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Abstract. There is an emerging research area to adopt bio-inspired al-
gorithms to self-organize an information network system. Despite strong
interests on their benefits, i.e. high robustness, adaptability, and scala-
bility, the behavior of bio-inspired algorithms under non-negligible per-
turbation such as loss of information and failure of nodes observed in the
realistic environment is not well investigated. Because of lack of knowl-
edge, none can clearly identify the range of application of a bio-inspired
algorithm to challenging issues of information networks. Therefore, to
tackle the problem and accelerate researches in this area, we need to un-
derstand characteristics of bio-inspired algorithms from the perspective
of network control. In this paper, taking a response threshold model as
an example, we discuss the robustness and adaptability of bio-inspired
model and its application to network control. Through simulation exper-
iments and mathematical analysis, we show an existence condition of the
equilibrium state in the lossy environment. We also clarify the influence
of the environmental condition and control parameters on the transient
behavior and the recovery time.

Keywords: self-organization, response threshold model, robustness, adaptabil-
ity, linear stability theory

1 Introduction

For information networks to remain one of infrastructures indispensable for a
safe, secure, and comfortable society, they must be more robust, adaptive, and
scalable against ever-increasing size, complexity, and dynamics. To this end,
researchers focus on self-organizing behavior of biological systems, where a global
pattern emerges from mutual and local interactions among simple individuals,
and develop novel control mechanisms [1].

Bio-inspired control mechanisms not only mimic behavior of biological organ-
isms but are based on nonlinear mathematical models which explain or repro-
duce biological self-organization. Since bio-inspired mathematical models, which
we call bio-models in this paper, are shown to have excellent characteristics, e.g.



high convergence and stability, network control mechanisms based on bio-models
are expected to be robust, adaptive, and scalable [2–5]. Successful attempts pub-
lished in literatures support this expectation and there is no doubt about the
usefulness of bio-models [6, 7].

However, bio-models are not necessarily versatile. One can achieve the best
performance in one environment while it is useless in other. Furthermore, a bio-
inspired network control mechanism often experiences a variety of perturbation
such as loss of information and failure of node and as a result it would fail in
providing intended results in the actual environment. Therefore, we need deep
understanding of bio-models especially in regard to their fundamental limits and
applicability to network control suffering from perturbations. For example, they
evaluated the influence of delay on a bio-inspired synchronization mechanism
adopting the pulse-coupled oscillator model and showed that the synchronization
error became as much as the propagation delay at the worst cases [8]. In [9], it
is shown that the maximum rate of information loss that autonomous pattern
formation based on the reaction diffusion model of biological morphogenesis can
tolerate was as high as 35%.

In this paper, by taking a response threshold model [10] as an example, we
analyze the influence of information loss and node failure on the stability of a
response threshold model-based network control. The response threshold model
is a mathematical model of division of labors in a colony of social insects. It has
been applied to variety of self-organizing network control, such as task alloca-
tion [11], topology control [12], routing [13] and cache replacement [14]. First,
we evaluate the influence of information loss on autonomous task allocation.
Simulation results show that the number of workers increases as the loss rate
is higher while the loss rate does not have serious impact on the recovery time
from node failure. Next, to clarify the maximum loss rate that response threshold
model-based task allocation can tolerate, we conduct mathematical analysis of
the model in lossy environment and derive existence conditions of an equilibrium
state. Then, we formulate the recovery time and clarify important parameters
to shorten it.

The remainder of this paper is organized as follows. First, in section 2 we
briefly introduce a response threshold model. Next, in section 3, we evaluate the
influence of information loss on transient behavior during recovery from node
failures through simulation experiments. Then, in section 4 we build an analyt-
ical model and investigate the relationship between parameters and transient
behavior. Finally, in section 5, we conclude this paper.

2 Mathematical Model of Division of Labors

A response threshold model [10] is a mathematical model which imitates a mech-
anism of adaptive division of labors in a colony of social insects. A colony is di-
vided into two groups of workers and non-workers based on autonomous decision
of individuals. The size of each group is well adjusted to meet the task-associated



demand or stimulus intensity. In the following, we consider there is one task to
be performed in the colony for the sake of simplicity of explanation.

