
Design of a High-speed Content-centric-networking
Router Using Content Addressable Memory

Atsushi Ooka∗, Shingo Ata†, Kazunari Inoue∗‡ and Masayuki Murata∗
∗ Graduate School of Information Science and Technology, Osaka University, Osaka, Japan,

Email:a-ooka@ist.osaka-u.ac.jp, murata@ist.osaka-u.ac.jp
† Graduate School of Engineering, Osaka City University, Osaka, Japan, Email: ata@info.eng.osaka-cu.ac.jp

‡ Nara National College of Technology, Nara, Japan, Email: inoue.kazunari@ist.osaka-u.ac.jp

Abstract—Content-centric networking (CCN) is an innovative
network architecture that is being considered as a successor to the
Internet. To implement the novel technologies, however, requires
routers with performance far superior to that offered by today’s
Internet routers. Although many researchers have proposed
various router components, such as caching and name lookup
mechanisms, there are few router-level designs incorporating all
the necessary components. The design and evaluation of a com-
plete router is the primary contribution of this paper. We provide
a concrete hardware design for a router model incorporating
two entities that we propose. One of these entities is the name
lookup entity (NLE), which looks up a name address within a
few cycles from content addressable memory (CAM) by use of a
Bloom filter; the other is the interest count entity (ICE), which
supports to select content worth caching. Our contributions are
(1) presenting a proper algorithm for looking up and matching
name addresses in CCN communication, (2) proposing a method
to process CCN packets in a way that achieves high throughput
and very low latency, and (3) demonstrating performance and
cost on the basis of a concrete hardware design.

I. INTRODUCTION

Information-centric networking (ICN) or content-centric
networking (CCN) [1] has been proposed as a measure for
overcoming the limitations of current Internet architecture, and
a number of research projects, such as CCNx [2], NDN [3],
PURSUIT [4], and SAIL [5], have explored these candi-
dates. Obviously, many challenges must be resolved to realize
ICN/CCN, which is a clean-slate network. First, we need new
name resolution and routing mechanisms that are based on the
name addresses used in CCN 1. Second, the “bread crumb”
forwarding technique, which naturally incorporates multicast
and request aggregation into the network, requires lookup
tables that can update much more quickly than IP tables. Most
research focuses on in-network caching mechanisms because
they can cache content more efficiently and thus require fewer
resources [6], [7]. In addition, there are a number of problems
that have been analyzed and evaluated: security, mobility, and
CCN deployment, among others [3], [8], [9].

We address one of the biggest challenges to implementing a
CCN router to demonstrate the feasibility and specific perfor-
mance of a CCN router. Of course, hardware must be feasible
to realize CCN communication. The realistic performance
of a hardware router is required to estimate performance at
the network level and evaluate whether various proposals

1In this paper, we especially focus on CCN hereafter.

for CCN are reasonable. However, there are few studies
offering a comprehensive design for a CCN router; instead,
most previous studies have focused on isolated components
or techniques of the router.For example, Caesar [10] aims to
implement a scalable high-speed forwarding table. DiPIT [11]
and NameFilter [12] focus on PIT and propose very fast
inexpensive architecture consisting of two-level Bloom filters,
but the probabilistic model means that false positives can
never be completely eliminated. NCE [13], ENPT [14] and
ATA(MATA) [15] approach memory-efficient name lookup
mechanisms by using a trie-like structure. MATA achieves
wire speed by means of a highly parallelized architecture using
GPU, although it is difficult to reduce the latency. In addition,
among the existing complete router designs [16], CAM, which
has the potential to become a major lookup technology, has
not been sufficiently researched because of its cost.

In this paper, we propose a complete CCN router design
that can be implemented with existing hardware and show
the feasibility and performance of the router. In Section II,
we describe an accurate communication model for CCN that
properly handles all packets. In Section III, customizing the
router architecture by using the name lookup entity (NLE) and
the interest count entity (ICE) is proposed, and the hardware
design using CAM and a Bloom filter is demonstrated in
Section IV. In Section V, we comprehensively evaluate the
throughput and cost of the CCN router. Finally, we give a
conclusion and discuss areas for future research.

