
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
High-speed Design of Conflict-less Name Lookup and Efficient
Selective Cache on CCN Router

Atsushi OOKA†a), Nonmember, Shingo ATA††b), Kazunari INOUE†∗c), Members,
and Masayuki MURATA†d), Fellow

SUMMARY Content-centric networking (CCN) is an innovative net-
work architecture that is being considered as a successor to the Internet.
In recent years, CCN has received increasing attention from all over the
world because its novel technologies (e.g., caching, multicast, aggregat-
ing requests) and communication based on names that act as addresses
for content have the potential to resolve various problems facing the In-
ternet. To implement these technologies, however, requires routers with
performance far superior to that offered by today’s Internet routers. Al-
though many researchers have proposed various router components, such
as caching and name lookup mechanisms, there are few router-level de-
signs incorporating all the necessary components. The design and evalu-
ation of a complete router is the primary contribution of this paper. We
provide a concrete hardware design for a router model that uses three basic
tables —forwarding information base (FIB), pending interest table (PIT),
and content store (CS)—and incorporates two entities that we propose. One
of these entities is the name lookup entity, which looks up a name address
within a few cycles from content-addressable memory by use of a Bloom
filter; the other is the interest count entity, which counts interest packets
that require certain content and selects content worth caching. Our contri-
butions are (1) presenting a proper algorithm for looking up and matching
name addresses in CCN communication, (2) proposing a method to process
CCN packets in a way that achieves high throughput and very low latency,
and (3) demonstrating feasible performance and cost on the basis of a con-
crete hardware design using distributed content-addressable memory.
key words: Future Networks, Content-centric Networking, Architecture,
Router Hardware, Content-addressable Memory, Bloom Filter

1. Introduction

1.1 Background

The Internet, which is now a global network of networks, is
used in a form and on a scale considerably different than the
network envisaged at the time that the original design princi-
ples and assumptions were decided, and this has given rise to
many problems. The initial implementation of the Internet
was developed to provide the ability to communicate within
pairs of hosts. At present, however, the Internet is used for

Manuscript received July 1, 2014.
Manuscript revised December 2, 2014.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University, Suita-shi, Osaka 565–
0871, Japan
††The author is with the Graduate School of Engineering, Osaka

City University, Sumiyoshi-ku, Osaka-shi, Osaka 558–8585, Japan
∗Presently, the author is with the Nara National College of

Technology, Yamatokoriyama-shi, Nara 639–1058, Japan
a) E-mail: a-ooka@ist.osaka-u.ac.jp
b) E-mail: ata@info.eng.osaka-cu.ac.jp
c) E-mail: inoue.kazunari@ist.osaka-u.ac.jp
d) E-mail: murata@ist.osaka-u.ac.jp

DOI: 10.1587/transcom.E0.B.1

the purpose of distributing and retrieving various types of
content, with this content going to and coming from global
networks. This is quite different from communicating with a
specific host. Nevertheless, Internet protocol (IP) datagrams
require that an IP address be assigned, which specifies the
network interface. In addition, there is no guarantee that the
location of the requested data will be constant, because the
data may be moved or deleted or the server providing that
data may become temporarily inaccessible.

Information-centric networking (ICN), also known as
content-centric networking (CCN) [1], has been proposed
as a measure for overcoming the limitations of the cur-
rent Internet architecture. The most significant feature in
ICN/CCN is that a “name” address, which is variable-length
and human-readable in a way similar to uniform resource
locators (URLs), is assigned to each piece of content. Us-
ing the name address, content distribution applications (e.g.,
YouTube and Twitter), which have been becoming more and
more popular, can be supported efficiently and securely by
adhering to the end-to-end principle. The fundamental mo-
tivation for introducing ICN/CCN is to realize a content
delivery channel that requires only directly specifying the
name of the desired content at the network layer. An ad-
ditional benefit of such a system would be that in-network
caching could relax both the spatial and temporal constraints
on communications that are present in the current Inter-
net, which would significantly improve the flexibility of the
placement of contents, efficiency of network resource us-
age, and the end-users quality of experience (e.g., content
availability and response time). Against this background,
ICN/CCN has proved increasingly attractive in recent years,
and many researchers are involved in study and development
of this area (see [2] and references therein).

Obviously, many challenges must be resolved to real-
ize CCN, which would be a “clean-slate” network (i.e., a re-
placement rather than an incremental improvement). First,
we need new name resolution and routing mechanisms that
are based on the name addresses used in CCN. Second, the
“bread crumb” forwarding technique, which uses Interest
and Data packets and which naturally incorporates multicast
and Interest aggregation into the network, requires lookup
tables that can be updated much more quickly than IP ad-
dress tables. Most research focuses on in-network caching
mechanisms because they can cache content more efficiently
and thus require fewer resources [3], [4]. In addition, there
are a number of problems that have been analyzed and eval-

Copyright c⃝ 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

uated: security, mobility, and CCN deployment, among oth-
ers [5]–[7].

1.2 Related Work

A number of research projects have studied ICN/CCN ap-
proaches, such as CCNx [8], NDN [5], PURSUIT [9], and
SAIL [10]. These all share the common concept of address-
ing the content that is to be exchanged in the communica-
tion by a “name”, which is mnemonic and unique to each
chunk of data. They also try to natively implement functions
such as in-network caching, multicasting, and built-in secu-
rity for data. In this paper, we focus on CCN/NDN, which is
characterized by a hierarchical structure and variable-length
names.

Most previous studies have focused on isolated com-
ponents or techniques at the router level, such as caching
and name lookup mechanisms. For example, Caesar [11]
aims to implement a scalable high-speed forwarding table.
DiPIT [12] and NameFilter [13] focus on pending interest
tables (PITs) and propose a very fast inexpensive architec-
ture consisting of two-level Bloom filters, but the proba-
bilistic nature of that model means that false positives can
never be completely eliminated. NCE [14], ENPT [15] and
ATA(MATA) [16] approach highly memory-efficient name
lookup mechanisms by using a trie-like structure. MATA
achieves line speed (i.e., near-real-time performance) by
means of a highly parallelized architecture using graphics
processing units, although it is difficult to reduce the latency.

Among the existing complete router designs [4], [17],
content-addressable memory (CAM), which has the poten-
tial to become a major lookup technology, has not been suf-
ficiently researched because of its cost. Nevertheless, the
estimations conclude that it would be impracticably difficult
to support an Internet-scale CCN deployment using CAM,
although the analysis indicates that at the content-delivery
network or Internet service provider scale, it could be easily
afforded and would make a significant contribution to in-
vestigating the feasibility of ICN/CCN. In addition, the de-
signs and simulations of CCN routers shown in the existing
studies are not based on hardware designs or implementa-
tions. We plan to eventually demonstrate a router design and
hardware architecture with the same level of concreteness as
that in [18]. In [18], the implementation of reconfigurable
match tables for software-defined networking (SDN) is pro-
posed and a detailed design and evaluation are described for
a hardware implementation. The proposed techniques for
quickly matching a number of entries in SDN could help
to implement feasible matching mechanisms for ICN/CCN,
but the techniques that would be useful in SDN cannot be
directly applied to the router for use in CCN because of the
variable-length name addresses allowed by CCN.