Let s(k) (≥ 0) be the task-associated stimulus intensity at discrete time
step k. The stimulus intensity gradually increases over time, and it decreases as
individuals work. Its dynamics is formulated by the following discrete equation.

s(k + 1) = s(k) + δ − w(k)

M
(1)

Here constant δ (0 ≤ δ ≤ 1) is the increasing rate of the stimulus intensity. w(k)
is the number of workers at time k. M (> 0) is the total number of individuals
which are capable of performing the task. Based on the model, the stimulus
intensity becomes stable when the ratio of workers in the colony is equal to δ.
The model can easily be extended to consider the absolute number of workers
not the ratio by appropriately defining δ.

By being simulated by the stimulus, each individual stochastically decides
whether to perform the task. The state of individual i at time k is denoted
as Xi(k) ∈ {0, 1}, where 0 means it is a non-worker and 1 does a worker. The
probability P (Xi (k) = 0 → Xi (k + 1) = 1) that non-worker i becomes a worker
and begins performing the task at time k+1 is given by the following equation.

P (Xi (k) = 0 → Xi (k + 1) = 1) =
s2(k)

s2(k) + θ2i (k)
(2)

Here θi(k) (> 0) is a threshold at time k, which corresponds to hesitation of
individual i in performing the task. Therefore, an individual with a smaller
threshold is more likely to become a worker more often than those with a larger
threshold.

The probability P (Xi (k) = 1 → Xi (k + 1) = 0) that individual i, a worker,
quits working at time k + 1 is given by constant p (0 ≤ p ≤ 1).

P (Xi (k) = 1 → Xi (k + 1) = 0) = p (3)

Quitting a task at the constant rate enables rotation of the task among individ-
uals, that is, work-sharing or load balancing. Given p, the average duration that
an individual performs the task becomes 1/p.

When the number of idle individuals occasionally increases by addition of
newcomers or the number of workers decreases for sudden death, the stimulus
intensity eventually increases and individuals with high threshold turn into work-
ers. Consequently, the ratio of workers is maintained at around the equilibrium
point determined by the increasing rate δ.

3 Simulation-based analysis of Response Threshold
Model

Through simulation experiments, we evaluate transient behavior during recovery
from death of individuals or node failures.



Table 1. Parameter setting

Notation Description Default

θ Hesitation to become a worker 10
p Probability of quitting 0.1
Ic Interval between two successive stimulus diffusion 1
Id Interval between two successive data reporting 1
δ Increasing rate of stimulus intensity 0.15
M Total number of nodes 1,000

3.1 Simulation model

We assume a hypothetical system consisting of a central unit and nodes among
which a task is assigned. Nodes are homogeneous and capable of performing the
task. The stimulus intensity is diffused to nodes from a central unit. Then as a
response to the stimulus each node which received the stimulus decides whether
to perform the task or not and reports the decision to the central unit. Those
nodes that cannot receive the stimulus do not change their state. The central
unit then obtains the number of workers w(k) from received reports and derives
the new stimulus intensity by using Eq. (1). The stimulus intensity is again dif-
fused to nodes. While doing a task, a node would inform a central unit of its
result. For example, in a case of a monitoring application of a wireless sensor
network, each sensor node periodically sends a message containing sensor read-
ing, such as temperature and humidity, to a sink. To take into account a realistic
application of the response threshold model, we further assume that exchanges
of the stimulus and responses is performed per Ic (> 0) second, corresponding
to the control interval of an application system. Furthermore, the data reporting
interval is assumed to be Id (0 < Id ≤ Ic) second.

In the above mentioned system, there are three occasions for disruption of
communication between a central unit and a node. A central unit sometimes
fails in receiving a response from a node, which we call worker information,
for communication errors. As a result, the stimulus intensity will be derived
from the wrong number of workers. A central unit would also fail in receiving
data from nodes. On the contrary, a node would fail in receiving what we call
stimulus information from the central unit and cannot decide its new state. In
the analysis, we denote the probability of loss of information as qw (0 ≤ qw ≤ 1),
qd (0 ≤ qd ≤ 1) and qs (0 ≤ qs ≤ 1) for worker information, data, and stimulus,
respectively, and we call them information loss rate.

3.2 Simulation setting

Based on the hypothetical system we defined in the above, we evaluate the
influence of information loss on transient properties during recovery from node
failures. There is one task and there are M nodes capable of performing the task.
We consider the loss rate is identical among information, that is, qw = qs = qd =
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Fig. 1. Influence of information loss during recovery from node failure

q. There is no delay in communication. Parameters are summarized in Table 1.
δ = 0.15 means that a central unit wants to receive as many as 150 data from
nodes every Id seconds. Each simulation run lasts for 1,000 seconds. The fraction
rf (0 ≤ rf ≤ 1) of workers, i.e. nodes with Xi(k) = 1, are randomly selected and
removed at 500.5 seconds, but M is unchanged reflecting that a central unit is
not aware of node removal. In the following, we show averages of 100 simulation
runs.