II. BACKGROUND

CCN was designed with a focus on the content, rather than
the location, of data. To this end, each chunk of data has a
name that acts as a unique, human-readable, and hierarchically
structured address; therefore, it is not necessary to specify the
locations of providers and consumers. CCN’s communication
model is request-driven through the exchange of Interest
packets and Data packets (abbreviated to Interest and Data
below). To begin, a data consumer requests content by sending
Interest, which contain the name of the content. In response
to Interest, the content provider sends Data, which contain the
actual data. Finally, the consumer receives all the Data and
the request is satisfied.

The name written in an Interest may be just a prefix of the
requested content. For example, when a consumer requests

2

a video named “/video/a.mpg”, the producer may send the
Data with the name “/video/a.mpg/v1/s1”, so that the name
contains the version and segment number of the data. This
dynamic naming method is referred to as active naming in this
paper. In addition, we must consider the case where a name
and its prefix (e.g., “/video/a.mpg” and “/video/a.mpg/v1/s1”)
refer to different content. In this paper, we call pairs with
this relationship as name siblings. Since there is no inherent
reason to forbid use of name siblings by applications running
on CCN, we also include name siblings in our discussion
although it is not obvious that name siblings will be accepted
for CCN communications.

A. Router Behavior
We adopt the design principles of Named Data Networking

(NDN) [3] in this paper. To implement forwarding functions
in a CCN that includes multicasting, caching, and a loop-free
architecture, the CCN router contains three data structures:
forwarding information base (FIB), pending interest table
(PIT), and content store (CS). The FIB is a table used for
determining the proper interface for forwarding Interest that
have arrived at the router. The PIT remembers the interfaces
from which Interest have arrived so that it can send back the
matching Data that will be subsequently received by the router.
Interest that have duplicate names (i.e., that have already been
recorded in the PIT) leave only the trace of the route and
forwarding is skipped so as to aggregate requests and realize
multicasting and a loop-free architecture. The CS serves as
a cache for Data. Because identical Data are addressed by
identical names, cached Data can be reused independently of
the requester and time.

B. Name Lookup Algorithms
An algorithm for lookup tables in a CCN router is not

trivial, and to our best knowledge has never been discussed.
The tables contained by the router (i.e., FIB, PIT, and CS)
are not simple hash tables with uniquely keyed entries; a
single retrieval key could match multiple entries in the table
because of prefix matching and active naming. We need to
consider how to match entries in the tables and select one
of them so that packets are appropriately processed without
conflict between the matching policies and implementations.
The Interest and Data must be looked up in the FIB, PIT, and
CS tables. There are five possible combinations because Data
are not looked up in the FIB table.

1) Matching and Selecting Algorithms: A matching al-
gorithm is an algorithm to decide whether the search key
(denoted by KS) matches the key stored in the table entry
(denoted by KE), and we must consider the case where a given
key matches the prefix of another key K (denoted by P (K)).
The following four matching algorithms are available: a) Exact
Match (EM), which matches when KS= KE , b) Search-key
Prefix Match (SPM), which matches when P (KS)= KE , c)
Entry-key Prefix Match (EPM), which matches when KS=
P (KE), and d) Both-keys Prefix Match (BPM) which matches
when KS= KEand when one is identical to the prefix of the
other (not P (KS)= P (KE)).

The non-exact matching algorithms might retrieve multiple
entries, therefore, algorithms for choosing one of the retrieved
entries should be described. Such algorithms are called se-
lecting algorithms. When the matching algorithm is SPM,
selecting the longest entry is suitable; this is just the longest-
prefix-matching (LPM) algorithm used in conventional IP
routers. Selections from EPM and BPM are more complex. For
example, when KS is “/video/A.mpg”, the KSwill match both
“/video/a.mpg/v1/s1” and “/video/a.mpg/v2/s4”. Since LPM
cannot deterministically select only one of the entries that are
same length, other criteria for selecting algorithms are needed.
One strategy is to prioritize the time when the entries are
registered or the number of requests. We can also adopt a
simpler strategy when matching from FIB: select all matching
entries. In that case, Interest packets are multicast from all
ports corresponding to the matched entries although generating
excessive traffic.

