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Abstract—Traffic engineering with traffic prediction is one
approach to accommodate time-varying traffic without frequent
route changes. In this approach, the routes are calculated so as to
avoid congestion based on the predicted traffic. The accuracy of
the traffic prediction however has large impacts on this approach.
Especially, if the predicted traffic amount is significantly less
than the actual traffic, the congestion may occur. In this paper,
we propose the traffic prediction methods suitable to the traffic
engineering. In our method, we perform preprocessing before the
prediction in order to predict the periodical variation accurately.
Moreover, we consider the confidence interval for the prediction
error and the variation excluded by the preprocessing to avoid
the congestion caused by the temporal traffic variation. In this
paper, we discuss three preprocessing approaches; the trend com-
ponent, the lowpass filter, and the envelope. Through simulation,
we clarify that the preprocessing by the trend component or
the lowpass filter increases the accuracy of the prediction. In
addition, considering the confidence interval achieves the lower
link utilization within a fixed control period.

Index Terms—Traffic Engineering, Traffic Prediction, Data
Mining, Trend Component, SARIMA Model

I. INTRODUCTION

In recent years, the time variation of the Internet traffic
becomes large due to the growth of the Internet services, such
as streaming and cloud services. A backbone network has to
accommodate such traffic without congestion.

Many traffic engineering schemes have addressed the prob-
lem of accommodating time-varying traffic [1–3]. In the traffic
engineering methods, a control server periodically observes the
traffic in a network and dynamically changes the routes so as
to accommodate the observed traffic. Traffic engineering using
only the observed traffic, however, cannot avoid the congestion
when the traffic variation occurs. Although frequent observa-
tion and control can quickly handle such traffic variation, this
may cause some problems such as network instability and high
observation/control overheads. Wang et al. proposed a traffic
engineering method that finds the routes suitable to not only
the observed traffic but also any possible traffic [3]. However,
this method requires more resource so as to accommodate a
large number of traffic patterns.

Traffic prediction is useful for traffic engineering to ac-
commodate time-varying traffic stably. By using the predicted
future traffic variation, traffic engineering accommodates the
traffic variation without frequent route changes unless unex-
pected traffic variation occurs. The requirements on the traffic
prediction for the traffic engineering are as follows. (1) The
traffic prediction should predict the traffic of the future several
hours accurately. Then, by using the predicted traffic, the
traffic engineering sets the routes suitable to several hours.
The traffic variation for several hours is affected by the daily
traffic variation. Thus, the traffic prediction should follow
the daily traffic variation. (2) The traffic prediction should
also consider the shorter-term time variation than the daily
variation, to avoid the congestion caused by the short-term
traffic variation. (3) The underprediction should be avoided,
while the overprediction is acceptable. The underprediction
causes the congestion due to the lack of resources assigned
to the underpredicted traffic. On the other hand, the overpre-
diction does not cause the performance degradation unless the
overpredicted traffic requires too much resources and causes
the lack of the resources assigned to the other traffic.

Network traffic prediction has been well studied [4–9].
There are mainly two targets for the traffic prediction, which
are long-term and short-term traffic variations.

For the long-term prediction, extracting the target variation
by aggregation and preprocessing is essential. Papagiannaki et
al. [5] proposed the long-term prediction method that extracts
the long-term variation by the wavelet multiresolution analysis,
and predicts the variation using the ARIMA model aggregating
the time series in one week. They showed the six month traffic
can be predicted including upper and lower bound. However,
the granularity of the prediction is too long to apply to the
traffic engineering.

Predicting the short-term variation is hard due to the unpre-
dictable traffic variation. For the short-term prediction, one-
step prediction is often conducted, which predicts the only next
one step every time. Balaji et al. proposed one-step prediction
with confidence interval to avoid the underprediction for
dynamic bandwidth provisioning [8]. One-step prediction is



highly accurate, but traffic engineering requires to predict the
traffic variation in next several hours to calculate the stable
routes. The method handling the short-term variation within
multiple steps (e.g. several hours) has not been sufficiently
studied.

The traffic prediction for the traffic engineering should have
the both aspects of the short-term and long-term prediction; the
daily traffic pattern should be considered to achieve accurate
prediction for several hours, while the short-term traffic varia-
tion also should be considered to avoid the future congestion.