3.3 Simulation evaluation

Figure 1 shows temporal changes of the number of data received by a central
unit and the number of workers in the network for the information loss rates of
0.0 and 0.65. We show averages and standard deviation. As shown in Fig. 1(a),
independently of the information loss rate, a central unit eventually resumes
receiving the desired number of data after node failures. Regarding the transient
behavior, the number of received data for higher loss rate slowly increases, while
one for no loss increases faster and even overshoots. In this simulation model,
the loss of stimulus disturbs appropriate state setting of nodes and as a result
higher loss rate leads to slower dynamics. On the contrary, when there is no loss of
information, a node can receive a stimulus and change its state appropriately. As
a result, the number of workers rapidly increases. However, because of hysteresis
in the stimulus calculation, it once overshoots and then reaches the equilibrium.

Figure 1(b) shows the number of workers is larger with the larger information
loss rate. When worker information is frequently lost, the stimulus becomes larger
than the case without information loss to maintain the underestimated number
of workers around 150. Since the loss rate of data is identical to that of worker
information, the number of data that a central unit is kept around 150 as show
in Fig. 1(a).

Next we evaluate the recovery time Tr, which is defined as time required
for the number of received data to continuously exceed 96% of the targeted
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Fig. 2. Influence of information loss on the recovery time

value, which is derived as δ · M , after node failures. In Fig. 2, we depict Tr

against the information loss rate q from 0.0 to 0.5 and the node failure rate
rf from 0.0 to 0.5. As shown in Fig. 2, the recovery time increases as the rate
of information loss increases. For example, the recovery time for q = 0.0 and
rf = 0.5 is 28 seconds. When the information loss rate is 0.5, the recovery time
becomes 54 seconds. Therefore, the increase is as much as double. In the next
section, through mathematical analysis, we investigate the influence of control
parameters on the recovery time to have faster convergence.

4 Mathematical Analysis of Response Threshold Model

From simulation-based analysis, it is shown that the number of workers increases
as the loss rate becomes higher. To clarify the range of the loss rate for the
response threshold model to be effective, we derive existence conditions of an
equilibrium state. We also formulate the recovery time and clarify parameters
important to shorten the recovery time.

4.1 Analytical model considering information loss

As explained in section 2, the number of workers in a system returns to the target
value after removal of workers by involving non-workers with the increased stim-
ulus. However Fig. 1 shows that there are two types of transient behavior. When
a system overreacts to the decrease in the number of workers, it often results in
overshooting and further leads to oscillation as illustrated in the left of Fig. 3.
Even in that case, it eventually approaches to the target value or the equilibrium
state as shown in the left figure. On the contrary, with moderate adaptation, the
number of workers steadily increases toward the desired level without oscillation,
while it would take longer than the case of aggressive adaptation as shown in
the right of Fig. 3.

An information network is a discrete system, where a node intermittently
emits and receives a chunk of data called packet and performs predetermined al-
gorithms. However in this paper, for simplicity of analysis, we adopt continuous-
time modeling and analyze the effect of information loss on transient behavior,
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i.e. magnitude of oscillation during recovery from node failure and recovery time
of the response threshold model. The validity of analysis will be verified through
comparison with simulation results.

Considering loss and reception of information as Bernoulli trials, the expected
number of workers and non-workers which receive the stimulus information are
formulated as (1−qs)nw and (1−qs)(M−D−nw), respectively. Here, variable nw

is the expected number of workers in a colony. Constant D (0 ≤ D ≤ M) is the
number of dead workers, assuming that a set of individuals are statically removed
from a colony. Then, the expected number ns of the worker information that a
central unit receives from workers is formulated as (1 − qw)nw. Consequently,
the temporal dynamics of the expected value s of the stimulus intensity and the
expected number nw of workers can be formulated as follows.[

ds
dt

dnw

dt

]
=

 δ − (1−qw)ns

M

−p (1− qs)nw + s2

s2+θ2 (1− qs) (M −D − nw)

 (4)

Here we assume that threshold θ is identical among individuals.