2) Algorithms Suitable for Each Table: The combination
of SPM and LPM is the most suitable for FIB, which accords
with the strategy for current IP routers. In fact, the other
algorithms cannot aggregate entries.

When looking up Data in CS, EM should be used because
the name assigned to the Data must not be an active name and
must be a complete name that identifies specific content. The
other algorithms do not support name siblings. The process to
look up Data in CS is essential for avoiding duplicate entries,
but it is possible to skip this process when the Data is so
unpopular that PIT does not have any matching entries.

When looking up an Interest in CS, either EM or EPM
should be used because it would be undesirable for an Interest
to match a Data or cache entry with a name shorter than
the one in Interest. Thus, although SPM and BPM, which
allow KS to match a shorter KE in CS, are unsuitable, EM
and EPM cause no problems. We note that EPM requires
that the priority rules select exactly one entry when a single
KSmatches multiple KE .

For looking up Data in PIT, SPM should be chosen: Active
naming and name siblings cannot be supported by the other
matching algorithms. For the selecting algorithm, we can
select both the entry with the longest key and all entries
that match the search key. Although using LPM is a risk-free
approach, it is more efficient to satisfy multiple Interests at
once if name siblings are disallowed.

When looking up an Interest in PIT, both EM and BPM are
more suitable matching algorithms than the others, although
we omit the details here because of complexity and space
limitations. In brief, EM can aggregate only Interests whose
names are identical, but EM is also the only solution that
handles name siblings. In contrast, BPM makes full use of
active naming although re-registering an entry and priority
rules for selecting is required.

Table I summarizes the available algorithms for matching
and selecting the entry in cases other than looking up Interest
in FIB or CS. Although all combinations support active nam-
ing, only combination (I) is able to cope with name siblings.

3

TABLE I
SUMMARY OF MATCHING AND SELECTING ALGORITHMS

CS-Interest PIT-Data PIT–Interest
(I) EM/- SPM/LPM, FIFO1or all hit EM/-
(II) EM/- SPM/- BPM/optimal
(III) EPM/optimal SPM/LPM, FIFO or all hit EM/-
(IV) EPM/optimal SPM/- BPM/optimal
1 FIFO: first in, first out

NLE

ICE

RAM

(FIB, PIT, CS)

name
Packet

parser

RAM controller

hit storage

pointer

data

・
・
・

Face 1

Face 2

Face
n

data

hit storage

Fig. 1. CCN Router Architecture

III. ARCHITECTURE

To handle the variable-length name address at wire speed,
we introduce CAM and a distributed-and-load-balancing
Bloom filter (DLB-BF) [17] into the prefix table; an associated
element is an NLE. NLE maps between a name address and
entries in each of the three tables so that only one lookup is
required to retrieve the most specific entry from among the
three tables without a false positive. DLB-BF, which allows
membership queries for all of the prefixes of a name address
to be performed in parallel, reduces the workload on the
CAM. We also present ICE, which is a new mechanism for
identifying content worth caching.

The most suitable matching and selecting algorithms for
the lookup mechanism using the CAM and Bloom Filter is
combination (I) in Table I. If name siblings are disallowed,
the combination (I) makes the lookup mechanism simple
by choosing SPM for all matching algorithms except the
lookup of Interests in PIT. For this reason, we assume that
there are not any name siblings. Additionally, Binary-CAM
(BCAM) can be used instead of Ternary-CAM (TCAM); for
our approach, BCAM is more suitable.

Figure 1 illustrates the basic architecture of the proposed
CCN router. First, an input packet is received on a face. After
the packet is processed by the parser, its name and content
are sent to an NLE and an ICE, respectively. NLE performs
a lookup on the name and retrieves a pointer to a location in
random access memory (RAM). ICE is used to avoid caching
rarely requested data by counting how many Interests sought
the data. According to the results, an appropriate process, such
as forwarding or caching, is determined. Finally, if the packet
is to be forwarded, it is passed to an appropriate output face.