In this paper, we address the traffic prediction for the traffic
engineering. In our approach, we extract the daily traffic
pattern before the prediction. By extracting the daily pattern,
we accurately predict the traffic variation for several hours.
Then, we consider the confidence interval of the prediction and
the excluded traffic variation to avoid the congestion caused
by the short-term traffic variation.

The rest of this paper is organized as follows. Section II
introduces the traffic engineering method using the predicted
traffic. Section III describes the prediction methods. Section IV
presents evaluation of each prediction method. The conclusion
and future work are mentioned in Section V.

II. TRAFFIC ENGINEERING WITH TRAFFIC PREDICTION

In this paper, we deploy a central control server which
controls the network. The central control server observes and
predicts the traffic rate, and calculates the routes based on the
predicted traffic.

The control server observes the traffic rate at each flow in
fixed intervals (e.g. ten minutes, thirty minutes or one hour)
called time slot. The observed traffic rates of all flows in the
t-th time slot are represented as a vector and we denote this
vector as xt. The prediction of future traffic is denoted as

x̂t+1..t+f = F (xt−h+1..t) , (1)

where xa..b = (xa,xa+1, · · · ,xb) is a matrix in which each
column is corresponding to each vector, x̂k is the predicted
traffic in the k-th time slot, f is the number of time slots
where the traffic rate is predicted, h is the length of observed
time slots used in the prediction and F is a prediction function
defined by a prediction method.

In traffic engineering, the control server calculates the routes
so as to avoid congestion for f time slots. We define this f
time slots as the control period. In this paper, we consider the
case that the control period is several hours. The calculated
routes are represented as a matrix A called routing matrix.
The (i, j)-element ai,j in the routing matrix A represents
the ratio of the traffic over the flow j mapped onto the link
i. Corresponding to the routing matrix, the predicted traffic
mapped onto each link in the control period is represented as

ŷt+1..t+f = Ax̂t+1..t+f , (2)

where ŷk is the vector indicating the predicted traffic on all
links in the k-th time slot. Traffic engineering is the process
to adjust A so as to control ŷt+1..t+f in some desirable way.

In this paper, we use the simple optimization approach that
minimizes the maximum utilization among all links for all
time slots within the control period, though there may be
more sophisticated approach using the predicted traffic. The
optimization problem is formulated as the following linear
programming problem;

minimize:U (3)

subject to:∀s, d,
∑

p(l)=s

As,d(l) = 1 (4)

∀s, d,
∑

f(l)=d

As,d(l) = 1 (5)

∀s, d, n,
∑

p(l)=n

As,d(l) =
∑

f(l)=n

As,d(l) (6)

∀l, k,
∑
s,d

As,d(l)x̂s,d
k /C(l) < U, (7)

where U is the maximum link utilization, As,d(l) is the ratio
of traffic from s to d routed over the link l, and p(l) and
f(l) are the start and end nodes of the link l, respectively,
x̂s,d
k is the predicted traffic volume of the flow from s to d

at the k-th time slot and C(l) is the capacity of the link l.
x̂s,d
k and C(l) are given in this problem, and As,d(l) and U

are the variable to be obtained. Eqs. (4–6) are the constraints
for flow conservation. Eq. (7) ensures that U is the maximum
link utilization of all the links for all the time slots within the
given control period.

III. TRAFFIC PREDICTION

A. Overview

In the network, traffic variation has a daily pattern, and the
traffic changes in several hours. The traffic prediction should
follow this daily variation so that the traffic engineering calcu-
lates the routes suitable to the next several hours. However, the
actual traffic variation includes noisy variation and the daily
tendency is polluted. Using such polluted data, predicting the
daily traffic variation becomes inaccurate. Therefore, we use
preprocessing which extracts the daily periodical variation ex-
cluding the noisy variation to improve the prediction accuracy.

On the other hand, the short-term traffic variation may cause
the congestion. To avoid this congestion, the short-term traffic
variation should be considered. In our approach, the short-term
traffic variation is considered by the confidence interval of
the traffic variation excluded by the preprocessing. Moreover,
we also consider the confidence interval of the prediction
error to avoid the impact of the prediction error on the traffic
engineering. The confidence interval causes the overpredic-
tion. However, as described in Section I, the impact of the
overprediction is smaller than that of the underprediction.