4.2 Characteristic analysis of equilibrium state

From Eq. (4), we derive the equilibrium state [s̄ n̄w]
T , where the time variation

of the expected values s and nw are zero.

[
s̄
n̄w

]
=

θ

√
pδ

(1− D
M )(1−qw)−δ(1+p)

δM
1−qw

 (5)

Since the stimulus intensity is a positive real number, (1−D/M)(1−qw)−δ(1+
p) > 0 must hold. At the same time, δM/(1− qw) < M −D must hold so that
the number of workers is smaller than the population. Therefore, the condition
that a feasible equilibrium state exists is given by the following inequality.

(1− f) (1− qw)− δ (1 + p) > 0 (6)

f is D/M , that is the ratio of the number of dead individuals to the original
colony size.



4.3 Characteristic analysis of transient state

Based on the linear stability theory, transient behavior of a linear system repre-
sented as dx/dt = Ax can be analyzed by evaluating eigenvalues of matrix A. An
eigenvalue λi is generally formulated as αi+ jβi, where j is imaginary

√
−1 and

αi and βi are real numbers. xi(k) is mapped onto zi(k) = zi(0) exp
(αi+jβi)k =

zi(0) exp
αik(cosβik+j sinβik) by linearly converting x. Therefore, the dynamics

with ∀iαi < 0 has asymptotic stability, and smaller αi leads to longer time for
dzi/dt to converge to 0. In addition, the dynamics with ∀iβi = 0 is stable. αi is
specifically called damping factor in this paper.

Linearizing the nonlinear analytical model defined by Eq. (4), we can analyze
influence of information loss on transient behavior during recovery from node
failures. Firstly, we derive the Jacobian matrix from the nonlinear analytical
model. We define r as the fraction of workers in a colony, i.e. r = nw/M . Then,
dynamics ds/dt and dr/dt can be formulated as follows.[

ds
dt

dr
dt

]
=

[
δ − (1− qw)r

−p (1− qs) r +
s2

s2+θ2 (1− qs) (1− f − r)

]
(7)

To adopt the linear stability theory, we linearize Eq. (7) at the equilibrium state

[s̄ r̄]T = [θ
√

pδ
(1−f)(1−qw)−δ(1+p)

δ
1−qw

]T by Taylor expansion. Then, the dynamics

of error e = [es er]
T between the equilibrium state [s̄ r̄]T and the state [s r]T , i.e.

e = [s r]T − [s̄ r̄]T , can be formulated as the basic linear equation de/dt = Ae
as follows, where A is the Jacobian matrix.[

des
dt

der
dt

]
=

 0 − (1− qw)

(1− qs)(1− f − r̄) 2s̄θ2

(s̄2+θ2)2 − (1− qs)
(
p+ s̄2

s̄2+θ2

)[
es

er

]
(8)

Next, we derive eigenvalues of the matrix A from a characteristic equation
det |A− λI| = 0. Since the matrix A in Eq. (8) is in the form of [0 a; b c],
an eigenvalue is formulated as 0.5(c ±

√
c2 + 4ab). Specifically, c and ab are

formulated as follows, by substituting s̄ of Eq. (5).
c = − (1− qs) p

{
1 + δ

(1−f)(1−qw)−δ

}
ab = − 2

θ

√
pδ(1− qs)

{(1−f)(1−qw)−δ(1+p)}1.5

(1−f)(1−qw)−δ

(9)

c < 0 and ab < 0 must hold for its real part to be always less than 0. When
Eq. (6) is satisfied and the equilibrium state exists, 0 < 1 − qs, 0 < p, and
δ < δ(1 + p) < (1 − f)(1 − qw) hold. Therefore, the first condition c < 0 is

always met. Similarly, because of 0 < (1 − qw), 0 < (1 − qs), 0 < 2s̄θ2

(s̄2+θ2)2 , and

0 < r̄(1 + p) < 1 − f − r̄, the second condition ab < 0 is also met. Therefore
a real part of the eigenvalue is always negative and as a result the state does
not diffuse out of the proximity of the equilibrium state. This means that the
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response threshold model is robust against information loss once it reaches the
equilibrium state.

In the following, we discuss the influence of parameters on transient behavior.
For the sake of simplicity, we assume the identical loss rate, i.e. qw = qd = qs = q.

Oscillating or stable dynamics The dynamics of the state oscillates as shown
in the left of Fig. 3 when eigenvalues of the state transition matrix have an
imaginary part. In other words, a system reaches the equilibrium state without
oscillation when c2 + 4ab is positive (Fig. 3 right). On the contrary, a system
wanders toward the equilibrium state when c2 + 4ab is negative (Fig. 3 left).