1.3 Objectives

We address one of the biggest challenges to implementing a
CCN router to demonstrate the feasibility and specific per-

formance of a CCN router. Of course, the hardware must be
sufficiently powerful to realize CCN communications. The
realistic performance of a hardware router is required to esti-
mate performance at the network level and evaluate whether
various proposals for CCN are reasonable. However, there
are few studies offering a comprehensive design for a CCN
router; instead, most previous studies have focused on iso-
lated components or techniques at the router level, such as
caching and name lookup mechanisms. We investigated a
design for a CCN router in [19] and evaluated its perfor-
mance; however, the discussion about the design did not
completely elucidate the available algorithms for lookup.
In this paper, we described such algorithms in detail. Fur-
thermore, we evaluate the scalability of a distributed-and-
load-balancing Bloom filter (DLB-BF) [20], which could
increase the utility of memory space when implemented in
our previous work [19].

In this paper, we propose a complete CCN router de-
sign that can be implemented on existing hardware and show
the feasibility and performance of the router. In Section 2,
we describe an accurate communication model for CCN that
properly handles all packets. In Section 3, customizing the
router architecture by using the name lookup entity (NLE)
and the interest count entity (ICE) constructs is proposed,
and the hardware design using CAM and a Bloom filter is
demonstrated in Section 4. We design a feasible hardware
architecture by means of dividing CAM into smaller parts.
In Section 5, we comprehensively evaluate the throughput,
size of memory, and cost of the CCN router. Finally, we
give a conclusion and discuss areas for future research.

2. CCN

2.1 Principles of CCN

CCN is a novel network architecture that was designed with
a focus on the content of data, rather than on the location of
that data. This approach has the following advantages.

• Content-centric, rather than host-centric, communica-
tion

• Names that provide each chunk of data with unique,
human-readable, and hierarchical addresses

• Mechanisms to natively support multicasting, in-
network caching, and built-in security for data

The content-centric design was inspired by recent de-
velopments in the utilization of the Internet. A main use
of current networks is the distribution and retrieval of vast
amounts of data, such as HTML documents, images, and
high-definition video. Specifying the locations of providers
and consumers is not necessary for this purpose. However,
the protocol for Internet addressing, which is the dominant
tool for networked communication, imposes these kinds of
unnecessary processes. In addition, data sharing systems
that are unaware of network structure and packet content,
such as CDNs and peer-to-peer (P2P) applications are costly

OOKA et al.: HIGH-SPEED DESIGN OF CONFLICT-LESS NAME LOOKUP AND EFFICIENT SELECTIVE CACHE ON CCN ROUTER
3

and inefficient. CCN is a solution for dealing with these in-
compatibilities and security concerns by shifting the routing
behavior from focusing on “where” to focusing on “what”.

The concept of name, with each chunk of data assigned
a name, plays a major role in CCN as a replacement for
the IP addresses that are presently assigned to device in-
terfaces. In CCN, it is not necessary to know the loca-
tion of the device that we want to communicate with; in-
stead, we identify the name of the data chunk that we want.
Names enable us to do this by providing each chunk of
data with a unique, human-readable, and hierarchical ad-
dress. They allow those who use networks and develop net-
work applications to eliminate the complexity of identify-
ing hosts and to directly specify the identifier of the con-
tent. For example, a picture of an apple produced by XYZ
could be named “/XYZ/pictures/apple.jpg.” The
name could also contain the version and segment number
of data to permit versioning and segmentation. For exam-
ple “/XYZ/pictures/apple.jpg/v1/s2” could in-
dicate the second chunk of version 1 of the image.

2.1.1 Communication Model

CCN’s communication model is request-driven through the
exchange of Interest packets and Data packets (abbreviated
to Interest and Data below). To begin, a data consumer
requests content by sending an Interest, which contain the
name of the content. In response to the Interest, the content
provider sends Data, which contain the actual data. Finally,
the consumer receives all the Data and the request is satis-
fied.

The name written in an Interest request may be just a
prefix of the requested content. For example, when a con-
sumer requests a video named “/video/a.mpg”, the pro-
ducer may send the Data with the name “/video/a.mpg/
v1/s1”, so that the name contains the version and segment
number of the data. This dynamic naming method is re-
ferred to as active naming in this paper. In addition, we
must consider the case where a name and its prefix (e.g.,
“/video/a.mpg” and “/video/a.mpg/v1/s1”) refer to
different content. In this paper, we call pairs with this rela-
tionship name siblings. Name siblings complicate the han-
dling of name addresses in a router, but there is no inherent
reason to forbid the use of name siblings by applications
running on CCN. It is not a foregone conclusion that name
siblings will be accepted for CCN communications, but we
include name siblings in our discussion here.

2.1.2 Router Behavior

Although a number of research projects approach ICN/CCN
in a different way, we adopt the design principles of Named
Data Networking (NDN) [5] in this paper. To implement
forwarding functions in a CCN that includes multicasting,
caching, and a loop-free architecture, the CCN router con-
tains three data structures: a forwarding information base
(FIB), a PIT, and a content store (CS). The FIB is a table

used for determining the proper interface for forwarding In-
terest requests that have arrived at the router. The PIT re-
members the interfaces from which these requests have ar-
rived so that it can send back the matching Data that will
be subsequently received by the router. Interest requests
that specify duplicate names (i.e., that have already been
recorded in the PIT) leave only the trace of the route and
forwarding is skipped so as to aggregate requests and realize
multicasting and a loop-free architecture. The CS serves as
a cache for Data. Because identical Data are addressed by
identical names, cached Data can be reused independently
of the requester and time.

2.2 Name Lookup Algorithm

To demonstrate the utility and limitations of advanced func-
tions in CCN, we consider all possibilities for name lookup
algorithms that could be used on a CCN router, describ-
ing them in this subsection. An algorithm for implementing
lookup tables in a CCN router is not trivial, and to the best
of our knowledge has never been discussed. The tables con-
tained by the router (i.e., FIB, PIT, and CS) are not simple
hash tables with uniquely keyed entries; instead, a single re-
trieval key could match multiple entries in the table because
of prefix matching and active naming. We need to consider
how to match entries in the tables and select one of them
so that packets are appropriately processed without conflict
between the matching policies and implementations. The
Interests and Data must be looked up in the FIB, PIT, and
CS tables. There are five possible combinations (rather than
six, because Data are not looked up in the FIB table).

2.2.1 Matching and Selecting Algorithms

A matching algorithm is an algorithm to decide whether the
search key (denoted by KS) matches the key stored in the
table entry (denoted by KE), and we must consider the case
where a given key matches the prefix of another key K (de-
noted by P(K)). The following four matching algorithms are
available:

• Exact Match (EM), which matches when KS= KE;
• Search-key Prefix Match (SPM), which matches when

P(KS)= KE;
• Entry-key Prefix Match (EPM), which matches when

KS= P(KE); and
• Both-keys Prefix Match (BPM), which matches when

KS= KEor when one is identical to the prefix of the
other (not P(KS)= P(KE), that is, when both keys have
the same prefix).

