Wavelength Resource Allocation for Optical Path/Packet Integrated Networks

Onur Alparslan, Shin'ichi Arawaka, Masayuki Murata

Advanced Network Architecture Laboratory Graduate School of Information Science and Technology

Osaka University

11 November 2013

Outline

- **Problem Statement** .
- Objective
- Wavelength Reservation .
- **Analytical Solution**
- **Numerical Results**
- Conclusions
- **Future Research**

Problem Statement

- Compared to electrical cabling, optical fiber with wavelength division multiplexing (WDM) allows much higher bandwidth and can span longer distances WDM is a promising solution to handle the fast-growing Internet traffic that is demanding more and more capacity.

 - WDM can employ different switching granularities in order to utilize the vast capacity of fiber links e.g., packet, burst and path (circuit) switching

Optical packet switching

- Advantage:
 Advantage:
 Allows higher utilization of WDM channels thanks to its high statistical
 multiplexing gain and flexibility
 Disadvantages:
 Use tigher switch cost as it needs ultra-fast switching fabric to achieve
 - Has higher switch cost as it needs ultra-fast switching fabric to achieve high granularity.
 The current optical buffering technology is not mature enough to provide large and fast buffering space to optical packet switching.

Problem Statement (2)

Path switching Advantage

- Low switch cost and power requirements as its switching speed and frequency is lower.
- It does not need optical buffering at the core nodes as there is no contention of packets
- it has an easier and more effective QoS support for flows with strict QoS requirements.

Disadvantages:

- Has lower utilization efficiency in the dedicated channel because a connection may or may not use the capacity.
- Needs prior reservation of channels that adds an additional delay to flow completion time.

Objective

- A possible solution to these issues is using a hybrid-architecture combining path and packet switching to exploit the best of both worlds Designing a path-packet integrated architecture for
 - Decreasing the file transfer delay and increasing the efficiency
 - Decreasing the cost
 - Decreasing the power requirements (ECO)

Optical Path/Packet Integrated Network

5

Each end-host connecting with the Each end-host connecting with the router has two network interfaces; one for inject IP packets into the packet switched network and one for establish a lightpath between two end-hosts.

When the data transfer request arises, the end-host selects the packet switched network or the circuit switched network to transfer the data.

6

- The sender host first tries to transfer a new coming flow in the circuit switched network. If the lightpath establishment succeeds, it transfers the flow by using the full transmission capacity of a wavelength.
- If the lightpath establishment fails, the sender transfers the data via the packet switched network using TCP protocol.

Wavelength Reservation (1)

- The maximum number of simultaneous connections on a fiber is limited, so the wavelength reservation algorithm has a big impact on the blocking probability.
- One of the most popular reservation algorithms in the literature is destination-initiated reservation (DIR)
- When there is a connection request, source node sends a PROBE packet, which collects a list of idle wavelengths along the path.
- Destination node selects one of the wavelengths, which is idle on all links in order to satisfy the wavelength-continuity constraint and sends a RESV packet to source node.
- If the source node receives a RESV packet, it means that the selected wavelength has been reserved successfully along the path, so it sends the data over this wavelength.
- When the flow is finished, source node sends a RELEASE packet to remove the reservation of the reserved wavelength.

The Wavelength Allocation

- One of the nodes in the network works as a controller node, which collects the traffic information in the network by exchanging control packets with other nodes
- The routers send traffic statistics (namely average flow speed in the path and packet wavelengths and the utilization ratio of packet wavelengths) to the controller node, periodically.
- The controller node increases or decreases the number of packet wavelengths in the network by one after each control period.

Simulation Parameters

5-node ring topology

- Band switching. 10 path-switching wavelengths create one packetswitching wavelength.
- 60 path-switching wavelengths
- Path wavelength speed is 100Mbps and packet wavelength is 1Gbps, so link capacity is 6Gbps
 Link propagation delay is 10ms

10

- Flow size is exponentially distributed with a mean value of 1Mbit.
- Uniform traffic matrix
- Control period to change path/packet ratio is 30 seconds.
- Packet wavelength utilization threshold is %50