A. NLE

We propose NLE, which implements a fast lookup operation
for a name address. Almost all existing architectures that use
a hash table sometimes yield a false positive, which results
in a failure to forward packets. Preventing false positives in
a hash table incurs a long delay to check that no component
of the searched name is falsely matched. Our approach avoids
this issue by using CAM instead of a hash table. CAM can

W-1 [bit]

F

T Partial nameAddressF

T Partial nameAddressT

Address flag

Prefix flag

・・・ ・・・

NameShort name:

Partitioned name:

Partitioned prefix:

L [bit] W-L-2 [bit]

Fig. 2. Definition of CAM Entry

ADDR ENTRY

@1 0, /aaa/…/bbb

@2 1, 1, ∅, /aaa/…/cc

@3 1, 0, @2, c/…/ddd

@4 1, 1, @2, c/…/e

@5 1, 0, @4, ee/…/fff

CAM

ADDR ENTRY

@1 ����

�

@2 #2

@3 ����

�

@4 #1

@5 ����

�

RAM

Fig. 3. Example of CAM and RAM Entries in NLE

search its entire memory in a single lookup, but the cost and
power requirements have been assumed to be prohibitive. We
therefore propose a solution that splits the CAM into many
small parts; this is expected to be less expensive than a single
large memory. In addition, DLB-BF can dramatically reduce
the load on CAM without sacrificing speed.

Because CAM stores fixed-length data words and name
addresses are variable length, we must decide what to do when
a name address is longer than the data word size. We divide
such a name address into partial names and then simulate a
hierarchical tree structure. We define three types of node: short
name (SN), partitioned name (PN), and partitioned prefix (PP).
SN is used whenever a name is short enough to be store in a
single data word; PN and PP are used otherwise. In terms of
a tree structure, PN represents a leaf node and PP represents
an internal node (or a root node). Figure 2 illustrates the
definitions of fields of the node in the tree structure (i.e., the
entry stored in CAM). W [bit] is the bitlength of CAM entries,
and L[bit] is the bitlength of CAM addresses. “Address Flag”
is set to ‘TRUE(T)’ in PN and PP, which use the “Address”
field to store a link to the parent node. If “Prefix Flag” is true,
this entry is PP, which is not a terminal node.

An example of several entries stored in CAM and RAM is
shown in Figure 3. There are three names in NLE: NA =“/aaa/
.../bbb”, NB =“/aaa/.../ccc/.../ddd”, and NC =“/aaa/.../ccc/.../
eee/.../fff”. NA is short enough to store in CAM as SN, while
NB and NC are divided into (W−L−2)-bits-wide segments:
two entries (NB

1 , NB
2) and three entries (NC

1 , NC
2 , NC

3), re-
spectively. The values of an entry in CAM also correspond to
the definition in Figure 2. NA is stored in CAM and RAM
as SN (a single entry), and so we need only the name address
to retrieve the data from RAM. The process to retrieve the
data corresponding to NB , which is too long to pack into
SN, is as follows: a) divide NB into NB

1 =“/aaa/.../cc” and
NB

2 =“c/.../ddd”, where NB
1 and NB

2 is used to search PP and
PN, respectively, b) perform a lookup for NB

1 as PP with the
Address field set to 0 because the tree structure starts at this

4

PP, c) create a search key as PN from the name NB
2 and the

address ‘@2’, where the parent node NB
1 was retrieved, and

d) retrieve the data from RAM located at the address ‘@3’,
which was specified by searching the PN. Note that a lookup
for a PN or PP entry requires the address of the parent PP.
The lookup for NC is performed in a similar way, although it
requires one more PP lookup. In face, setting W = 320 makes
it rare to perform multiple lookups for a long name like NB

and NC according to the fact that 99% of domain names are
no longer than 40 bytes [13].

Since NB and NC share the prefix of name “/aaa/.../cc”,
the two entries for NB

2 and NC
2 , which are located at ‘@3’

and ‘@4’, respectively, assign the same value ‘@2’ to the PP.
The number of child nodes that have a references to this PP
is held at the entry located at ‘@2’ in RAM; we find the value
‘#2’ there. This value is incremented whenever a new child
node is registered and decremented whenever a child node is
removed, allowing us to remove the PP entry when the count
becomes zero.

