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Applying Traffic Predictionto TE

- Overview
- Predicting the future traffic variation based on the observed traffic
- Calculating a routes considering the predicted traffic variation
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- Advantages
« Calculating routes in advance of a traffic change
- Stable routes change by considering the traffic in a prediction target period

The prediction errors affects the TE performance
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Overview of Our Prediction Method

- Extracting daily variation to improve the prediction accuracy
- Extracting the predictable pattern, removing the noisy variation
- Predicting the upper bound of traffic to avoid underprediction
« The unexpected traffic arrival causes the congestion
- Absorbing |nﬂuence of the prediction error and short term variation
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Traffic Engineering

- Increasing the time variation of traffic in a backbone network
- Deployment of streaming, cloud services, etc.
- Traffic Engineering(TE)!*.3]

- Periodical measurement of traffic and optimization of routes

Destmatlon
networks,” in Proceedings of SIGCOMM, vol. 36, no.

[1]1N. Wang, K. H. Ho, G. Pavlou, and M. Howarth,
Path
Path 2, /
Source 4. pp. 99-110, Aug. 2006.

“An overview of routing optimization for Internet traffic
Problems of existing TE

engineering,” IEEE Communications Survey &
-Time lag of response to traffic change

Tutorials, vol. 10, no. 1, pp. 36-56, first quarter 2008.
[3] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and
Frequent route change caused by quick response
— Network instability

A. Greenberg, “COPE: traffic engineering in dynamic
2013/12/12 2

Objective

- It's unclear how the prediction errors affect the TE performance
- Traffic prediction hasn’t been evaluated for being appliedto TE
+ Major metric of prediction performance is only prediction error

- Short-term traffic variation is hard to predict
- It often behaves as noise
+ Only one step ahead predictionis often applied!®!

-

We investigate the traffic prediction method in the view of being applied to TE,
focusing on how to consider the prediction errors and short-term variation

[8] B. Krithikaivasan, T. Zenf, K. Deka, and D. Medhi, “ARCH-based traffic forecasting
and dynamic bandwidth provisioning for periodically measured nonstationary traffic,”
201312012 IEEE/ACM Trans. On Networking, vol. 15, no. 3, pp. 683-696, Jun. 2007.

Prediction Preprocessing

- Lowpass filter

- Extracts the daily variation by Fourier analysis
- Trend component

- Extracts the increasing/decreasing tendency according to the modell'?
- Envelope

« Extracts the upper bound of traffic by tracing the peak values

Lowpass filter Trend component Envelope

[10] G. Kitagawa and W. Gersch, “A smoothness priors-state space modeling of time series with trend
and seasonality,” Journal of the American Statistical Association, vol. 79, no.386, pp.378-389, Jun. 1984
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+ ARIMA model: the value depends on previous values and errors
xy, : Observed value
Vi = Alx, € N0, 02): modeling error
P q a;, by, Aj, B;: coefficients
Vi = Z aixXp_; + Z bi€yp_i+c p,q, P, Q: the number of coefficients
=1 i=0 s: period length of variation
Axy = X — Xp—1, A% = A(AY )
Asxye = xpe — Xp—s

- SARIMA model: adding periodic dependency to ARIMA

Vi = AADx;
» q P p 0
Vie = Z a;xn_; + Z bi€n—; + ZA;' z AXn—sj—i + Z B; Z bi€ysj-i + ¢
=1 =0 = = ==
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Evaluation Environment

- Data
- Actual traffic traces in the backbone network of Internet2!5!
- 72 flows, each of which traverses PoP(Point-of-Presence) routers

- 4 weeks data(Nov. 28 — Dec. 25, 2011) Previous traffic

. |
- Prediction Traffic prediction
- Training data : previous 2 weeks | Predicted traffic

- Prediction granularity : 1 hour Actual traffic
« 24 times prediction changing the start time Routes\—s 1

+ Routing Evaluate MLU

+ Minimizing the peak maximum link utilization(MLU) for predicted traffic

- Metric
+ Actual MLU with calculated route and actual traffic

[15] “Internet2 data,” available from http://internet2.edu/observatory/archive/data-collections.html
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Effect of Considering Confidence Interval

- CCDF of MLU for various confidence level

Lowpass filter & SARIMA
(Control period : 12 hours)

Trend component & SARIMA
(Control period : 12 hours)
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Considering the confidence interval absorbs influence of prediction error
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Upper bound prediction

Confidence interval: o;

/\4; Prediction: X; ﬁ
\‘/\/\\/\/\‘/\WI — Upper Bound Prediction: X; = x; + ad; + fo

¥ . a, B : confidence level
Range of Variation: ¢

- Confidence interval of prediction error for daily variation
- Standard deviation of prediction error

preprocessed

removed

x{: preprocessed data

V[-]: variance

V[x|y]: conditional variance
h: number of previous data

c 0; = V[xi|xe-pt1, %2, %]
- Range of short term variation
- Standard deviation of removed traffic variation
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Prediction Error

average(|predicted —actuall)
average(actual)

- Average relative prediction error =
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Comparison of Various Prediction Methods

+ CCDF of MLU for various prediction and non-prediction methods
o SARIMA, Control period : 3 hours SARIMA, Control period : 12 hours
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Preprocessing of trend component achieves low MLU
even if the control period becomes large

“ideal”: the case that future trafficis completely known
201311212 “previous a”: observation based TE using previous a data 12




Conclusion & Future work

- Considering the confidence interval absorbs prediction errors
- Using traffic prediction improves the TE performance
- SARIMA with the trend component is suitable to TE

Future Work
-How to set the optimum confidence levels
*TE method to use traffic prediction

201312112 13



