogeneous WSNs into one large WSN

and sharing physical sensor substrate. Virtualization of WSN can be defined as a separation of

a function for WSN into two parts, physical sensor infrastructure and applications working on

aggregated resources. The expected advantages of virtualization of WSN are providing flexibility,

cost efficiency, diversity, security and manageability [1,4–6].

Although many researchers have worked on virtualization of WSN, objectives and assump-

tions of its use are different and technical challenges are left to be solved, for example, constructing

an arbitrary virtual sensor network (VSN) with flexibility, reusability, resource efficiency, secu-

rity, privacy, manageability, scalability, programmability and allowability of heterogeneity [1, 7].

Because environmental changes, such as diverse traffic patterns or addition or removal of vir-

tual nodes, are anticipated in virtualization of sensor networks, to construct a VSN with certain

communication efficiency and connectivity is particularly important. Therefore, we propose an

algorithm for constructing a VSN topology with high communication efficiency and robustness by

introducing complex network features. In this thesis, we define two kinds of robustness. One is

robustness of connectivity and the other is robustness of average path length.

Many researchers introduce small world properties, which is one class of complex network,

to sensor networks and show that small number of long-distance links added to a sensor network

improve communication efficiency drastically [8, 9]. For that reason, we can construct a VSN

topology with high communication efficiency by introducing structural properties of complex net-

work to sensor networks. Although WSN with small world properties has high communication

efficiency, it is said that a topology with a property of some classes of complex networks is vulner-

able against targeted attack on nodes with high degree or on long-distance links [10]. To address
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this problem, we focus on the brain functional network because it shows highly robust features

and evolves adaptively depending on communication demands or environmental changes, while it

has multiple features of complex network.

The brain functional network has small world properties and modular community structure [11].

Small world properties are described by high efficiency and high clustering. These features lead

to efficient information dissemination globally and locally. Moreover, highly clustering structure

gives many detour routes from one node to another. This leads to robustness in terms of connec-

tivity. The brain functional network is organized by a large number of modules, each of which

processes information, such as cognitive, emotional, perceptual or motor processing information.

A network with modular community structure can adapt to changes of demands by configuring a

small number of links between modules. Therefore, the brain functional network can negotiate

trade-offs between wiring cost and communication efficiency rapidly, resulting in its evolvability

to changing cognitive demands. Therefore, we propose an algorithm to construct a VSN topology

with small world properties and modular community structure for high communication efficiency,

robustness and evolvability.

The rest of this thesis is organized as follows. Section 2 shows the topological properties of

the brain functional network and advantages by applying them to WSN. We propose a model for

constructing a VSN topology inspired by brain functional network in Section 3 and evaluate our

proposal in Section 4. In Section 5, we conclude this thesis and describe future work.
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2 Brain functional networks

In this section, we explain topological properties of brain functional networks and describe ex-

pected advantages applying these properties to wireless sensor networks. A brain functional net-

work has small world properties and a modular community structure. Small world topology has

high topological efficiency in local and global areas and robustness. Modular community structure

of a brain functional network has adaptivity and evolvability [11–16].

2.1 Small world property

Small world properties are characterized by a short average path length and a high clustering

coefficient. In this thesis, we regard path length as a hop count on the shortest path between a pair

of two nodes. Path length in whole network is quantified by average path length (APL), defined as

APL =
1

N(N − 1)

∑
i,j

sd(i, j), (1)

whereN is the number of node andsd is the minimum hop count between nodei and nodej. A

short APL means that global communication efficiency is high. Clustering structure of a network

is quantified by average clustering coefficient (CC) defined as

CC =
1

N

∑
i

2ei
ki(ki − 1)

, (2)

whereki is a degree of nodei andei is the number of links that exist between neighbor nodes of

nodei. A topology with high CC has many topological motifs of a triangle, which means that the

nearest neighbors of a given node have a high probability to be connected with each other. High

CC means that local communication efficiency is high due to its densely connected structure in a

local region.

2.1.1 Long-distance connections

One of factors contributing to global communication efficiency in a brain functional network is

myelinated long-distance links [11]. An electric conductivity of a myelinated link is high. When

long-distance areas are connected by these links, communication delay between them gets short

and these links enable a close cooperation between different functional areas.
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2.1.2 Highly clustering structure

A brain functional network is a spatial network. This means that connecting functional areas is

strongly influenced by distance between functional areas due to wiring and running metabolic

costs [11]. Therefore, short-length links tend to be constructed and maintained, resulting in a

high clustering coefficient. Because local areas are connected densely, segregated processing and

synchronization can be done rapidly.

2.2 Modular community structure

A brain functional network has a modular community structure in which nodes within the same

module are densely connected by short-distance links but sparsely connected to a node in other

modules by long-distance links. Moreover, a brain functional network demonstrates a property

of hierarchical modularity. Each module in a brain functional network is composed of a set of

sub-modules and each sub-module is composed of a set of sub-sub-modules [11,16]. This modu-

lar community structure allows a brain functional network to balance trade-off between efficiency

and metabolic costs, in other words communication delay and connection distance, can be rapidly

negotiated by functional systems only by configuring long-distance inter module links [11]. When

there is greater demand for cognitive processing, networks adopt a more efficient structure by con-

structing costly long-distance links, and when cognitive demand is lower, brain networks get more

clustered and less costly. Moreover, because connections between modules are sparse, it seems

that brain network can be evolved adaptively under environmental changes. In modular systems,

each module can configure its structure adaptively, which has little influence on outside of the

module. Therefore, modular structure gives whole system evolvability by segregated configura-

tion of each module.