B. ICE

ICE is an entity used to avoid caching rarely requested
data by counting Interest requests for the data. In general, the
popularity of Internet traffic approximately follows Zipf’s law.
This means that a small amount of popular content accounts
for the majority of requests. To exploit this characteristic, we
propose ICE as a means of caching based on the number of
requests for each piece of content. ICE counts the requests for
each name, and only those Data whose frequency exceeds a
certain threshold are cached. Thus, ICE prevents content that
is requested just a few times from occupying limited capacity.

IV. HARDWARE DESIGN

A. Design of NLE

We now detail an implementation of NLE. Figure 4 shows
the hardware design of NLE. Roughly, NLE consists of four
components: the unit to process partial names, the unit to
process partial prefixes, DLB-BF, and CAM.

Name lookup is performed as follows. First, the input name
is partitioned into fixed-length partial names if necessary. A
partial name is a W2-bits-wide segment of a name that is too
long to store in a single entry as SN. Since looking up a child
node requires the address of its parent node, a buffer for a
partial name contains not only its string but also an address
for the partial name. Secondly, a partial name and SN are
further split into partial prefixes delimited by the character
‘/’. A buffer for partial prefixes both stores the prefixes and
remembers the indexes of the partial names to which the partial
prefixes correspond. Third, queries in DLB-BF for the partial
prefixes are executed in parallel; the CAMs then search the
partial prefixes for which a membership query to the DLB-BF
yields true. Finally a pointer is obtained from the resulting
address and used to retrieve the data from RAM.

To reduce the cost and power requirements of the system,
we split the monolithic CAM into D smaller CAMs. In gen-
eral, the price of large memory is higher than the price of the

data
[Interest counter]

<Name>

1 /xxx/yyy/zzz 1

2 /abc/def/ghi 2

3 0

・
・
・

・
・
・

・
・
・

H(name) /aaa/ ... /bb/cccc 3

<Index> <Counter>

・
・
・

・
・
・

・
・
・

name:

/aaa/... /bb/cccc

data

CS-RAM

h
a

sh

H
a

sh
 fu

n
ctio

n
 H
(n
a
m
e
)

hit CS

name,

count

In
te

re
st co

u
n

t h
a

n
d

le
r

NLE

n
a

m
e

Fig. 5. Hardware Design of ICE

same amount of memory in smaller pieces. The power required
to search CAM is proportional to the size of the CAM. Thus,
many small CAMs will have lower power requirements than a
single large CAM. Additionally, the distributed CAMs make
it easier to perform a lookup operations in parallel, which
improves throughput significantly. W is the length of a CAM
entry, and W1 and W2 are determined according to W : W1

is the maximum length of “Name” defined in Figure 2, and
W2 is the maximum length of “Partial Name” defined in the
same place. Two conflicting characteristics are desirable for
W . It should be large enough to avoid CAM lookups by PP
and achieve a single CAM lookup; however, large values of W
cause wasted space from storing short variable-length names
into fixed-length CAM entries. We are going to investigate and
optimize W in light of this tradeoff.

B. Design of ICE

The hardware design of ICE is illustrated in Figure 5. ICE
is implemented as a simple hash table with name addresses
as key is a name address and the counts of Interest as
values. Because hash collisions may occur, ICE also holds the
complete name address. We now present the caching algorithm
with ICE. When receiving an Interest, an entry containing a
count of requests for content with that name is retrieved by
using the name of the input Interest. If the count is zero or
the name stored in the counter is different from the input
name, the existing entry is overwritten with the new name,
and the count value is reset to one. Otherwise, the count value
is incremented. When a Data that has not yet been cached
arrives at the router, the data is cached in CS if the count
value is larger than a certain threshold.