Figure 4 illustrates a value of c2+4ab as a function of the information loss rate
and the failure rate. Parameters are set as p = 0.1, θ = 10, and δ = 0.15. In the
figure, the equilibrium state does not exist in the white area derived from Eq. (6)
and we show contour lines of c2+4ab = 0.05, 0, and -0.05. A point with a lighter
color has a smaller c2 +4ab. The figure indicates the range that network control
based on the response threshold model is feasible. The border can be formulated
as (1−f)(1−qw)−δ(1+p) = 0. Therefore, the range can be extended by choosing
appropriate control parameters δ and p depending on the operational condition
expressed by f and qw. In the range, c2 + 4ab becomes positive and a system
steadily moves to the equilibrium when both of the information loss rate and the
failure rate are large. However, c2 + 4ab is negative in the most part. It means
that the transient dynamics toward the equilibrium state basically oscillates.
The oscillating dynamics causes the overshoot and redundant numbers of nodes
temporarily become workers. Whereas a system finally reaches the equilibrium,
it becomes a problem in a resource-limited network.

Figure 5 illustrates the influence of tunable parameters, i.e. p and θ on a
value of c2+4ab when information loss rate q, failure rate rf , increase rate δ are
set at 0.1, 0.1, and 0.15, respectively. From the figure, we can find that threshold
θ has a small influence on c2+4ab. On the contrary, a larger p can make c2+4ab
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positive leading to the stable dynamics. However, a larger p makes the second
term of left side of Eq. (6) smaller. As a result, loss rate and failure rate need
to be larger for the equilibrium state to exist. This implies that the robustness
deteriorates as p is large. When we adopt small p to avoid loss of robustness,
a system is more likely to oscillate in the transient behavior. However, from
a viewpoint of a central unit, receiving a sufficient amount of data is helpful
while it is intermittent. Suppressing the degree of oscillation and shortening the
duration remain future work.

Recovery time from death Recovery time from node failures is defined as
necessary time for deviation ∆ = n̄w − nw to become as small as 4% of n̄w.
Deviation ∆(0) soon after node failures is rf · n̄w. The deviation decreases
as ∆(t) = ∆(0) expαmaxt, where αmax (< 0) is a damping factor derived as

maxRe c±
√
c2+4ab
2 .

Solving the equation 0.04 · n̄w = ∆(0) expαmaxTr , we can derive recovery time
Tr as follows.

Tr =
loge

0.04
rf

αmax
(10)

Figure 6 shows the recovery time derived from Eq. (10) and obtained from
simulation results. Although surfaces do not match well between analysis and
simulation, the analytical result represents the relationship among failure rate,
loss rate, and recovery time. Figure 7 illustrates dependence of the recovery time
on these rates for the wider range. As shown in the figure, the maximum recovery
time is only double of the minimum. This result supports the robustness of the
response threshold model considering that loss often has an exponential influence
on conventional control.

Finally, Fig. 8 illustrates the influence of tunable parameters, i.e. quitting
probability p and threshold θ, on the recovery time derived from Eqs. (9) and
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(10), when information loss rate q, failure rate rf , and increasing rate δ are set
at 0.0, 0.5, and 0.15, respectively. In the white area, the equilibrium state does
not exist. The figure shows that threshold θ does not have much influence on the
recovery time for the fixed quitting probability p, but a smaller θ enables wider
range of adaptation of quitting probability p. To make the recovery time shorter,
we should have a small θ and a large p. When θ is 10, the recovery time decreases
from 42.3 to 21.1 by changing quitting probability from 0.1, corresponding to
the largest recovery time in Fig. 2, to 0.2.

5 Conclusion and Future Work

In this paper, we investigate transient behavior during recovery from failures of
individuals in the lossy environment. Results show that the response threshold
model is robust against failure and loss. We further analytically clarify the influ-
ence of the environmental condition, i.e. loss rate q and failure rate rf , and the
control parameters, i.e. threshold θ and quitting probability p, on the oscillation
and the recovery time.

As future work, we plan to consider suppression of oscillation in the transient
phase to have more stable and faster convergence from failures. Furthermore, we
also need to investigate the distribution of the number of workers and the number
of received data, because we only consider expected values and equilibrium state
in the paper.
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