Characteristic Analysis of Response Threshold Model and its Application for Self-organizing Network Control

OTakuya IWAI, Naoki WAKAMIYA, Masayuki MURATA Osaka University, Japan

 Conclusion Constructe Investigated Showed res 	I the analytical model considering loss an the influence of loss on recovery time fro ponse threshold model is robust against in	d failure om failure nformation loss
 Future work Suppress or Analyze dist 	cillation of the dynamics in the transient ribution of the number of workers	phase