ICE makes it possible to cache only content for which
caching will improve performance. Since most content is
rarely requested, the limited resources of CS and CAM would
be exhausted by simple caching. In contrast, the method of
caching content that has a number of requests more than
a certain threshold can be much more memory efficient.
According to [18], ICE needs approximately one tenth the
capacity of a universal cache.

Additionally, we can dynamically adjust the threshold ac-
cording to network traffic volume. The number of requests
for even unpopular content can be greater than a few if
heavy traffic is handled. Furthermore, network traffic can vary
hourly and daily. For these reasons, a fixed threshold is not
ideal; however, a variable threshold can be used to maintain a

5

[Partial name buffer]

<Partial name> <Address>

1 /aaa/.../bb/c 1

2 ccc/.../ddd 3

3 /ee/.../ffff 4

・
・
・

・
・
・

・
・
・

M

[Partial prefix buffer]

<Partial prefix>

1 /www/.../xxx/yy/zzzz 35

2 /www/.../xxx/yy 30

3 /www/.../xxx 27

・
・
・

・
・
・

・
・
・

N /aaa 4

5

5

5

・
・
・

1

C
A

M
 h

a
n

d
le

r

CAM 1

CAM 2

CAM 3

・
・
・

CAM D

prefix [1..W] P
rio

rity
 e

n
co

d
e

r (L
P

M
)

D
L

B
-B

F
 h

a
n

d
le

r

P
a

rtia
l p

re
fix

 p
a

rse
r

P
a

rtia
l n

a
m

e
 p

a
rse

r

DLB-BF

・
・
・

B
F

 h
it v

e
cto

r
R

A
M

-p
o

in
te

rs m
e

m
o

ry

CSlength

name, len[1..l]name, len[1..l]

PITFIB

prefix[1..W2]

・
・
・

・
・
・

・
・
・

prefix[1..W2],

addr[1..s]

prefix

[1..W1]

prefix[1..W1],

len[1..l],Index[1..l]

#partial name[1..l], lpm index[1..l]

#partial prefix[1..l]

・
・
・

hit

a
d

d
r[1

..s]

prefix[1..W1]

addr[1..s]

prefix[1..W2],addr[1..s]

hit

vector

[1..N]

name: /aaa/... /bb/cccc/.../ddd/ee/.../ffff/.../www/.../xxx/yy/zzz

name[1..W1]

RAM

<Index><Length>

p
o

in
te

r[1
..p

]

Fig. 4. Hardware Design of NLE

desired cache hit ratio by adjusting the threshold in response
to volume or characteristics of network traffic. The adjustment
process is challenging because the first few times that content
is requested, the returned data will not be cached but only
counted. A method to determine suitable thresholds is left to
future work.

V. EVALUATION

In this section, we analyze the performance of our CAM-
based CCN router and discuss its feasibility and challenges
to widespread adoption. We calculate the required memory
size, cost of the memory, and throughput on the assumption
of a table with 10 million entries, average packet size of 256
bytes, Interest packets of 40 bytes, and Data packets of 1500
bytes; these values are the same as in [16], [15]. In addition,
we assume that 99% of existing domain names are no longer
than 40 bytes and have no more than six components [13].

Firstly, we consider the memory size and cost. Scalability
is limited by CAM, and so the necessary amount of RAM
is determined according to the number of CAM entries. We
therefore discuss how much memory is required to implement
NLE, which consists of two buffers, DLB-BF and CAM.

According to the size of domain names mentioned above,
we define W = 320, as the size of a CAM entry and the
upper size limit of an entry in the buffers shown in Figure
2. The buffer for partial names, whose capacity should be
large enough to store complete name addresses, needs more
than 37 entries to store a name whose length is the maximum
transmission unit; therefore, we set M = 32 (cf. Figure 4).
Since it is desirable to store all components into the buffer
for partial prefixes, we set N = 64 according to the fact
that the longest URL has roughly 70 components [16]. To
achieve M and N , the partial name buffer needs 10 Kbits
and the partial prefix buffer needs 22 Kbits; these buffer sizes
are reasonable, although we must still investigate how parallel

processing scales in terms of wiring cost.
The size of DLB-BF depends on the probability of a false