A wireless sensor network is a spatial network, because it is strongly constrained by physical

distance. For most of wireless sensor networks densely deployed, a topology of such networks

naturally has a regular lattice property and a high clustering coefficient. Therefore, a wireless sen-

sor network favors segregated processing. Moreover, there are many detour routes from one node

to another due to topological motifs of a triangle. This leads to high robustness of connectivity

against failure of nodes or links. When we introduce a hierarchical modular structure to wireless

sensor networks, it is expected that its topology can evolve adaptively to changes of resource or
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traffic demands. Existence of a long-distance connection which connects two physically distant

sensor nodes leads to reduction of communication delay of a whole network because of shortened

average path length.

When a physical long-distance link, such as directional beam or long range omnidirectional

transmission, can be assigned to a virtual link, improvement of communication efficiency in virtual

networks directly means that in physical networks. However, because communication capabilities

of sensor nodes are constrained, endpoints of a virtual link may not be able to communicate with

each other directly. One of the solutions is that a virtual link is assigned to a path containing

available physical long-distance links.
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3 A method for configuring virtual wireless sensor networks using

properties of brain functional networks

3.1 Overview

A topology having high modularity enables efficient segregated information processing and local

synchronization and a topology having small world properties enables efficient global communi-

cation. Therefore, we propose a model which constructs a VSN topology having high modularity

and small world properties.

Considering a geographical constraint, we assume that a minimum unit of a module is a group

of sensor nodes divided by Newman algorithm [17]. We simply call this minimum unit of a module

as a unit module. We describe Newman algorithm in detail in Section 3.2. We construct a VSN

topology by integrating these unit modules hierarchically. At the same time, it has small world

properties in any scale of layer. By repeating integration of sub-modules with a new module having

small world properties, a VSN topology constructed finally has a high modularity and small world

properties.

An example of hierarchical VSN is shown in Figure 1. The first layer VSN is a network in a

unit module which corresponds to a group of sensor nodes divided by Newman algorithm. The

second layer VSN is a network constructed by connecting unit modules. The third layer VSN is a

network constructed by connecting sensor networks which is deployed for different purposes.

At first, we propose an algorithm which constructs a VSN topology in the first layer, that is to

say this constructs a small world network in a unit module by adding virtual long-distance links.

In Section 3.3, we explain the method for constructing a VSN topology in the first layer in detail.

Then, in Section 3.4, we show the method for constructing a VSN topology in anN th layer by

connecting modules in an(N − 1)th layer.

3.2 Modular division for a physical sensor network

Newman algorithm is a heuristic algorithm which divides a network in several modules for the

maximization of the modularity. The definition of the modularity, denoted byQ, is as following.

Q =
∑
i

(eii − a2i ), (3)
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Figure 1: Example of hierarchical VSN topology

wherei is a group ID andeii is a ratio of edges whose endpoints belong to the same groupi. ai

is a probability that at least one of endpoints belongs to the groupi. Then,a2i is an expected ratio

that edges whose endpoints belong to the same groupi to all edges.

In Newman algorithm, modules are divided into two modules recursively as long as a condition

for halt is not satisfied. At first, we explain the method of the first division in which a whole

network is regarded as one group and divided into two groups. For a particular division of the

network into two groups letsi = 1 if a nodei belongs to group 1 andsi = −1 if it belongs to

group 2. And letA is an adjacency matrix,Aij = 1 if nodei and nodej is connected andAij = 0

if node i andj is unconnected. The expected number of links between nodei and nodej can be

described bykikj2m , whereki is a degree of nodei andm is a total number of links embedded in a

whole network, that is,m = 1
2

∑
i ki. Under these assumptions, the modularity can be calculated
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by Equation (4).

Q =
1

2m

∑
i,j

(Aij −
kikj
2m

)
(sisj + 1)

2

=
1

4m

∑
i,j

(Aij −
kikj
2m

)sisj , (4)

where (sisj+1)
2 = 1 if node i and nodej belong to the same group and(sisj+1)

2 = 0 if node

i and nodej belong to different groups. The second equality follows from the observation that

2m =
∑

i ki =
∑

i,j Aij .

Equation (4) can conveniently be written in matrix form as shown in Equation (5).

Q =
1

4m
sTBs, (5)

wheres is the column vector whose elements are thesi. B is a symmetric matrix whose elements

areBij = Aij − kikj
2m . The aim of Newman algorithm is maximization of the modularityQ by

choosing a value of the vectors which means choosing an appropriate division of the network.

By writing s as a linear combination of the normalized eigenvectorsux of B, that iss =∑
x axux, Equation (5) can be described as Equation (6).

Q =
1

4m

∑
x

axu
T
xB

∑
y

ayuy

=
1

4m

∑
x

(uTx s)
2βx, (6)

whereβx is an eigenvalue of the eigenvectorux. Newman assumes that the eigenvalues are labeled

in decreasing order,β1 ≥ β2 ≥ · · · ≥ βn. From Equation (6), to decide the most appropriate

s equals to decide the best weight of each eigenvalue. Therefore, the most simple method to

maximizeQ is to place all of the weight in the term involving the largest eigenvalueβ1 by setting

s to αu1. Because there is a constraint that the elements ofs must be±1, Newman maximizes

uTx s by settingsi = 1 if the corresponding element ofu1 is positive andsi = −1 otherwise. Then,

nodei belongs to group 1 ifsi = 1 and it belongs to group 2 ifsi = −1.