Our approach is summarized in Figure 1. First, we extract
the daily variation from the actual traffic variation by the
preprocessing. Second, we predict the future traffic varia-
tion using the extracted variation and estimate the range of
excluded variation. Finally, we obtain the upper bound of
traffic variation summing up the predicted upper bound of
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Fig. 1. prediction process

daily variation and estimated range of excluded variation.
The obtained upper bound is used as input of the traffic
engineering.

B. Prediction Preprocessing
In the preprocessing, we extract the daily periodical varia-

tion from the observed traffic. The object of preprocessing is
to filter out the short-term traffic variation which is hard to be
predicted. This increases the accuracy of the prediction of the
daily traffic variation.

In this paper, we investigate the following preprocessing
methods, the trend component, the lowpass filter and the
envelope. The rest of this subsection describes the detail of
the preprocessing methods.

1) Trend Component: One approach to extract the long-
term variation of the traffic variation is to use the trend
model [10]. We call the traffic variation extracted by using the
trend model trend component. The trend component includes
the daily traffic variation and longer-term traffic variation. The
trend model is denoted as

xk=tk + ϵk (8)
∆tk=∆tk−1 + wk, (9)

where xk is the traffic volume of a flow in the k-th time slot,
tk is the trend component, ∆tk = tk − tk−1, ϵk

i.i.d.∼ N(0, θ2)

is the noise of observation and wk
i.i.d.∼ N(0, λ2) is the noise

in the trend component.
Eq. (8) indicates that the original data is composed of the

trend component and the noise. Eq. (9) indicates that the trend
component is perturbed by Gaussian noise.

At the first step to calculate the trend component, the
variances θ2 and λ2 are found by the Maximum Likelihood
Estimation (MLE). Then, the trend component ti(i = t −
h + 1, · · · , t) is determined by the conditional expectation
E [ti|xt−h+1..t] with the probability of transition in Eqs. (8)
and (9).

2) Lowpass Filter: As a similar idea to the trend compo-
nent, the lowpass filter by using the Fourier transform extracts
the long term variation.

Using the Fourier transform, the time series of the traffic
data can be represented as

xk=
h−1∑
n=0

fn exp

(
2πi

nk

h

)
, (10)

where fn is Fourier coefficient corresponding frequency n/h
and i is the imaginary unit. Eq. (10) includes also high
frequency variations such as noise. To reduce this noisy
variations, the lowpass filter removes the terms with large n
and extracts the long-term variation as

lk=

L∑
n=0

fn exp

(
2πi

nk

h

)
, (11)

where L is the threshold to remove the high frequency
variations. We set L so as to remove the variation of the higher
frequency than the daily variation because the traffic variation
has daily pattern.

3) Envelope: Extracting the variation of traffic upper
bounds may be useful to predict the bandwidth required to
accommodate the short-term traffic variation. In this paper,
we extract the upper bound variation by tracing the peak
value in the fixed time interval. We divide the observed values
xt−h+1, · · · , xt into l = h

τ intervals, where τ denotes the
length of the intervals. The set of the time slots in the k-th
interval is denoted as

Ik={(k − 1)τ + t− h+ 1, · · · , kτ + t− h} . (12)

We set the interval length τ to 12 hours considering the daily
variation.

The peak value in Ik is represented by xpk
, where pk

represents the peak time slot denoted as

pk=arg max
i∈Ik

xi. (13)

In this paper, we extract the envelope by connecting the
peak values xp1

, · · · , xpl
and the latest value xpl+1

= xt with
lines. Including the latest value xt, the prediction can reflect
the latest data. We perform the linear interpretation for points
between xpk−1

and xpk
, and each point is interpreted as

xi=xpk
+

xpk+1
− xpk

pk+1 − pk
(i− pk) (14)

i=pk, pk + 1, · · · , pk+1, k = 1, · · · , l.

C. Prediction

The traffic prediction is performed based on the prediction
model after each preprocessing. The model-based prediction
learns the model parameters from inputted data, and then
predicts the future values based on the obtained model.
Focusing on the effect of considering the periodicity in the
prediction, we take the SARIMA model and the ARIMA
model as examples of periodic and non-periodic prediction
models, respectively. The rest of this section gives an overview
of prediction with the ARIMA and the SARIMA model.

1) ARMA model: Before describing the ARIMA and the
SARIMA model, we give a short explanation of the ARMA
model which is the base model for the ARIMA and the
SARIMA model.