EM is used for strict matching that disallows any am-
biguities, such as for determining the existence of a prefix
aggregation. SPM is a familiar matching algorithm that is
employed in current IP routers as a longest-prefix-matching
(LPM) algorithm, although LPM is not the only possibility
for selecting from among distinct Data found by SPM. EPM
and BPM have not been used in IP routers; however, these

4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

matching algorithms should be taken into account because
they potentially allow CCN routers to take advantage of ac-
tive naming.

The non-exact matching algorithms might retrieve mul-
tiple entries, and so algorithms for choosing one of the
retrieved entries should be described. Such algorithms
are called selecting algorithms. When the matching algo-
rithm is SPM, selecting the longest entry is suitable; this
is just the LPM algorithm that is used in conventional IP
routers. Selections from results provided by EPM and BPM
are more complex. For example, when KS is “/video/A.
mpg”, the KS will match both “/video/a.mpg/v1/s1” and
“/video/a.mpg/v2/s4”. Since LPM cannot determinis-
tically select only one of the entries when those entries are
same the length, other criteria for use in selecting algorithms
are needed. One strategy is to prioritize the time when the
entries are registered or the number of requests. We can
also adopt a simpler strategy when matching from FIB: se-
lect all matching entries. In that case, Interest requests are
multicast from all ports corresponding to the matched en-
tries, although this might generate excessive traffic. Richer
strategies would enable a CCN router to use known prefer-
ences or the information on the publisher, scope, and other
attributes (such as in the ChildSelector [1], [21] framework)
can be used if the CCN router is powerful enough to employ
those strategies.

2.2.2 Algorithms Suitable for Each Table

The combination of SPM and LPM is the most suitable for
FIB. As with the strategy for current IP routers, a name ad-
dress is hierarchically structured so that multiple name ad-
dresses having the same prefix can be aggregated into one
entry. The other algorithms cannot aggregate entries.

When looking up Data in CS, EM should be used be-
cause the name assigned to the Data must not be an abbre-
viated active name and must, instead, be a complete name
that identifies specific content. Additionally, the other al-
gorithms do not support name siblings. For the process to
look up Data in CS it is essential to avoid duplicate entries,
but it is possible to skip this process when the Data is so
unpopular that PIT does not have any matching entries.

When looking up an Interest in CS, either EM or EPM
should be used because it would be undesirable for an In-
terest to match a Data or cache entry with a name shorter
than the one specified in the Interest request. Thus, although
SPM and BPM, which allow KS to match a shorter KEin CS,
are unsuitable, EM and EPM cause no problems. We note
that EPM requires that the priority rules select exactly one
entry when a single KS matches multiple KE . If name sib-
lings are allowed, then EM must be used in order to prevent
a router from returning undesirable Data in response to the
Interest request. Otherwise, EPM could improve the cache
hit rate by exploiting an advantage of active naming. This
advantage occurs in cases such as when there is an entry
K1

E = “/video/a.mpg/v1/s1” in CS. When searching for
an Interest named K2

S = “/video/a.mpg”, K1
E can match

K2
S by using EPM.

For looking up Data in PIT, SPM should be chosen:
Active naming and name siblings cannot be supported by the
other matching algorithms. For the selecting algorithm, we
can select both the entry with the longest key and all entries
that match the search key. While using LPM is a risk-free
approach, it is more efficient to satisfy multiple Interests at
once if name siblings are disallowed. As an example, sup-
pose there are the entries K1

E = “/video/a.mpg/v1/s1”,
K2

E = “/video/a.mpg/v2/s6” and K3
E = “/video/a.

mpg” in PIT. When the Data named KS= “/video/a.mpg/
v1/s1” arrived at the router, the Data were able to sat-
isfy not only K1

E but also K3
E by selecting all matching

entries. Needless to say, because an Interest request for
content named “/video/a.mpg” will not be satisfied by
content named “/video/a.mpg/v1/s1”, the all-hits algo-
rithm cannot work when name siblings are allowed.

When looking up an Interest in PIT, both EM and
BPM are more suitable matching algorithms than the oth-
ers. To see why, consider two cases: (1) PIT contains K1

E =

“/text/A.txt/v1/s1” and K2
E = “/text/A.txt/v2/

s6”, and an Interest whose name is K1
S = “/text/A.txt”

is looked up; and (2) PIT contains K3
E = “/text/A.txt”,

and an Interest whose name is K2
S = “/text/A.txt/v1/

s1” is looked up.
First, an example of using EM is shown in Figure 1.

In both Case(1) and Case(2), Interest matches none of the
entries and is registered as a new entry. Thus, EM cannot
aggregate Interests whose names are identical to the prefixes
of entries in PIT, but EM is the only solution that can handle
name siblings.

In contrast, BPM makes full use of active naming, as
shown in Figure 2. Using BPM, Interests with names shorter
than KEare aggregated into the entries, as in Case(1). Of
course, BPM also requires priority rules to select a sin-
gle entry. In Case(2), K3

E is shorter than the Interest’s
K2

S . However, K2
S cannot be aggregated to K3

E since the
shorter key may match Data whose name is different from
K2

S (e.g., “/text/A.txt/v2/s6”) and the original Interest
will be unsatisfied. Therefore, any matching entry with a
shorter key is re-registered as a new entry with the longer
key assigned to the Interest. It should be noted that this
re-registering process takes advantage of active naming but
disrupts the use of name siblings by eliminating the Interests
with shorter names.

Finally, SPM and EPM are unsuitable for use in this
context. Compared to BPM, these two matching algorithms
cannot take full advantage of active naming; SPM cannot
aggregate entries in Case(1), and EPM cannot aggregate en-
tries in Case(2).

Table 1 summarizes the available algorithms for match-
ing and selecting the entry in cases other than looking up
an Interest in FIB or looking up Data in CS. The combi-
nation of SPM and LPM is used for FIB, and EM is used
for looking up Data in CS. Only combination (I) is able to
cope with name siblings, although all combinations support
active naming.