Decision of module can be realized by applying the same algorithm to each divided group re-

cursively. However, if this dividing procedure is applied to subgraph after simply deleting the links

between the two parts, the value of modularity in Equation (4) will change due to the change of

degrees. Instead, Newman uses the alternative modularity∆Q to calculate the correct modularity
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and to further divide a groupg of sizeng in two groups. The definition of∆Q is

∆Q =
1

2m
(
1

2

∑
i,j∈g

Bij(sisj + 1)−
∑
i,j∈g

Bij)

=
1

4m
(
∑
i,j∈g

Bijsisj −
∑
i,j∈g

Bij)

=
1

4m

∑
i,j∈g

(Bij − δij
∑
k∈g

Bik)sisj

=
1

4m
sTB(g)s (7)

whereδij is a Kroneckerδ-symbol andB(g) is theng × ng matrix with elements indexed by the

labelsi, j of nodes within groupg. An element ofB(g) is

B
(g)
ij = Bij − δij

∑
k∈g

Bik. (8)

Because Equation (7) has the same form as Equation (5), the dividing algorithm can be applied.

By using Newman algorithm, modular structure can be detected and the modularityQ is max-

imized. However, according to its heuristic manner, in some cases there is a module composed

of only one node, which is unsuitable for sensor networks. Therefore, we coordinate Newman

algorithm to suit for sensor networks. After divide a sensor network into modules by Newman

algorithm, nodei which belongs to moduleg checks modules its neighbor nodes belong to. If

there is no neighbor node belonging to moduleg, then nodei finds that it is isolated and moves to

one of the smallest modules its neighbor nodes belong to.

3.3 Configuring a 1st layer virtual sensor network by connecting sensor nodes

within the same module

In this section, we explain how to construct a small world network in an intra-module which is

detected by using the algorithm described in Section 3.2. To create a network with small world

properties, we add a small number of long-distance links, called shortcuts, to initial regular lattice

network.

We assume that initial topology of an intra-network is the same as the topology of a physical

network, that is to say two nodes which belong to the same module and are deployed in com-

munication range of each other are also connected logically. Then, we propose a model based
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on [18, 19], in which virtual shortcuts are added in consideration of both constraint of physical

distance and the preferential attachment rule.

In [18], the authors have proposed an enhancing a robustness of scale free network model

(ESF) in which new links are added to Barabasi Albert model (BA) topology [20] in consideration

of degrees. At first, a scale free network is constructed by BA model. The number of added links

is C|E0|, where|E0| is the number of links embedded in the constructed scale free network and

C is a constant value of 0 to 1. Authors define the probability of adding a new link between

unconnected nodei and nodej as

pESF (i, j) =
kαi · kαj∑

ea,b∈Ē kαa · kαb
, (9)

whereki is a degree of nodei, ea,b is a pair of nodes and̄E is the set of links in the complementary

graph.α is a parameter, called enforcing parameter. Whenα > 0, a new link is added preferen-

tially to a node with higher degree and the constructed topology is robust on connectivity against

random failure but vulnerable against targeted attack. Whenα < 0, a new link is added preferen-

tially to a node with lower degree and the constructed topology have an allowable robustness of

connectivity against both of random failure and targeted attack.

Airport network model (Airport model) is proposed in [19]. Airport model can construct a

spatial network topology with scale free property by considering physical distance constraints.

Airport model is based on preferential attachment algorithm and either of two processes described

below which is determined with probabilityΠ at each time step.

Probability Π: adding a new link between two nodes already in the network

Probability ( 1−Π): adding a new node and links between it andm nodes already in the network

The probability of adding a link between nodei and nodej which are already in the network is

shown in Equation (10) and the probability of adding a link between a new node and nodej is

shown in Equation (11).

pAirport(i, j) ∝
kikj

F (di,j)
. (10)

pAirport(j) ∝
kj

F (di,j)
. (11)

ki is a degree of nodei, di,j is a physical distance between nodei and nodej and F is a

monotonously increasing function. Authors investigate two different functional forms for the
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functionF , which areF1(d) = dr andF2(d) = ed/dx wherer anddx are a constant param-

eter describing a cutoff of distance constraint. In this thesis, we useF2(d).

By merging two models explained above, we propose a preferential attachment model based

on degree and physical distance constraint as

pintra(i, j) =

Gintra(ki,kj)
F2(hi,j)∑

ea,b∈Ē
Gintra(ka,kb)

F2(ha,b)

, (12)

where nodei and nodej belong to the same moduleM , Ē is the set of links in complementary

graph of intra-module network andhi,j is the minimum hop count from nodei to nodej. The

reason why we use hop count instead of physical distance is that the same method can be applied

to constructing an upper layer VSN topology. The functionGintra is a strategy of selecting a

new link preferentially according to degrees of endpoint nodes. We investigate a four different

strategies for adding a new link in intra-module network and the name of each strategyintra is

labeled by “hh’, “ll”, “hl” and “r”. When intra = hh, a pair of two nodes with higher degree

is selected preferentially for a new link, and whenintra = ll, a pair of two nodes with lower

degree is selected for a new link. Whenintra = hl, a node with higher degree and another with

lower degree are selected preferentially and connected. Whenintra = r, a pair of two nodes are

selected randomly regardless of their degrees. Each definition ofGintra is as follows.

Ghh(ki, kj) = ki · kj . (13)

Gll(ki, kj) = k−1
i · k−1

j . (14)

Ghl(ki, kj) = max(ki, kj) · |ki − kj |. (15)

Gr(ki, kj) = 1. (16)

The number of added virtual links is⌈Cintra|E0|⌉, where|E0| is the number of links embedded

in the initial intra-module network andCintra is a constant value of 0 to 1.

