An Attractor Perturbation-Based Traffic Distribution Method and Its Practical Experiments

Narun Asvarujanon, Kenji Leibnitz, Naoki Wakamiya, Masayuki Murata

Osaka University, Japan

NOLTA2013 2013/09/11

Background

- Multiple radio access technologies are available
 trend: multiple network interfaces on personal devices
- Concurrent usage of interfaces is possible, but
 how to distribute traffic among interfaces?

Our Proposal: Concurrent Multipath Traffic Distribution

2

4

Existing Work vs. Our Objectives

 Most involve transport and network layers 	 End-to-end control (application layer only)
 Most focus on using multiple paths to increase robustness Some use multiple paths concurrently, focusing on improving bandwidth only 	 Focusing on bandwidth improvement <u>lowering end-to-end</u> <u>delay</u>
Existing approaches (MPTCP, SCTP) are applicable to only TCP connections	Designed for UDP application (e.g. streaming) 3

Problems and Challenges

- Probing vs. fluctuating throughput and delay

 unreliable instantaneous probing results
 average value is sensitive to spikes and drops
 bandwidth loss due to active probing
 calculation/processing overhead, etc.
- To reduce number of probing packets, we use statistics and bio-inspired model to estimate throughput and delay
 - In this study, we use <u>Attractor Perturbation</u> (AP)

Attractor Perturbation (AP)

AP-Based Traffic Distribution Method

Minimization problem: *a*=traffic rate, *x*=end-to-end delay

- Total delay = $\sum_{all \text{ path } i}$ (amount of traffic × delay)= $\sum_{i} a_i \bar{x}_i$
- Average delay of path *i* after traffic rate change $\bar{x}_i^{\prime} = \bar{x}_i + b_i \Delta a_i \sigma_i^2$
- Total delay after traffic rate change = $\sum_{i} (a_i + \Delta a_i) \bar{x}'_i$

Experiment: Implementation

- Modify Iperf, a performance monitoring tool (receiver side) to report variance in addition to average delay and throughput
- Implement shell script (sender side) to
 - read the reported statistical values,
 - adjust the traffic rates on both interfaces using AP, and
 - resend the Iperf UDP traffic with the new traffic rates
- Specified outgoing interface by the source IP address
- Additional local IP tables for each interface in Linux

Experiment: Equipment and Settings

- LTE through USB tethering
- WiMAX through WiFi
- Total Iperf UDP traffic rate: 1500, 5000, 7000 Kbps
- Stats reporting interval: 5 s
- Experiment length: 100 s

Conclusion and Future Work

- AP-based traffic distribution uses only <u>end-to-end</u> delay statistical information <u>without prior knowledge</u> of bandwidth, loss rate, or other characteristics <u>of underlying paths</u>.
- Based on experiment results, AP-based method can achieve <u>comparable delay and throughput as</u> using the only <u>the best path (WiMAX)</u> when the total traffic is low.
- In case of a traffic rate higher than a single path's bandwidth, AP-based method can <u>shift portions</u> of the total traffic onto another path <u>to avoid congestion and loss</u>.
- In the future, we plan to implement the proposal as a mobile (Android or iPhone) application.

10

Thank you for your attention

Q&A