OOKA et al.: HIGH-SPEED DESIGN OF CONFLICT-LESS NAME LOOKUP AND EFFICIENT SELECTIVE CACHE ON CCN ROUTER
5

Interest: �� = /text/A.txt/v1/s1 (from Port #2)

PIT

/text/A.txt → #1

/text/A.txt/v1/s1 → #2

Interest: �� = /text/A.txt (from Port #3)

PIT

/text/A.txt/v1/s1 → #1

/text/A.txt/v2/s6 → #2

/text/A.txt → #3
Add a new entry

Add a new entry

Mismatch

Mismatch

Mismatch

Fig. 1 Example of Using EM (upper: Case(1), lower: Case(2))

Interest: �� = /text/A.txt/v1/s1 (from Port #2)

PIT

/text/A.txt → #1

/text/A.txt/v1/s1 → #1, #2

Interest: �� = /text/A.txt (from Port #3)

PIT

/text/A.txt/v1/s1 → #1, #3

/text/A.txt/v2/s6 → #2

Integrate

Remove existing entry,

add new entry,

integrate entries

Match (hit)

Match (not hit)

Match (hit)

Fig. 2 Example of Using BPM (upper: Case(1), lower: Case(2))

2.2.3 How to Realize CCN Capabilities

We note first that the specification of CCN is still in progress
and may be changed significantly in the future. One possi-
ble way to implement a CCN router at this stage is to enu-
merate its possible capabilities by considering use cases of
CCN, and use this enumeration to figure out what kind of
functionalities would be needed in a CCN router. Active
naming and name siblings are capabilities that would make
CCN more flexible and useful [1], [5], although the current
CCNx v1.0 specification does not include them [21]. One of
the aims of our paper is to represent the capabilities needed
for CCN by a combination of algorithms and data structures
implemented in CCN routers. We focus on active naming
and name siblings in this paper because of their influence
on efficiency, management cost, and constraints of the CCN
architecture.

Active naming, which is supported by all combina-
tions shown in Table 1, allows a consumer to request con-

tent by specifying incomplete names. Suppose there is a
consumer who does not know the name of the latest ver-
sion of the A.txt file; however, the name of the Data pack-
ets that the user wants to retrieve requires specifying a ver-
sion of the file and the order of the segments (e.g. the
Mth segment of the Nth version of A.txt can be named
“/text/A.txt/vN/sM”). By using active naming, the con-
sumer can send an Interest request for “/text/A.txt” and
receive the Data named “/text/A.txt/v2/s1”, whose
complete name indicates that it is the first chunk of version 2
of the file. In addition to its usefulness for retrieving content
from a partial name, active naming can be used for applica-
tions that dynamically generate content.

In terms of the CCN router behavior, the complexity
and efficiency of the operations to handle active naming vary
according to the combinations of matching and selecting al-
gorithms. The combinations (II)–(IV) shown in Table 1 re-
quire complex selecting algorithms for selecting the optimal
entry to increase the cache hit rate of active naming.

For example, consider what happens when an Interest
request for “/text/A.txt” arrives at a router containing
cached copies of “/text/A.txt/v1/s1” and “/text/A.
txt/v1/s2”. If the router employs the combination (III) or
(IV), then the Interest can be satisfied by the router instead
of the content producer although the Interest matches both
entries, and so the router needs to know how to decide which
cached Data to choose. In this case, “/text/A.txt” may
be taken as a request for “/text/A.txt/v1/s1”, which
is the first chunk of A.txt. The decision may require all
CCN routers to be familiar with the application-specific
naming conventions and priorities, or require Interest re-
quests that rely on active naming to contain additional in-
formation to identify the requested Data, such as by using
a selector [1]. However, in the more complex case, where
the Data for “/text/A.txt/v1/s1” are not cached in the
router, the router will reply with undesired Data, such as
“/text/A.txt/v1/s2”, because the decision is based on
the limited information available to the router. Thus, meth-
ods to avoid such errors are necessary (see Exclude [21] for
an example).

There are similar problems with Interest aggregation in
PIT. For instance, if a consumer uses active naming to re-
quest the latest version of A.txt and an Interest request for
“/text/A.txt” arrives at a certain router simultaneously
with another Interest request for “/text/A.txt/v1/s1”,
then the latest version of A.txt will be v2, but these two
requests must be distinguished. However, both will be
treated as the same request, for “/text/A.txt/v1/s1”,
by a router employing the combination (II) or (IV) unless
information about versions is known in advance. To pre-
vent problems resulting from not knowing the consumer’s
intention, a CCN architecture based on (II) or (IV) needs
the additional mechanisms discussed above.

In contrast to the combinations (II), (III), and (IV), the
combination (I) makes the selecting algorithms simple. In
(I), it is unnecessary to avoid the conflicts between com-
plete names and the ambiguous names produced by active

6
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

naming, although this comes at a cost: Interests using ac-
tive naming cannot be aggregated nor satisfied by interven-
ing routers. In the above examples, an Interest request for
“/text/A.txt” will fail to match the cache entries in CS
and the unsatisfied requests in PIT; after that, the producer
will directly satisfy the Interest according to the latest state
of the content or the application.

Another important point to consider is the manage-
ment of name siblings. The use of name siblings will
cause undesired aggregation of requests and cache hits in
the combinations (II)–(IV). To illustrate the problem, con-
sider content named “/text/A.txt” that is different from
content whose name is a strict extension of the original
name, such as “/text/A.txt/v1/s1”. If an Interest re-
quest for “/text/A.txt” matches an entry whose key is
“/text/A.txt/v1/s1” in PIT or CS, then the consumer
who sent the Interest request will ultimately receive the Data
for “/text/A.txt/v1/s1”, which is not the requested
content. Therefore, name siblings cannot be permitted in
the CCN architecture if any combination other than (I) is
adopted. Furthermore, to prevent name siblings from being
created by application errors or malicious attacks, dynamic
mechanisms to eliminate inappropriate name siblings must
be incorporated into the functions of CCN. In contrast, the
combination (I) is free from cost of such management and
still leaves the ability to creatively apply name siblings; for
example, a shorter name can be used for content that con-
tains the information needed to know the longer name and
request its Data, such as the latest version and the number
of segments.

In summary, the combination (I) should be adopted
when avoiding the use of complex selecting algorithms for
active naming and the costly management of name siblings
is desired. In contrast, any of the combinations (II)–(IV)
should be selected when efficient handling of packets using
active naming is desired.

3. Architecture

Here, we describe the design principles of our proposed
router architecture. In comparison with fixed-length IP ad-
dresses, variable-length name addresses impose a very high
load for lookup. To handle variable-length name addresses
at line speed, we introduce CAM and a distributed-and-load-
balancing Bloom filter (DLB-BF) [20] into the prefix table;
an associated element is the name lookup entity (NLE). An
NLE provides a map between name addresses and entries
in each of the three tables so that only one lookup is re-
quired to deterministically retrieve the most specific entry
from among the three tables . DLB-BF, which allows name
lookups to be performed in parallel, reduces the workload on
the CAM. We also present the interest count entity (ICE),
which is a new mechanism for identifying content worth
caching.

The most suitable combination of matching and select-
ing algorithms for the lookup mechanism using the CAM
and Bloom Filter is combination (I) in Table 1. Table 2

Table 2 Name Lookup Algorithm Applied to Our Implementation

Packet Storage Matching Algorithm Selecting Algorithm

Interest
FIB SPM Longest Match
PIT EM -
CS EM 1 - 2

Data
PIT SPM Longest Match
CS EM 1 - 2

1 This algorithm can be implemented as SPM.
2 This algorithm can be implemented as LPM.

NLE

ICE

RAM

(FIB, PIT, CS)

Name
Packet

parser

RAM controller

Hit storage

Pointer

Data

・・
・

Face 1

Face 2

Face
n

Data

Hit storage

Fig. 3 CCN Router Architecture

shows the specific algorithms adopted in our implementa-
tion. If name siblings are disallowed (and therefore it is
possible to use SPM as the matching algorithm), the com-
bination (I) makes the lookup mechanism simple by choos-
ing SPM for all matching algorithms except for the algo-
rithm for the lookup of Interests in PIT, as shown in Table
2. For this reason, we assume that name siblings are not
used. Additionally, Binary-CAM (BCAM) can be used in-
stead of Ternary-CAM (TCAM); BCAM is more reasonable
than TCAM with respect to cost and power.