3.4 Configuring anN th layer virtual sensor network by connecting(N−1)th layer

virtual sensor networks

In this section, we explain the method to construct anN th layer VSN topology. This problem can

be divided into two small sub-problems as shown below.
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1. In anN th layer, regarding an (N − 1)th layer VSN as one subnetwork, the first problem is

how to select a pair of two subnetworks to be connected.

2. The second problem is how to select an endpoint sensor nodes at infra-layer based on inter-

subnetwork links inN th layer.

We explain how to solve the first problem in Section 3.4.1, and the second problem in Sec-

tion 3.4.2.

3.4.1 Constructing an intraN th layer virtual link

In this section, we propose a method to construct anN th layer virtual link between (N − 1)th

layer subnetworks. We regard VSN in an (N − 1)th layer as one subnetwork (SubN−1
i ).

Proposed method to construct a VSN topology in intraN th layer subnetwork is organized by

two steps described below.

1. Constructing an initial virtual topology

2. Adding virtual shortcut links to initial virtual topology

In step 1, initial virtual topology is constructed based on physical connection. When a pair of

nodes has physical link and they belong to different (N − 1)th layer subnetworks, these (N − 1)th

layer subnetworks are connected by anN th layer virtual link. Note that, there is a case that

unconnected subgraphs exist because there is no physical link between them. In such a situation,

the closest subnetworks are connected by anN th layer virtual link to guarantee its connectivity.

In step 2, newN th layer virtual links are added to the initial virtual topology constructed in

step 1 similar to the proposed model in Section 3.3. Proposed model is

pNintra(Sub
N−1
i , SubN−1

j ) =

Gintra(k
SubN−1

i
·k

SubN−1
j

)

F2(h
SubN−1

i
,SubN−1

j
)

∑
e
SubN−1

a ,SubN−1
b

∈ĒN

Gintra(k
SubN−1

a
·k

SubN−1
b

)

F2(h
SubN−1

a ,SubN−1
b

)

, (17)

where (N−1)th layer subnetworkSubN−1
i andSubN−1

j belong to the sameN th layer subnetwork

andĒN is the set of links in the complementary graph of theN th layer initial virtual topology.

kSubN−1
i

is a degree ofSubN−1
i andhSubN−1

i ,SubN−1
j

is the minimum hop count fromSubN−1
i to

SubN−1
j in graph ofN th layer initial virtual topology.
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The strategy functionGintra is the same one shown in Section 3.3 and we use the same strategy

as the strategy to construct a 1st layer VSN topology.

The number of addedN th layer virtual links is⌈CN
intra|EN

0 |⌉, where|EN
0 | is the number of

links embedded in theN th layer initial intra-subnetwork topology andCN
intra is a constant value

of 0 to 1.

3.4.2 Constructing a virtual link between under layer virtual sensor networks based on

N th layer virtual link

In this section, we explain the method to construct virtual links between the sensor nodes which

belong to different subnetworks based onN th layer virtual link. We select endpoints of anN th

layer virtual link from subnetworks in under layer recursively.

When there is anN th layer virtual link betweenSubN−1
x andSubN−1

y , we construct an (N −

1)th layer virtual link by selecting endpoints from (N−2)th layer subnetworksSubN−2
i ∈ SubN−1

x

andSubN−2
j ∈ SubN−1

y . We assumed that the relational operator “∈” whose right operand is an

N th layer subnetwork (SubNi ) means that its left operand is a subnetwork in a lowerN th layer

and composesSubNi .

The probability to add a link betweenSubN−2
i andSubN−2

j as endpoints of anN th layer

virtual link is defined as

pNinter(Sub
N−2
i , SubN−2

j ) =

Ginter(k
SubN−2

i
,k

SubN−2
j

)

F2(h
SubN−2

i
,SubN−2

j
)

∑
SubN−2

a ∈SubN−1
x ,SubN−2

b ∈SubN−1
y

Ginter(k
SubN−2

a
,k

SubN−2
b

)

F2(h
SubN−2

a ,SubN−2
b

)

, (18)

whereSubN−1
x ̸= SubN−1

y andSubN−2
i ∈ SubN−1

x , SubN−2
j ∈ SubN−1

y .

The functionGinter is a strategy of selecting endpointsSubN−2
x andSubN−2

y preferentially

according to their degrees in (N − 1)th layer VSN topology. We investigate a four different

strategies for adding a new link in inter-subnetwork and the name of each strategyinter is labeled

by “HH”, “LL”, “HL” and “R”. When inter = HH, a pair of two nodes with higher degree is

selected preferentially for a new link, and wheninter = LL, a pair of two nodes with lower

degree is selected for a new link. Wheninter = HL, a node with higher degree and another with

lower degree are selected preferentially and connected. Wheninter = R, a pair of two nodes is
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selected randomly regardless of their degrees. Each definition ofGinter is as follows.

GHH(kSubN−2
i

, kSubN−2
j

) = kSubN−2
i

· kSubN−2
j

. (19)

GLL(kSubN−2
i

, kSubN−2
j

) = k−1

SubN−2
i

· k−1

SubN−2
j

. (20)

GHL(kSubN−2
i

, kSubN−2
j

) = max(kSubN−2
i

, kSubN−2
j

) · |kSubN−2
i

− kSubN−2
j

|. (21)

GR(kSubN−2
i

, kSubN−2
j

) = 1. (22)

Note thatSub1 means a module which is detected by using the algorithm described in Section 3.2

andSub0 means a sensor node.