The ARMA model represents data at each time slot using
the previous data and errors as

xn=

p∑
i=1

aixn−i +

q∑
i=0

biϵn−i + c (15)

b0=1,

where p and q denote the numbers of past data and error which
data at each time slot depends on, respectively. ai and bi are
the coefficients, ϵi is the error at the i-th time slot and c is a
constant.

2) ARIMA model: The ARIMA model is an extension of
the ARMA model so as to model the non-stationary data, such
as the data whose mean value fluctuates over time. In order
to apply the ARMA model to such data, removing the non-
stationarity is performed. When the variation of the mean has
linear characteristic, the differenced data ∆xn = xn − xn−1

excludes the variation of the mean. In this manner, d times
differencing operation ∆d can remove the mean variation
following a polynomial of degree d. In the ARIMA model,
ARMA model in Eq. (15) is applied to the differenced data
∆dxn.

3) SARIMA model: The SARIMA model is a generaliza-
tion of the ARIMA model. Considering the periodicity, the
SARIMA model applies a periodical differencing to the data as
∆sxn = xn−xn−s where s is a period length. After applying
the D times of the periodical differencing ∆D

s xn, the differ-
encing method in the ARIMA model is also applied. Therefore
differenced data is finally denoted as ∆d∆D

s xn. Considering
the daily variation and weekday/weekend difference, we set s
to the weekly length.

The differenced data is fitted to the following model which
expands the ARMA model including the data and error at
previous periods as

xn=

p∑
i=1

aixn−i +

q∑
i=0

biϵn−i + c

+
P∑

j=1

Aj

p∑
i=1

aixn−sj−i+

Q∑
j=1

Bj

q∑
i=0

biϵn−sj−i (16)

b0=1,

where P and Q denote the numbers of previous periods for
depended data and error, respectively. Ai and Bi are the
coefficients.

4) Model Fitting: A SARIMA model is fitted to the data
by the following steps.

First, differencing the data is repeated until the data become
stationary. Stationarity test is performed by examining whether
the data follows non-stationary process xt = xt−1 + ϵ called
unit route process. We use the KPSS test [11] and Canova-
Hansen test [12] for determining d and D, respectively. The
KPSS test examines the null hypothesis ϵ = 0 which means
the data is stationary. The Canova-Hansen test applies the null
hypothesis test to the Fourier coefficients variation of the each
period.

After the number of differencing the data is determined, the
feasible p, q, P and Q are searched so that the MLE method
which decides the coefficients Ai, Bi, ai, bi obtains the good
model. The goodness of a model is defined by the Akaike
Information Criterion (AIC) [13] which is defined by

AIC = −2 logL+ 2k, (17)

where L is the maximized likelihood with the MLE, k is
the number of parameters. In the SARIMA model, k =
p + q + P +Q. A model with a large number of parameters
can fit the data well, but may fit the incidental variation such
as noise. Penalizing k, AIC can select the best model avoiding
overfitting the data. Using the method by Hyndman et al. [14],
the search process is performed by changing p, q, P and Q by
one until no new model can improve AIC.

An ARIMA model fitting can be also performed by fixing
the parameter D = P = Q = 0 in the SARIMA model fitting.

5) Prediction with Fitted Model: After fitting a SARIMA
model, the future traffic is predicted according to the obtained
model. The predicted traffic in the next k-th time slot is
calculated as

x̄t+k = E[xt+k|xt−h+1..t]. (18)

6) Confidence Interval: The SARIMA model can calculate
the confidence interval for the prediction error. The upper
confidence bound for the prediction can be calculated by
x̄t+k + ασ̂t+k, where x̄t+k is the predicted traffic volume
at the next k-th time slot, α is a parameter indicating the
considered confidence level and σ̂t+k =

√
V [xt+k|xt−h+1..t]

is the estimated standard deviation of prediction error.

D. Range of Excluded Variation

The traffic variation excluded by the preprocessing should
also be considered, because it may cause the congestion. In
this paper, we consider the excluded traffic variation by using
the standard deviation of the excluded traffic variation. The
standard deviation is calculated as

σ =
√
V
[
xt−h+1..t − x′

t−h+1..t

]
, (19)

where xt−h+1..t is the original time series of traffic on a
flow and x′

t−h+1..t is the extracted variation. Using σ, we
compensate for the excluded variation in the predicted traffic
as x̄t + βσ where β is a parameter indicating the confidence
level for the upper bound prediction of the excluded variations.