Figure 3 illustrates the basic architecture of the pro-
posed CCN router. First, an input packet is received by a
Face element. After the packet is processed by the parser,
its name and content are sent to an NLE and an ICE, respec-
tively. NLE performs a lookup on the name and retrieves a
pointer to a location in random access memory (RAM). ICE
is used to avoid caching rarely requested data by counting
how many Interest requests were made for the data. Ac-
cording to the results, an appropriate process, such as for-
warding or caching, is determined. Finally, if the packet is
to be forwarded, it is passed to an appropriate output face.

3.1 Name Lookup Entity

We propose NLE, which implements a fast lookup opera-
tion for name addresses. Almost all existing architectures
that use a hash table sometimes yield a false positive, which
results in a failure to forward packets. Preventing false pos-
itives in a hash table incurs a long delay to check that no
component of the searched name is falsely matched. Our
approach avoids this issue by using CAM instead of a hash
table. CAM can search its entire memory in a single lookup,
but the cost and power requirements have been assumed to
be prohibitive. We therefore propose a solution that splits
the CAM into many small parts; this is expected to be less
expensive than a single large memory solution. In addition,
DLB-BF can dramatically reduce the load on CAM without

OOKA et al.: HIGH-SPEED DESIGN OF CONFLICT-LESS NAME LOOKUP AND EFFICIENT SELECTIVE CACHE ON CCN ROUTER
7

Table 1 Summary of Matching and Selecting Algorithms

CS-Interest PIT-Data PIT–Interest Active naming Name siblings
(I) EM/- SPM/LPM, FIFO1, or all-hits EM/- Available Available
(II) EM/- SPM/- BPM/optimal Available Unavailable
(III) EPM/optimal SPM/LPM, FIFO, or all-hits EM/- Available Unavailable
(IV) EPM/optimal SPM/- BPM/optimal Available Unavailable
1 FIFO: first in, first out

W-1 [bit]

F

T Partial nameAddressF

T Partial nameAddressT

Address flag

Prefix flag

・・・ ・・・

NameShort name:

Partitioned name:

Partitioned prefix:

L [bit] W-L-2 [bit]

Fig. 4 Definition of CAM Entry

sacrificing speed.
Because CAM stores fixed-length data words and name

addresses are variable length, we must decide what to do
when a name address is longer than the data word size. We
divide such a name address into partial names and then sim-
ulate a hierarchical tree structure. We define three types of
node: short name (SN), partitioned name (PN), and parti-
tioned prefix (PP). An SN is used whenever the name is short
enough to be store in a single data word; PN and PP are used
otherwise. In terms of a tree structure, PN represents a leaf
node and PP represents an internal node.

Figure 4 illustrates the definitions of fields of the node
in the tree structure (i.e., the entry stored in CAM). W[bit] is
the bitlength of CAM entries, and L[bit] is the bitlength of
CAM addresses. “Address Flag” is set to ‘TRUE(T)’ in PN
and PP, which use the “Address” field to store a link to the
parent node. If “Prefix Flag” is true, this entry is PP, which
is not a terminal node.

An example of several entries stored in CAM and
RAM is shown in Figure 5. There are three names in
NLE: NA =“/aaa/.../bbb”, NB =“/aaa/.../ccc/..
./ddd”, and NC =“/aaa/.../ccc/.../eee/.../fff”.
NA is short enough to store in CAM as SN, while NB and
NC are divided into two entries (NB

1 ,N
B
2) and three entries

(NC
1 ,N

C
2 ,N

C
3), respectively. These divided entries are all of

the same length: W − L − 2[bit], as shown in Figure 4. The
values of an entry in CAM correspond to the definition in
Figure 4.

NA is stored in CAM and RAM as an SN (a sin-
gle entry), and so we need only the name address to re-
trieve the data from RAM. The process to retrieve the data
corresponding to NB, which is too long to pack into SN,
is as follows: a) divide NB into NB

1 “/aaa/.../cc” and
NB

2 =“c/.../ddd”, where NB
1 and NB

2 = are used to search
PP and PN, respectively; b) perform a lookup for NB

1 as
PP with the Address field set to 0 (because the tree struc-
ture starts at this PP); c) create a search key as a PN from

ADDR ENTRY

@1 0, /aaa/…/bbb

@2 1, 1, ∅, /aaa/…/cc

@3 1, 0, @2, c/…/ddd

@4 1, 1, @2, c/…/e

@5 1, 0, @4, ee/…/fff

CAM

ADDR ENTRY

@1 ����

�

@2 #2

@3 ����

�

@4 #1

@5 ����

�

RAM

Fig. 5 Example of CAM and RAM Entries in NLE

the name NB
2 and the address of the parent node NB

1 ; and
d) retrieve the data from RAM located at the address ‘@3’,
which was specified by searching the PN. Note that a lookup
for a PN or PP entry requires the address of the parent PP.
The lookup for NC is performed in a similar way, although
it requires one more PP lookup.

Since NB and NC share the prefix of name “/aaa/..
./cc”, the two entries for NB

2 and NC
2 , which are located at

‘@3’ and ‘@4’, respectively, assign the same value ‘@2’ to
the PP. The number of child nodes that have a references to
this PP is held at the entry located at ‘@2’ in RAM; we find
the value ‘#2’ there. This value is incremented whenever a
new child node is registered and decremented whenever a
child node is removed, allowing us to remove the PP entry
when the count becomes zero.

It is worth noting that it is rare to perform multiple
lookups for a long name like NB and NC , and doing so
causes high latency. In accordance with the fact that 99%
of domain names are no longer than 40 bytes [14], almost
all name addresses can be stored in SN by setting W = 320.
Entries of this length are supported in an existing CAM im-
plementation.

3.2 Interest Count Entity

ICE is an entity used to avoid caching rarely requested data
by counting Interest requests for the data. In general, the
popularity of Internet traffic approximately follows Zipf’s
law. This means that a small amount of popular content ac-
counts for the majority of requests. To exploit this charac-
teristic, we propose ICE as a means of caching based on the
number of requests for each piece of content. ICE counts
the requests for each name, and only those Data whose fre-
quency exceeds a certain threshold are cached. Thus, ICE
prevents content that is requested once or just a few times

8
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

from occupying limited cache space. Algorithms 1 and 2
show pseudocode of these ICE processes.

Algorithm 1 Interest Process in ICE
1: procedure ITERESTPROCESSINICE(hitCS , name)
2: if hitCS = True then
3: return
4: end if
5: entry← ICETable[H(name)]
6: c← entry.count
7: n← entry.name
8: if n = name & c > 0 then
9: entry.count + + ▷ The existing counter is incremented.