The number of added virtual links per upper layer link is⌈Cinter(E
SubN−1

x + ESubN−1
y )⌉,

whereESubN−1
x is the number of links embedded in the (N −1)th layer VSN topology ofSubN−1

x

andCinter is a constant value of 0 to 1. However, whenN = 2, the value of(ESub1x + ESub1y)

is relatively large, accordingly the number of added virtual links between modules is large, re-

sulting in small modularity. Therefore, whenN = 2, the number of added virtual links is

⌈αCinter(E
Sub1x + ESub1y)⌉ whereα is a constant value of 0 to 1. By applying this algorithm

recursively tillN = 2, we can finally construct a VSN topology composed of whole sensor nodes.
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4 Simulation experiments

In this section, we evaluate our proposal through comparison with Bio-inspired small world net-

work model (Bio-inspired) [21]. We briefly explain Bio-inspired in Section 4.1. Our proposed

model, called brain-inspired configuring model (BICM), has 16 kinds of results by combination

of 4 strategies ofintra and 4 strategies ofinter. Therefore, we identify each strategy by two

arguments ofintra andinter, such as BICM(intra,inter).

4.1 Bio-inspired techniques for achieving small world properties

Bio-inspired is a model which achieves small world properties using bio-inspired techniques in

wireless network with non-uniform node density [21]. The algorithm is composed of two steps,

identifying clustering by using Lateral Inhibition technique and identifying nodes that construct

long-distance links by using Flocking technique. The first step is described in Section 4.1.1 and the

second step is described in Section 4.1.2. Authors assume that a long-distance link is realized by

creating the directional beam because a power consumption is the same as when omnidirectional

transmission.

4.1.1 Clustering by using Lateral Inhibition technique

In this section, we explain the clustering algorithm by using Lateral Inhibition technique. At

first, each nodev floods a control packet contained node ID of cluster head it is associated (Hi),

the minimum hop count from it toHi(hv,Hi) and the degree ofHi(kHi). Initially, all the nodes

consider themselves as cluster heads and store their informationHi = v, hv,Hi = 0 andkHi = kv.

When a nodew receives a control message, it updates stored information based on stored and

received information. We assume that nodew stores information that it belongs to clusterj and

is associatedHj . WhenkHj < kHi andhw,Hi < g, whereg is the maximum gradient of cluster,

nodew is associatedHi and updates its stored information to belong to the clusteri. Further,

whenkHj = kHi andhw,Hi < hw,Hj , nodew is associatedHi and updates its stored information.

When a hop count is also the same, then the nodew decides to update the stored information

to the received information randomly. Then nodew broadcasts the updated information after

incrementing the hop count by 1. This process is repeated till all the nodes are associated the

cluster head which is the maximum degree withing hops.
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4.1.2 Constructing a long-distance link by using Flocking technique

In this section, we explain identifying nodes that construct long-distance links by using Flocking

technique. In Bio-inspired model, a long-distance link is constructed between a centroid and

a peripheral nodes of a cluster to reduce average path length efficiently. A centroid node of a

cluster is a node with the maximum closeness centrality and a peripheral node of a cluster is a

node deployed at boundary of the cluster. Closeness centrality is the fraction of shortest distance

between a node to all other nodes in the network of intra cluster and defined as

Closeness(vi) =
1∑

w ̸=vi,w∈Ci
sd(vi, w)

, (23)

where sd is the minimum hop count between two nodes. To identify peripheral nodes of clusteri,

a centroid nodeci of clusteri broadcasts a control message and each node in the cluster gets a hop

count toci. Then, the node with the maximum hop count toci in those of its neighbors declares

itself as a peripheral node.

Each peripheral nodevi randomly selects the number of antenna elementsm which is a value

of 2 toM and determines a beam length and a beam width. A beam length ismr, wherer is a

communication range in omnidirectional mode, and a beam width is2π
m2 . Each peripheral node

vi searches centroid nodes existing within the circle of radiusmr and nominates them for the

endpoint of a long-distance link. When a neighboring peripheral node already connected to the

centroid nodecj , a peripheral nodevi excludescj from candidates. Then, nodevi selects the node

to which the minimum hop count is the maximum in candidates and constructs a long-distance

link to it.

4.2 Evaluation metrics

The evaluation metrics are small worldness, clustering coefficient, average path length in virtual

network, average path length in physical network, modularity, the total number of virtual links,

robustness of connectivity and robustness of average path length.

The metric of small worldness,ω, are proposed in [22].ω compares network clustering to

an equivalent lattice network and average path length to a random network. Equivalent network

means that the degree distribution is the same as that of the original network.ω is defined as

ω =
Lrand

L
− C

Clatt
, (24)
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Table 1: Parameter settings

model parameter value

BICM Cintra 0.1

Cinter 0.1

α 0.1

Bio-inspired g 4

M 6

whereL is average path length andC is clustering coefficient of the original network,Lrand is

average path length of equivalent random network andClatt is clustering coefficient of equivalent

lattice network.ω is in range [-1,1]. The original network has small world properties whenω ∼ 0,

it has a lattice like property whenω ∼ −1 and it has a random like property whenω ∼ 1.

When we evaluate APL in the virtual network (vAPL), we assume that nodes connected by a

virtual link can communicate with each other in one hop. When we evaluate APL in the physical

network (pAPL), we assume that nodes connected by a virtual link communicate with each other

in shortest multihop path of physical network. According to the method to realize a long-distance

link in physical network, actual APL in physical network may change. Therefore, vAPL indicates

the minimum APL and pAPL indicates the maximum APL.