Finally, the upper bound prediction including both the
prediction error and the excluded variation in the preprocessing
can be calculated as

x̂i = x̄i + ασ̂i + βσ. (20)

IV. EVALUATION

A. Evaluation Methodology

1) Used Data: We use the actual traffic traces in the
backbone network of Internet2 [15] which is the research and
education network in the United States. This traffic data is
collected by Netflow protocol at each of the nine Point of



Presence (PoP) routers. The sampling rate is one packet in
every one hundred packets and aggregated data is exported
every five minutes. The large daily variation between day and
night is mainly observed in the traffic variation. Focusing on
such traffic variation within several hours, we aggregate the
observed data within each one hour, that is, we set the length
of the observation time slot to one hour.

We use four week data from 11/28/2011 to 12/25/2011
aggregated into the flows between PoP routers using the BGP
information.

2) Evaluation Process: In our evaluation, we use the data
of the previous two weeks as the observed data. By using this
data, we perform the preprocessing and prediction processes.
Then, we calculate the optimal routes for a given control
period by using the predicted traffic. After the calculated routes
are set, we investigate the link utilization calculated by using
the actual traffic.

We perform the prediction 24 times, changing the start time
of the prediction, because the traffic variation at the start time
of the prediction has large impact on the accuracy of the
prediction. We compute the optimum routes by solving the
linear programming problem in Eqs. (3–7) using CPLEX [16].

B. Evaluation Result

1) Traffic Prediction Result: To investigate the characteris-
tic of the prediction methods, we show the mean prediction
error of each traffic prediction method in Figure 2. The
prediction error is calculated as the relative error |x̄t − xt| /µ
where µ is the average value of the traffic.

In Fig. 2, “non-preprocess” means prediction using original
data without preprocessing. “trend”, “envelope” and “low-
pass” mean prediction with each corresponding preprocess-
ing. “arima” and “sarima” mean prediction by ARIMA and
SARIMA model, respectively.

Fig. 2 indicates that prediction with the trend component
or the lowpass filter achieves the lower prediction error than
prediction without preprocessing. This result indicates that pre-
processing is effective for improving the prediction accuracy.
However, since the envelope extracts upper bound of the traffic
variation, the method with the envelope usually overpredicts
and the mean prediction error is high.

Fig. 2 also indicates that the prediction method using the
SARIMA model is more accurate than the ARIMA model
when preprocessing is performed, though the both SARIMA
and ARIMA prediction without preprocessing have almost
same accuracy. The SARIMA model can predict the daily
variation more accurately than the ARIMA model because of
considering the periodicity. Using the preprocessing, the daily
tendency of the traffic variation becomes clear and leaning
the periodicity becomes easy. According to this result, the
SARIMA model with preprocessing will be better choice for
traffic engineering which needs to handle the daily traffic
variation.

Focusing on the difference between the trend component
and the lowpass filter, we investigated the both prediction
results in detail and found an interesting difference. Figure 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23

re
la

ti
v
e

 p
re

d
ic

ti
o

n
 e

rr
o

r

time[hours]

arima.non-preprocess arima.trend

arima.envelope arima.lowpass

sarima.non-preprocess sarima.trend

sarima.envelope sarima.lowpass

Fig. 2. relative prediction errors

0 5 10 15 20 25 30 35

0
e

+
0

0
1

e
+

0
9

2
e

+
0

9
3

e
+

0
9

4
e

+
0

9

Time[hours]

tr
a

ff
ic

lowpass

trend

upper lowpass

upper trend

real

Fig. 3. example of the SARIMA prediction using the trend component and
the lowpass filter

shows the SARIMA prediction result of a flow. In Fig. 3, the
real traffic variation and the predicted variation are plotted. The
vertical dotted line indicates the start point of the prediction.
“upper lowpass” and “upper trend” mean the upper bound
of 80% confidence interval for the lowpass filter and the
trend component, respectively. In Fig. 3, the method using the
lowpass filter significantly underpredicts the rapidly increasing
traffic. Because the lowpass filter removes the all shorter term
variation than daily variation, the lowpass filter cannot extract
the rapidly increasing tendency and the prediction using the
lowpass filter sometimes underpredicts the increasing traffic.
The trend component more sensitively extracts the increasing
tendency than the lowpass filter. Therefore prediction using the
trend component more sensitively follows the variation though
the mean prediction error becomes higher.