10: else
11: entry.name← name ▷ A new entry is created (or overwritten).
12: entry.count ← 1
13: end if
14: end procedure

Algorithm 2 Data Process in ICE
1: procedure DATAPROCESSINICE(hitCS , name, data)
2: if hitCS = True then
3: return
4: end if
5: entry← ICETable[H(name)]
6: c← entry.count
7: n← entry.name
8: if c > T HRES HOLD & n = name then
9: AddCS(name, data) ▷ The Data item is cached.

10: end if
11: end procedure

4. Hardware Design

4.1 Name Lookup Entity

We now describe a detailed implementation of NLE. Figure
6 shows the hardware design of NLE. Roughly, NLE con-
sists of four components: the unit to process partial names
(upper left), the unit to process partial prefixes (lower left),
DLB-BF (lower right), and CAM (upper right).

Name lookup is performed as follows. First, the input
name is partitioned into fixed-length partial names if neces-
sary. A partial name is a W2-bits-wide segment of a name
that is too long to store in a single entry (as SN in Figure
4). Since looking up a child node requires the address of its
parent node, as discussed in 3.1, a buffer for partial names
contains not only its string but also an address for the par-
tial name. Second, a partial name and SN are further split
into partial prefixes delimited by the character ‘/’. A buffer
for partial prefixes both stores the prefixes and remembers
the indexes of the partial names to which the partial prefixes
correspond. Third, queries in DLB-BF for the partial pre-
fixes are executed in parallel; the CAMs then search the par-
tial prefixes for which a membership query to the DLB-BF
yields true. Finally, a pointer is obtained from the resulting

Data
[Interest counter]

<Name>

1 /xxx/yyy/zzz 1

2 /abc/def/ghi 2

3 0

・
・・

・
・・

・
・・

H(name) /aaa/ ... /bb/cccc 3

<Index> <Count>

・・
・

・・
・

・・
・

name:

/aaa/... /bb/cccc

data

CS-RAM

H
a

sh

H
a

sh
 fu

n
ctio

n
 H
(n
a
m
e
)

Hit CS

Name,

Count

In
te

re
st co

u
n

t h
a

n
d

le
r

NLE

N
a

m
e

Fig. 7 Hardware Design of ICE

address and used to retrieve the data from RAM.
To reduce the cost and power requirements of the sys-

tem, we split the monolithic CAM into D smaller CAMs. In
general, the price of large memory is higher than the price of
the same amount of memory in smaller pieces. The power
required to search CAM is proportional to the size of the
CAM. Thus, many small CAMs will have lower power re-
quirements than a single large CAM. Additionally, the dis-
tributed CAMs make it easier to perform a lookup opera-
tions in parallel, which improves throughput significantly.

W is the length of a CAM entry, and W1 and W2 are
determined according to W: W1 is the maximum length of
“Name” defined in Figure 4, and W2 is the maximum length
of “Partial Name” defined in the same place. Two conflict-
ing characteristics are desirable for W. It should be large
enough to avoid CAM lookups by PP and achieve a sin-
gle CAM lookup; however, large values of W cause wasted
space from storing short variable-length names into fixed-
length CAM entries. We are going to investigate and opti-
mize W in light of this tradeoff.

4.2 Interest Count Entity

The hardware design of ICE is illustrated in Figure 7. ICE
is implemented as a simple hash table with name addresses
as key is a name address and the counts of Interest as val-
ues. Because hash collisions may occur, ICE also holds the
complete name address.

We now present the caching algorithm with ICE. When
receiving an Interest, an entry containing a count of requests
for content with the specified name is retrieved by using the
name of the input Interest. If the count is zero or the name
stored in the counter is different from the input name, the ex-
isting entry is overwritten with the new name, and the count
value is reset to one. Otherwise, the count value is incre-
mented. When Data that have not yet been cached arrive at
the router, the data are cached in CS when the count value is
larger than a certain threshold.

ICE makes it possible to cache only content for which
caching will improve performance. Since most content is
rarely requested, the limited resources of CS and CAM
would be exhausted by simple caching. In contrast, the
method of caching content that has a number of requests

OOKA et al.: HIGH-SPEED DESIGN OF CONFLICT-LESS NAME LOOKUP AND EFFICIENT SELECTIVE CACHE ON CCN ROUTER
9

[Partial name buffer]

<Partial name> <Address>

1 /aaa/.../bb/c 1

2 ccc/.../ddd 3

3 /ee/.../ffff 4

・・
・

・・
・

・・
・

M

[Partial prefix buffer]

<Partial prefix>

1 /www/.../xxx/yy/zzzz 35

2 /www/.../xxx/yy 30

3 /www/.../xxx 27

・・・

・・・

・・・

N /aaa 4

5

5

5

・・・

1

C
A

M
 h

a
n

d
le

r

CAM 1

CAM 2

CAM 3

・
・・

CAM D

prefix [1..W] P
rio

rity
 e

n
co

d
e

r (L
P

M
)

D
L

B
-B

F
 h

a
n

d
le

r

P
a

rtia
l p

re
fix

 p
a

rse
r

P
a

rtia
l n

a
m

e
 p

a
rse

r

DLB-BF

・
・・

B
F

 h
it v

e
cto

r
R

A
M

-p
o

in
te

rs m
e

m
o

ry

CSlength

name, len[1..l]name, len[1..l]

PITFIB

prefix[1..W2]

・・
・

・
・
・

・
・
・

prefix[1..W2],

addr[1..s]

prefix

[1..W1]

prefix[1..W1],

len[1..l],Index[1..l]

#partial name[1..l], lpm index[1..l]

#partial prefix[1..l]

・
・
・

hit

a
d

d
r[1

..s]

prefix[1..W1]

addr[1..s]

prefix[1..W2],addr[1..s]

hit

vector

[1..N]

name: /aaa/... /bb/cccc/.../ddd/ee/.../ffff/.../www/.../xxx/yy/zzz

name[1..W1]

RAM

<Index><Length>

p
o

in
te

r[1
..p

]

Fig. 6 Hardware Design of NLE

more than a certain threshold can be much more memory
efficient. According to [22], ICE needs approximately one
tenth the capacity of a universal cache.

Additionally, we can dynamically adjust the threshold
according to network traffic volume. The number of re-
quests for even unpopular content can be greater than a few
if heavy traffic is handled. Furthermore, network traffic can
vary hourly and daily. For these reasons, a fixed threshold
is not ideal; however, a variable threshold can be used to
maintain a desired cache hit ratio by adjusting the threshold
in response to volume or characteristics of network traffic.
The adjustment process is challenging because the first few
times that content is requested, the returned data will not be
cached but only counted. A method to determine suitable
thresholds is left to future work.

4.3 Summary

Packet processes in our proposed CCN router processes are
summarized in Figure 8. All packets received by the router
are transmitted, integrated, cached, or satisfied with cached
Data, with the action decided according to the flow chart.