The metric of modularity isQ shown in Section 3.2.

We evaluate robustness of connectivity and APL by removing a node one by one. We evaluate

the decline in a component size which is the number of nodes in the maximum connected com-

ponent when we evaluate robustness of connectivity and we evaluate the increase in APL when

we evaluate robustness of APL. If there is no path from nodei to nodej according to removal of

nodes, we calculate APL with regarding the hop count between them as the number of nodes (N ).

We assume two kinds of removal models, random error and targeted attack. The node removed in

the next time step is selected randomly in random error, and the node with the largest degree is

selected to be removed in the next time step in targeted attack.

The parameter settings are shown in Table 1 and we used OMNeT++ [23] for simulation

experiments.
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4.3 Two-layered virtual sensor networks without a long wired connection

In this section, we evaluate a virtual sensor network which is constructed by one sensor network.

In our model, a constructed virtual sensor network is two-layered.

In simulation, 500 sensor nodes are deployed at random places in the area of 1000m× 1000m

and the communication range is 100m. An example of a physical sensor network is shown in

Figure 2. We construct a virtual sensor network based on such a physical topology and evaluate it.

Figure 2: Example of a physical sensor network

4.3.1 Small world properties

In this section, we evaluate a constructed VSN topology and summarize small worldness (ω), CC,

vAPL, pAPL, the total number of virtual links and modularity (Q) in Table 2.

A VSN constructed by BICM model has small world properties but relatively lattice like prop-

erties. In BICM, a link which has great influence on vAPL and pAPL is a link between modules.

When the strategyinter is HH or HL, vAPL of a whole network tends to be small because the

long-distance link is constructed at high degree nodes. On the contrary, vAPL tends to be large

when the strategyinter is LL. When the strategyinter is R, vAPL tends to be large because a dis-

tance constraint is only considered. However, wheninter = R, pAPL tends to be small because

a constructed virtual network is similar to physical network due to distance constraints.
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A VSN constructed by Bio-inspired model has the highest small worldness due toω ∼ 0.

Further, although the number of virtual links is the largest, vAPL and pAPL is the smallest of all

the models. This is due to Flocking technique. The long-distance links are distributed all over the

network because each peripheral node does not construct a long-distance link to the centroid node

which is already connected with its neighbor node. Moreover, APL reduces drastically because

each peripheral node selects the centroid node to which the minimum hop count is the maximum

in the candidates and constructs a long-distance link to it.

Table 2: Comparison of VSN constructed by each models in one sensor network

ω CC vAPL pAPL # of virtaul links Q

BICM(hh,HH) −0.389 0.657 4.09 8.33 3591 0.814

BICM(hh,LL) −0.410 0.606 4.56 8.82 3593 0.840

BICM(hh,HL) −0.390 0.627 4.23 8.56 3592 0.847

BICM(hh,R) −0.454 0.624 4.85 7.90 3591 0.825

BICM(ll,HH) −0.337 0.589 4.11 8.28 3595 0.823

BICM(ll,LL) −0.337 0.571 4.21 8.15 3597 0.838

BICM(ll,HL) −0.310 0.579 4.05 8.71 3593 0.852

BICM(ll,R) −0.371 0.575 4.47 7.94 3595 0.833

BICM(hl,HH) −0.327 0.616 3.92 8.42 3597 0.799

BICM(hl,LL) −0.363 0.583 4.38 8.15 3594 0.830

BICM(hl,HL) −0.312 0.605 3.92 8.57 3592 0.824

BICM(hl,R) −0.410 0.590 4.72 7.74 3596 0.825

BICM(r,HH) −0.384 0.643 4.11 8.40 3589 0.844

BICM(r,LL) −0.425 0.607 4.47 8.50 3592 0.847

BICM(r,HL) −0.365 0.618 4.13 8.43 3591 0.836

BICM(r,R) −0.456 0.620 4.76 7.92 3592 0.833

Bio-inspired −0.219 0.580 3.56 6.65 3749 0.742
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Figure 3: Robustness of connectivity against random failure when a VSN is constructed by one

sensor network

4.3.2 Robustness of connectivity

In this section, we evaluate robustness of connectivity against random fail and targeted attack.

Figure 3 and Figure 4 show the decline of a component size when nodes are removed by ran-

dom fail and targeted attack respectively. The decline of component size of each model is almost

same. In BICM, when nodes are removed by targeted attack, a link which has great influence on

the decline of a component size is also a link between modules. A VSN constructed by the strategy

inter = LL or inter = R is highly robust in terms of connectivity because it keeps a component

size high. A VSN constructed by Bio-inspired is highly robust in terms of connectivity because it

is based on lattice regular graph.

4.3.3 Robustness of average path length

In this section, we evaluate robustness of vAPL and pAPL against random fail and targeted attack.

Figure 5 and Figure 6 show the increase tendency of vAPL when nodes are removed by random

fail and targeted attack respectively. In BICM, a link which has great influence on robustness of
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Figure 4: Robustness of connectivity against targeted attack when a VSN is constructed by one

sensor network

vAPL is a link between modules. All the VSN constructed by each model have a highly robust

against random fail in terms of vAPL. A VSN constructed by BICM of the strategyinter = HH

or inter = HL or by Bio-inspired has smaller vAPL because a long-distance link is constructed to

the node with high degree or closeness centrality. However, they are vulnerable of vAPL against

targeted attack due to the same reason. When the nodes are removed by targeted attack, a VSN

constructed by BICM of the strategyinter = LL or inter = R has highly robust in terms of

vAPL.