2) Traffic Engineering Result: First, to investigate the effect
of considering the confidence interval to avoid the underpre-
diction, in Figure 4 we show the complement cumulative distri-
bution function (CCDF) of the maximum link utilization with
different confidence levels especially for the trend component
and the lowpass filter method with the SARIMA model. In
Fig. 4, we present only the evaluation results setting the both
confidence level α and β to the same value in order to show the
effect of the confidence level briefly. “mean” is the result using



mean prediction without confidence interval and “k %” means
that confidence level is corresponding to k%. To clarify the
response to the sudden traffic increase which usually causes
higher link utilization, we focus on the higher maximum link
utilization.

In the both preprocessing methods, we can observe that
considering the confidence interval can reduce the higher link
utilization except one point of the result in Fig. 4(a), where the
unexpected traffic increase occurs. Considering the confidence
interval, the traffic engineering allocates the large resource to a
flow which has the large short-term variation. Thus, the impact
of the short-term variation is reduced and the link utilization
becomes low.

From Fig. 4, the effect of using the confidence interval
becomes more clear for the long control period. Generally, the
longer control period becomes, the more unexpected variation
occurs. Therefore considering the confidence interval is more
effective to calculate a stable route for the long-term control
period.

Fig. 4 also indicates that considering the confidence in-
terval is more effective for the lowpass filter than the trend
component. As Fig. 3 shows, the lowpass filter sometimes
underpredicts the traffic volume significantly while the trend
component follows the traffic variation well. Thus, considering
the confidence interval is more useful to complement the
predicted value for the lowpass filter.

In all results shown in Fig. 4, using too high confidence
level causes the large link utilization. This is caused by
the allocation of too much resources to a particular flow.
Allocating too much resources causes the lack of resources
assigned to the other flows. The decision of the suitable
confidence level may be performed by using the feedback from
the observation after the traffic engineering, which is one of
our future work.

We also compare the results of the traffic engineering using
the traffic predicted by the prediction method using different
preprocessing approaches. Figure 5 shows the CCDF of the
maximum link utilization. Figures 5(a)–5(c) show the results
with different control periods. “ideal” means results of the
routes calculated by using the actual traffic variation. “pre-
vious 1hour” and “previous 2week” mean calculating routes
using the previous one hour and two weeks data instead of
predicted traffic, respectively. The others are the result using
the SARIMA model for prediction with each preprocessing
method.

We configure the confidence level of each prediction method
so that the maximum link utilization at the peak time slot is
minimized. This means that we evaluate the performance of
each prediction method overall time slots within the control
period while guaranteeing the performance at the worst case.

In all cases of the control period, the traffic engineering with
the prediction is useful to achieve the lower link utilization.
Especially, the results of “trend” and “lowpass” are better.
This is because the preprocessing methods can improve the
prediction accuracy by extracting the periodical variation.

When the control period is 12 hours, “lowpass” does not

keep the link utilization low. This is because the prediction
using the lowpass filter sometimes underpredicts the suddenly
increasing traffic. The impact of this underprediction appears
more clearly in the longer control period, because the longer
control period has the higher probability of the occurrence of
unexpected traffic variation.

“trend” achieves low link utilization even though the control
period becomes long. Therefore, for the traffic engineering
that aims to set the stable routes, the prediction with the trend
component is suitable.

V. CONCLUSION

In this paper, we proposed the traffic prediction method
for traffic engineering using preprocessing and confidence
interval. In our method, we extract the long-term variation
before the prediction, so as to improve the prediction ac-
curacy of the daily traffic variation. The short-term traffic
variation is also handled by considering the confidence in-
terval of the prediction and the traffic variation excluded
by the preprocessing. Through evaluation, we clarified that
the preprocessing improves the accuracy of the daily traffic
variation. In addition, the results show that considering the
confidence interval avoids the large link utilization caused by
the traffic variation excluded by the preprocessing. The results
also indicates the SARIMA model with the preprocessing of
the trend component achieves the low link utilization for the
long control period.

Our future work includes the setting optimum confidence
levels for the upper bound prediction and the investigation of
the suitable traffic engineering method to use the predicted
traffic.
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