positive. If m is the number of bits in the array, k is the number
of hash functions, and n is the number of elements inserted
into DLB-BF, the false positive probability α can be calculated

as follows [17]: α =
(
1 −

(
1 − 1

m

)kn)k

≃
(
1 − e

kn
m

)k

.
Since k = m

n log 2 minimizes the probability α, this equation
with α = 10−x results in m

n ≃ 4.8 × x. This means that
extending the length of each entry by about 4.8 bits decreases
the probability of a false positive 10-fold. When α = 10−6

and n = 10M , the amount of memory required for DLB-BF
is 288 MB, and this grows to 4.6 GB upon assigning 16 bits
to each entry for implementing counting filters, which allow
deletion of entries. Implementing DLB-BF on SRAM, whose
cost is approximately 1 USD / MB [19], the 4.6 GB for the
DLB-BF will cost 4,600 USD.

The memory required for CAM is the most serious problem
because of the limitation of the size. When W = 320, CAM
requires 3.2 Gbits to hold 10 million entries. Although a single
CAM with capacity on the order of gigabits does not exist,
it is easier and more efficient to arrange many small CAMs.
Since 1 Mbit of CAM currently costs about 1 USD, we can
estimate the cost of the CAM to be 3,200 USD. As a result,
the total memory cost can be estimated at 7,800 USD.

Secondly, we consider the throughput. The throughput of
CCN router strongly depends on the access time of NLE.
The lookup operation in NLE requires accesses to two buffers,
DLB-BF implemented with SRAM and CAM. Although NLE
is designed to handle names too long to store into a single
entry, in practice, almost all names can be stored as a single
entry and processed in a single buffer access by setting
W = 320. As a consequence, the access times required for
lookup and add operations are approximately TL = 12.25[ns]
and TA = 14.35[ns], respectively, if SRAM access time is

6

0.45 ns, CAM access time is 4.0 ns, and buffer access time is
1.0 ns [16]. This access time results in throughput for lookup
(and deletion) of 81.6 million searches per second (MSPS)
and throughput for the add operation of 69.7 MSPS. With
an average packet size of 256 bytes, these throughputs are
roughly equivalent to 163 Gbps and 139 Gbps, respectively.
Thus, we can realize CCN router processing at wire speed.
These throughputs could be greatly improved by designing
mechanisms for concurrent lookups.

VI. CONCLUSION AND FUTURE WORK

Our paper contributes evidence for the feasibility of CCN
by designing concrete CCN router hardware and evaluating
its performance. We addressed the challenges by proposing
CAM-based CCN router architecture. We also proposed NLE,
which consists of many small CAMs and DLB-BF and allows
reasonable costs, and ICE, which assists in adaptive caching;
thus, we have shown the entire design of a CCN router.

A significant challenge for our architecture is to scale
the memory capacity and the number of entries. There are
no existing TCAMs with more than 100 Mbits of memory
capacity. In addition, the power cost of a TCAM can be
approximated as 1 kW/Mbit; the power requirements of our
router, which needs at least 3.2 Gbits of CAM, can rise to
more than 3 kW; however, even a 1 kW power requirement is
beyond the capacity of any existing implementation by several
orders of magnitude. Furthermore, our evaluated situation,
which assumed 10 million entries, will not be practical in
the future. FIB is required to handle websites, the number
of which is approaching 1 billion according to a survey in
[20]. The line-speed (40 Gbps) traffic, whose average round-
trip delay time (RTT) is RTT = 100ms, imposes 2 million
entries per port on PIT. Even if the effect of ICE is maximized,
the number of chunks stored in CS for 10 million entries is
equivalent to the amount of files accessed per day in terms
of city-scale traffic [18]. By disregarding lookup time, we can
easily scale our router by using a hash table instead of CAM;
however, these limitations can be relaxed without sacrificing
speed because we can use not only 16 T / cell TCAM but
also 10 T / cell BCAM, and we expect exponential growth
in feasible memory. An architecture that combines CAM and
a high-speed hash table to balance scalability and packet
processing time will be studied in future work.