Figure 7 and Figure 8 show the increase tendency of pAPL when nodes are removed by random

fail and targeted attack respectively. All the VSN constructed by each model have a highly robust

of pAPL against random fail. The VSN constructed by BICM of the strategyinter = R or by Bio-

inspired has smaller pAPL because the both of constructed topologies are almost same as physical

network and almost all paths are shortest paths in the physical network. When nodes are removed

by targeted attack, a VSN constructed by BICM of the strategyinter = LL or inter = R has

highly robust of pAPL. The VSN constructed by Bio-inspired has the highest robustness of pAPL

against targeted attack because it is based on physical network.
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Figure 5: Robustness of vAPL against random failure when a VSN is constructed by one sensor

network

From the above, the highly robust model in both vAPL and pAPL is BICM with the strategy

inter = LL.

4.4 Three-layered virtual sensor networks with a long wired connection

In this section, we evaluate a virtual sensor network which is constructed by two sensor networks

which are connected by one wired link. In our model, a constructed virtual sensor network is

three-layered.

In simulation, two sensor networks, each of which is composed of 200 sensor nodes, are

embedded in the area of 1000m× 1000m. For one of two sensor networks, 200 sensor nodes are

deployed at random places in the area of0m ≤ x ≤ 400m, 0m ≤ y ≤ 1000m, and 200 sensor

nodes are deployed at random places in the area of600m ≤ x ≤ 1000m, 0m ≤ y ≤ 1000m

for the other. One wired link is embedded between two sensor networks and sensor nodes of its

endpoints are statically selected. When the wireless communication range is 100m, an example

of a physical sensor network is shown in Figure 9. We construct a VSN based on such a physical

topology and evaluate it.
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Figure 6: Robustness of vAPL against targeted attack when a VSN is constructed by one sensor

network

4.4.1 Small world properties

In this section, we evaluate a constructed VSN topology and summarize small worldness (ω), CC,

vAPL, pAPL, the total number of virtual links and modularity (Q) in Table 3.

Table 3 shows the almost same tendency as the properties of the VSN constructed by one

sensor network. This implies that multi-layered VSN can be constructed by applying our proposed

algorithm recursively and its topology has similar properties to those of two-layered VSN. A VSN

constructed by BICM model has small world properties but relatively lattice like properties. In

BICM, a link between modules has great influence on vAPL and pAPL. When the strategyinter is

HH or HL, vAPL of a whole network tends to be small because a long-distance link is constructed

at high degree nodes. On the contrary, vAPL tends to be large when the strategyinter is LL. A

VSN constructed by Bio-inspired model has the highest small worldness due toω ∼ 0. Further,

although the number of virtual links is the largest, vAPL and pAPL is the smallest of all the models

according to Flocking technique.
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Table 3: Comparison of VSN constructed by each models in two sensor networks connected by

one wired link

ω CC vAPL pAPL # of virtual links Q

BICM(hh,HH) −0.387 0.660 4.20 10.25 2722 0.849

BICM(hh,LL) −0.451 0.621 4.89 11.12 2722 0.843

BICM(hh,HL) −0.406 0.638 4.43 10.51 2721 0.847

BICM(hh,R) −0.419 0.640 4.47 9.51 2723 0.841

BICM(ll,HH) −0.312 0.593 4.09 10.46 2727 0.851

BICM(ll,LL) −0.368 0.579 4.46 10.25 2727 0.844

BICM(ll,HL) −0.342 0.587 4.32 10.95 2722 0.848

BICM(ll,R) −0.358 0.584 4.46 9.42 2724 0.826

BICM(hl,HH) −0.347 0.629 4.16 10.12 2722 0.840

BICM(hl,LL) −0.428 0.606 4.89 10.16 2716 0.854

BICM(hl,HL) −0.371 0.618 4.28 10.72 2720 0.853

BICM(hl,R) −0.434 0.612 4.93 9.67 2718 0.849

BICM(r,HH) −0.461 0.653 4.74 10.06 2716 0.851

BICM(r,LL) −0.452 0.618 4.85 11.45 2721 0.848

BICM(r,HL) −0.385 0.630 4.29 10.47 2725 0.849

BICM(r,R) −0.474 0.637 4.94 9.42 2722 0.840

Bio-inspired −0.203 0.587 3.56 8.23 2787 0.769

28



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  50  100  150  200  250  300  350

pA
P

L

the number of failed nodes

BICM(hh,HH)
BICM(hh,LL)
BICM(hh,HL)

BICM(hh,R)
BICM(ll,HH)
BICM(ll,LL)
BICM(ll,HL)
BICM(ll,R)

BICM(hl,HH)
BICM(hl,LL)
BICM(hl,HL)

BICM(hl,R)
BICM(r,HH)
BICM(r,LL)
BICM(r,HL)
BICM(r,R)

Bio-inspired

Figure 7: Robustness of pAPL against random failure when a VSN is constructed by one sensor

network

4.4.2 Robustness of connectivity

In this section, we evaluate robustness of connectivity against random fail and targeted attack.

Figure 10 and Figure 11 show the decline of a component size when nodes are removed by

random fail and targeted attack respectively. Note that there are few opportunities to fail the node

which is the endpoint of a wired link than other nodes because it is assumed to be supplied energy

through wired link. Therefore, we assume that the node connected by a wired link does not fail.

The decline of a component size of each model is almost same. In BICM, when nodes are

removed by targeted attack, a VSN constructed by the strategyinter = LL or inter = R is

highly robust in terms of connectivity because it keeps a component size high. A VSN constructed

by Bio-inspired is highly robust in connectivity because it is based on lattice regular graph. These

features are also observed in Section 4.3.2.