NLE consisting of DLB-BF and CAM implements a
lookup system based on LPM. The case where Interest
matches PIT, however, requires checking whether the match
is an EM since matching and selecting algorithms follow
the strategy illustrated in Table 2. The check can be simply
implemented in the obvious way: we need know only the
indexes of both buffers (i.e., a buffer for partial names and

a buffer for partial prefixes) to know where the matching
prefix is stored. If the prefix’s indexes in both buffers are 1,
the matching partial prefix is essentially identical to its com-
plete name, and the match is identified as an EM. Otherwise,
the match is a non-exact match; therefore, the processes for
partial prefixes should be repeated to continue.

When a Data item matches an entry in CS, the process
does not stop but instead continues to run, as shown in Fig-
ure 8. Although the match appears to be proof that the Data
item is cached in CS and that the Interest requesting the Data
has been satisfied by the cache, active naming requires ad-
ditional verification processes. For example, if CS contains
a cache of Data named “/video/a.mpg/v1/s1”, an Inter-
est named “/video/a.mpg” will not match the cache entry
because the Data’s name is not identical to any prefixes of
the Interest’s name, and the Interest is expected to be satis-
fied with the returned Data. If the returned Data is named
“/video/a.mpg/v1/s1”, which is identical to the name of
the cached content, the Data matches the cache entry. With-
out continuing the process in this case, the Interest named
“/video/a.mpg” cannot be satisfied.

5. Evaluation

In this section, we analyze the performance of our CAM-
based CCN router and discuss its feasibility and challenges
to widespread adoption. We calculate the required memory
size, cost of the memory, and throughput on the assumption
of a table with 10 million entries, average packet size of 256

10
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Begin packet process in CCN router

End

Divide name into
partial names

Split partial name into
partial prefixes , and

query DLB-BF

Query CAM

Retrieve the entry of
RAM-pointer memory

Are all
partial prefixes

processed?

No

No

Packet Type

Match
PIT

Match
CS

Match
CS

Interest

No Match FIB

Data

Exact
Match

Yes

Send Data
packet that is

cached

No

Yes

Add Face the
packet reached to

the PIT entry

Send Interest
packet, and

create a new PIT
entry

Yes
Send Data
packet, and

remove the PIT
entry

Match PIT

Count the Interest (in ICE)

Cache the Data
packet according

to ICE

Yes
Are all

partial names
processed?

Yes
(not hit)

Fig. 8 Packet Processing in the Proposed CCN Router

bytes, Interest packets of 40 bytes, and Data packets of 1500
bytes; these values are the same as in [16], [17]. In addition,
we assume that 99% of existing domain names are no longer
than 40 bytes and have no more than six components [14].
We also experimentally evaluated the performance, testing
the hardware design implemented in Quartus II using Ver-
ilog HDL.

Existing lookup mechanisms that exclude false pos-
itives and our proposed mechanism are compared on
searches per second, throughput, and size of static random
access memory (SRAM); the results are shown in Table
3. MATA-NW seems to be fast enough for our purposes,
but its throughput is achieved by employing a pipeline to
a GPU. Both the pipeline process and the GPU make it
hard to reduce the latency of each packet process, although
the pipelined process outputs the packets at high-speed. In
this section, we demonstrate that NLE, which is our pro-
posed lookup mechanism, can achieve higher throughput
and much lower latency than the existing methods by using
CAM and DLB-BF. The size of SRAM required for NLE is
expected to be at most 576 MBytes of SRAM. Nevertheless,
a large portion of the memory can be implemented with dy-
namic random access memory (DRAM) instead of SRAM.
NLE is also expected to require 3.2 Gbits of CAM in addi-
tion to the SRAM. The approaches to cope with these chal-
lenges rely on splitting the CAM, and are discussed later.

Table 3 Performance of Lookup Mechanisms (Number of Entries: 10
Million.)

Search Throughput SRAM
lookup mechanisms (per s) [Gbps] size

[MSPS] [MB]
Character Trie[13] 3.172 6.344 1,026.34

NCE [14] 4.017 8.034 718.44
ENPT [15] 20.67 41.34 116.02

NameFilter [13] 37.003 74.006 234.27
ATA (200µs latency) [16] 6.56 13.12 682.55

MATA (100µs latency) [16] 29.75 60.50 490.28
MATA-NW 63.52 127.04 490.28(100µs latency) [16]

NLE (proposed method) 81.6 167.116 576.0

5.1 Memory Size and Cost

Scalability is limited by the scalability of the CAM, and so
the necessary amount of RAM is determined according to
the anticipated number of CAM entries. We therefore dis-
cuss how much memory is required to implement NLE. For
this determination, it is important that NLE consists of two
buffers, DLB-BF, and CAM.

The required sizes of the partial name buffer S N[bit]
and the partial prefix buffer S P[bit] can be calculated as fol-
lows:

S N = M(W2 + s), (1)

OOKA et al.: HIGH-SPEED DESIGN OF CONFLICT-LESS NAME LOOKUP AND EFFICIENT SELECTIVE CACHE ON CCN ROUTER
11

S P = N(W1 + 2l), (2)

where M is the number of entries in the partial name buffer;
N is the number of entries in the partial prefix buffer; W1
and W2 are the bit-lengths of the buffers, as shown in Figure
6; s is the bit-length of the < Address > field; and l is the
bit-length of the < Length > and Index fields in Figure 6.
According to the size of domain names mentioned above,
we define W = 40[Bytes], as the size of a CAM entry and
the upper size limit of an entry in the buffers shown in Figure
4. The buffer for partial names, whose capacity should be
large enough to store complete name addresses, needs more
than 37 entries to store a name whose length is the maximum
transmission unit; therefore, we set M = 32 (cf. Figure 6).
Since it is desirable to store all components into the buffer
for partial prefixes, we set N = 64 according to the fact
that the longest URL has roughly 70 components [17]. To
achieve M and N, the partial name buffer needs 10 Kbits and
the partial prefix buffer needs 22 Kbits; these buffer sizes are
reasonable, although we must still investigate how parallel
processing scales in terms of wiring cost.

The size of DLB-BF depends on the probability of a
false positive. If m is the number of bits in the array, k is the
number of hash functions, and n is the number of elements
inserted into DLB-BF, the false positive probability α can
be calculated as follows [20]:

α =
(
1 − (

1 − 1
m

)kn
)k
≃

(
1 − e

kn
m

)k
. (3)

Since k = m
n log 2 minimizes the probability α, the equation

(3) results in the following expression:

α =

(
1
2

) m
n log 2

, (4)

which can be simplified to

m
n
= −

logα
(log(2))2. (5)

By substituting α = 10−x into Equation (5), we finally obtain
the following equation:

m
n
=

log 10
(log(2))2x ≃ 4.7925 × x (6)

This means that extending the length of each entry by about
4.8 bits decreases the probability of a false positive 10-fold.