We also plan to evaluate the router performance based on
a hardware implementation of the router. The calculations in
this paper show that it is essential to evaluate the practical
throughput from the likely cost of hardware implementation.
Before physical implementation, an advanced mechanism to
parse packets and control buffers in parallel must be devel-
oped. Ultimately, this will result in practical network-level
evaluation and a realistic analysis of network bottlenecks.

ACKNOWLEDGMENT

This work was supported by the Strategic Information and
Communications R&D Promotion Programme (SCOPE) of the
Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
ACM CoNEXT 2009, December 2009, pp. 1–12.

[2] “CCNx,” PARC, 2014. [Online]. Available: http://www.ccnx.org/
[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton,

D. K. Smetters, B. Zhang, G. Tsudik, K. Claffy, D. Krioukov,
D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley,
and E. Yeh, “Named data networking (NDN) project,” pp. 1–24,
October 2010. [Online]. Available: http://named-data.net/techreport/
TR001ndn-proj.pdf

[4] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Develop-
ing information networking further: From PSIRP to PURSUIT,” in
Proceedings of the 7th International ICST Conference on Broadband
Communications,Networks, and Systems, October 2010, pp. 1–13.

[5] T. Levä, J. Gonçalves, R. J. Ferreira et al., “Description of
project wide scenarios and use cases,” pp. 1–99, February 2011. [On-
line]. Available: http://www.sail-project.eu/wp-content/uploads/2011/02/
SAIL D21 Project wide Scenarios and Use cases Public Final.pdf

[6] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in Proceedings of
the IEEE Conference on Computer Communications 2012, March 2012,
pp. 310–315.

[7] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” in Proceedings of the ACM Re-Architecting the
Internet Workshop, November 2010, pp. 1–6.

[8] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, July 2012.

[9] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D.
Thornton, and R. L. Braynard, “VoCCN: Voice-over Content-Centric
Networks,” in Proceedings of the 2009 workshop on Re-architecting the
internet, December 2009, pp. 1–6.

[10] M. Varvello, D. Perino, and J. Esteban, “Caesar: a content router for
high speed forwarding,” in Proceedings of the 2nd edition of the ICN
workshop on Information-centric networking, August 2012, pp. 73–78.

[11] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “DiPIT: A
distributed bloom-filter based PIT table for CCN nodes,” in Proceedings
of the 21st ICCCN 2012, July 2012, pp. 1–7.

[12] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and
Q. Dong, “NameFilter: Achieving fast name lookup with low memory
cost via applying two-stage bloom filters,” in Proceedings of the IEEE
INFOCOM 2013, April 2013, pp. 95–99.

[13] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen, “Scal-
able name lookup in NDN using effective name component encoding,” in
Proceedings of the IEEE 32nd International Conference on Distributed
Computing Systems 2012, June 2012, pp. 688–697.

[14] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in
Named Data Networking,” in Proceedings of the ACM/IEEE 8th Sym-
posium on Architectures for Networking and Communications Systems
2012, October 2012, pp. 211–222.

[15] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai,
X. Tian, Z. Xu, H. Wu, and D. Yang, “Wire speed name lookup: a
GPU-based approach,” in Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, April 2013, pp. 199–
212.

[16] D. Perino and M. Varvello, “A reality check for Content Centric
Networking,” in Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, August 2011, pp. 44–49.

[17] H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, “IPv6 lookups using
distributed and load balanced bloom filters for 100Gbps core router line
cards,” in Proceedings of the IEEE INFOCOM 2009, April 2009, pp.
2518–2526.

[18] F. Guillemin, B. Kauffmann, S. Moteau, and A. Simonian, “Experimen-
tal analysis of caching efficiency for YouTube traffic in an ISP network,”
in Proceedings of the 25th International Teletraffic Congress, September
2013, pp. 1–9.

[19] S. Iyer, R. Kompella, and N. McKeown, “Designing packet buffers for
router linecards,” IEEE/ACM Transactions on Networking, vol. 16, no. 3,
pp. 705–717, June 2008.

[20] “netcraft,” December 2013. [Online]. Available: http://www.netcraft.
com/