29



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  50  100  150  200  250

pA
P

L

the number of failed nodes

BICM(hh,HH)
BICM(hh,LL)
BICM(hh,HL)

BICM(hh,R)
BICM(ll,HH)
BICM(ll,LL)
BICM(ll,HL)
BICM(ll,R)

BICM(hl,HH)
BICM(hl,LL)
BICM(hl,HL)

BICM(hl,R)
BICM(r,HH)
BICM(r,LL)
BICM(r,HL)
BICM(r,R)

Bio-inspired

Figure 8: Robustness of pAPL against targeted attack when a VSN is constructed by one sensor

network

4.4.3 Robustness of average path length

In this section, we evaluate robustness of vAPL and pAPL against random fail and targeted attack.

The results show an almost same tendency as the results of a VSN which is constructed by one

sensor network. Figure 12 and Figure 13 show the increase tendency of vAPL when nodes are

removed by random fail and targeted attack respectively. All the VSN constructed by each model

have a high robustness against random fail in terms of vAPL. A VSN constructed by BICM of

the strategyinter = HH or inter = HL or by Bio-inspired has smaller vAPL because a long-

distance link is constructed to the node with high degree or closeness centrality. However, they are

vulnerable of vAPL against targeted attack due to the same reason. When nodes are removed by

targeted attack, a VSN constructed by BICM of the strategyinter = LL or inter = R has high

robustness of vAPL.

Figure 14 and Figure 15 show the increase tendency of pAPL when nodes are removed by

random fail and targeted attack respectively. All the VSN constructed by each model have a highly

robust of pAPL against random fail. A VSN constructed by BICM of the strategyinter = R or by
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a wired link

Figure 9: Example of a physical sensor network composed of two sensor networks connected by

one wired link
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Figure 10: Robustness of connectivity against random failure when a VSN is constructed by two

sensor networks with one wired link
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Figure 11: Robustness of connectivity against targeted attack when a VSN is constructed by two

sensor networks with one wired link

Bio-inspired has smaller pAPL because both of constructed topologies are almost same as physical

network and almost all paths are shortest paths in the physical network. When nodes are removed

by targeted attack, a VSN constructed by BICM of the strategyinter = LL or inter = R has

high robustness of pAPL. A VSN constructed by Bio-inspired has the highest robustness of pAPL

against targeted attack because it is based on physical network.

From the above, the highly robust model in both vAPL and pAPL is BICM with the strategy

inter = LL.

When we consider all results, multi-layered VSN constructed by our proposed algorithm has

a certain small worldness, communication efficiency, robustness of connectivity and robustness

of APL. This suggests that subnetworks observed on arbitrary scale of VSN constructed by our

algorithm have similar properties.
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Figure 12: Robustness of vAPL against random failure when a VSN is constructed by two sensor

networks with one wired link

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  50  100  150  200  250

vA
P

L

the number of failed nodes

BICM(hh,HH)
BICM(hh,LL)
BICM(hh,HL)

BICM(hh,R)
BICM(ll,HH)
BICM(ll,LL)
BICM(ll,HL)
BICM(ll,R)

BICM(hl,HH)
BICM(hl,LL)
BICM(hl,HL)

BICM(hl,R)
BICM(r,HH)
BICM(r,LL)
BICM(r,HL)
BICM(r,R)

Bio-inspired

Figure 13: Robustness of vAPL against targeted attack when a VSN is constructed by two sensor

networks with one wired link
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Figure 14: Robustness of pAPL against random failure when a VSN is constructed by two sensor

networks with one wired link
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Figure 15: Robustness of pAPL against targeted attack when a VSN is constructed by two sensor

networks with one wired link
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5 Conclusion and Future Work

In this thesis, we propose a model for constructing a VSN topology inspired by brain functional

networks. Our proposed model is organized by three steps, dividing sensor networks into unit

modules, constructing a virtual topology with small world property in each module and integrating

multiple modules or subnetworks of under layer. We investigate combinations of four strategies

intra for constructing an intraN th layer virtual links and four strategiesinter for configuring

virtual links of under layer based on a virtual link ofN th layer.

The results of the simulation experiments show that the strategyinter plays an important role

for communication efficiency and robustness of constructed VSN topology. When at least one of

the endpoints of virtual long-distance link between modules has high degree, global efficiency is

improved but robustness against targeted attack declines. When nodes which are within different

modules and have low degree are connected by a virtual long-distance link, global efficiency is

slightly low but all of three kinds of robustness, in terms of connectivity, vAPL and pAPL, against

targeted attack are high. Comparing with a VSN topology constructed by Bio-inspired, a VSN

topology constructed by our model has a high robustness of vAPL against targeted attack.

In this thesis, we analyze only static properties of virtual topology composed of all sensor

nodes. Therefore, we need to consider the followings in future work. At first we need consider

the method to realize a virtual link in physical network. The packet forwarded along a virtual

link should be conveyed with short delay. For example, creating directional beam, increasing

omnidirectional transmission range or forwarding by multi hop with priority will do. Secondly,

when there are multiple demands for constructing VSNs which compete for resources such as

energy, memory or bandwidth, we need investigate the model constructing resource efficient VSN

topologies. Thirdly, we want to construct a protocol for configuring a VSN topology adaptively

according to environmental changes, such as diverse traffic patterns, addition or removal of virtual

nodes or modules. Due to modular community structure, small adjustment of a few numbers of

virtual links between modules will achieve that.
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