The size of DLB-BF is shown in Figure 9. When
α = 10−6 and n = 10M, the amount of memory required
for BF is 288 Mbits, and this grows to 4.6 Gbits upon as-
signing 16 bits to each entry for implementing counting fil-
ters (denoted “CBF” in Figure 9), which allow deletion of
entries. For practical purposes, at most 2.3 Gbits of SRAM
(8 × 288 Mbits of SRAM) is currently available. DLB-BF
can be simply scaled down by increasing the probability of a
false positive from α = 10−6 to α = 10−3. We can also con-
serve SRAM by using DRAM or RLDRAM for implement-
ing counting filters. Then, the required amount of SRAM

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

S
iz

e
 o

f
S

R
A

M
 [
b
it
]

Number of entries

BF(α=10
-3

)

BF(α=10
-6

)

CBF(α=10
-3

)

CBF(α=10
-6

)
2.3Gbit

Fig. 9 The Size of SRAM Required for NLE

can be 288 Mbits, even when α = 10−6. If DLB-BF is imple-
mented on SRAM, whose cost is, at present, approximately
1 USD/ MB [23], then 4.6 Gbits will cost 576 USD, and
288 Mbits will cost 36 USD. On the other hand, a 4.6 Gbits
DLB-BF implemented on DRAM will cost only 4.50 USD
(using a present value for DRAM of 1 USD/ 128 MB).

The memory required for CAM is the most serious
problem because of the limited size available. When W =

40[Bytes], CAM requires 3.2 Gbits to hold 10 million en-
tries. Although a single CAM with capacity on the order of
gigabits does not exist, it is easier and more efficient to ar-
range many small CAMs. Since 1 Mbit of CAM currently
costs about 1 USD, we can estimate the cost of the CAM
to be 3200 USD. As a result, the total memory cost can be
estimated at 3776 USD.

5.2 Throughput

The throughput of the CCN router strongly depends
on the access time of NLE. The lookup operation in
NLE requires accesses to two buffers, DLB-BF (imple-
mented in SRAM), and CAM. Table 4 describes the mini-
mum/average/maximum number of read/write access to the
memory pools. In Table 4, α is the probability of a false
positive from DLB-BF, m̄ is the average number of partial
names, mmax is the maximum number of partial names ob-
tained from a name, and S (m) and T (m) are defined as fol-
lows:

S (m) =
m∑

i=1

ni, T (m) =
⌈S (m)

N

⌉
,

where ni is the number of partial prefixes obtained from the
ith partial name and N is the number of entries in the partial
prefix buffer. Table 4 covers three operations: the lookup
process, the add process used when the added entry exists
in CAM, and the add process used when the added entry is
absent from CAM.

Although NLE is designed to handle names too long to
store into a single entry, in practice, almost all names can

12
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Table 4 Number of Read/Write Accesses in the Name Lookup Process, by Memory Type

PNB1 PPB2 DLB-BF CAM
R(read)/W(write) R W R W R W R W

Lookup
min 0 0 1 1 1 0 1 0
ave m̄ m̄ T (m̄) S (m̄) T (m̄) 0 m̄ + αS (m̄) 0
max mmax mmax T (mmax) S (mmax) T (mmax) 0 mmax + S (mmax) 0

Add
min 0 0 0 0 0 0 1 0

(in CAM)
ave m̄ m̄ 0 0 0 0 m̄ 0
max mmax mmax 0 0 0 0 mmax 0

Add min 0 0 0 0 0 1 1 1
(not in ave m̄ m̄ 0 0 0 1 m̄ 1
CAM) max mmax mmax 0 0 0 1 mmax 1

1 Partial Name Buffer
2 Partial Prefix Buffer

be stored as a single entry and processed in a single buffer
access (i.e., m̄ ≤ 1) by setting W = 40. In addition, we
can reduce the number of write accesses to the partial prefix
buffer from S (m) to m by parallelizing the process of writing
partial prefixes. As a consequence, the access times required
for the lookup and add operations are approximated as fol-
lows:

Tlookup = (1.0 + 0.45) × (2m̄ + 2T (m̄) + S (m̄))
+(1.0 + 4.0) × (m̄ + αS (m̄))

= 1.45 × (2 + 2 + 1) + 5.0 × (1 + 0)
= 12.25[ns]

Tadd = (1.0 + 0.45) × (2m̄ + 1)
+(1.0 + 4.0) × (m̄ + 1)

= 1.45 ∗ (2 + 1) + 5.0 ∗ (1 + 1)
= 14.35[ns].

If the SRAM access time is 0.45 ns, then the CAM ac-
cess time will be 4.0 ns, and the buffer access time will
be 1.0 ns [17]. This access time results in a throughput
for lookups of 81.6 million searches per second (MSPS)
and a throughput for the add operation of 69.7 MSPS. With
an average packet size of 256 bytes, these throughputs are
roughly equivalent to 163 Gbits/s and 139 Gbits/s, respec-
tively.

We also need to evaluate the environment in practical
use, where there will be not only lookups but also updates.
Unlike with IP packets, almost all CCN packets arriving at
a router are looked up and result in updates to the tables in
the router (i.e., an Interest will add a new PIT entry or up-
date an existing PIT entry, and sending Data will remove the
corresponding PIT entry). NLE can perform the lookup and
update concurrently; therefore, the lookup and following up-
date requires only an additional process to add/remove the
matching entry to/from CAM and DLB-BF. The average ac-
cess time for this operation is approximated as follows:

Tupdate = Tlookup + (1.0 + 0.45) × 1 + (1.0 + 4.0) × 1
= 12.25 + 6.45
= 18.70[ns].

The throughput is 53.5 MSPS (109 Gbps), assuming the
same parameters as above. Thus, we can realize CCN router
processing at line speed. These throughputs could be greatly
improved by designing pipeline mechanisms for concurrent
lookups.

In addition to the above analysis, we designed an ex-
perimental implementation of NLE in Quartus II using Ver-
ilog HDL. The implementation is simplified in terms of the
bit-widths and memory accesses. Specifically, the bit-width
of each name is set to be 1/16th of that in the design dis-
cussed above, and a simple equivalent circuit replaces the
SRAM and CAM needed for DLB-BF and CAM. By using
the timing analyzer in Quartus II, we evaluated the maxi-
mum clock speed in Cyclone-V GT (5CGTFD9E5F35C7)
and Stratix V (5SGSMD3H1F35C1); these gave achieved
177.84 MHz and 517.6 MHz, respectively. In the future, we
plan to improve the hardware design and evaluate the fea-
sibility in terms of the required power and number of logic
elements.

6. Conclusion and Future Work

This paper contributes evidence for the feasibility of CCN
by designing concrete CCN router hardware and evaluating
its performance. Needless to say, it is a requirement for im-
plementation of CCN that CCN routers be feasible. In ad-
dition, accurate estimates of actual performance are essen-
tial to all sorts of network-level simulations. We addressed
these problems by proposing CAM-based CCN router archi-
tecture. We proposed NLE, which consists of many small
CAMs and DLB-BF and allows reasonable costs, and ICE,
which assists in adaptive caching; thus, we have shown the
entire design of a CCN router. We also performed a basic
theoretical analysis of the expected throughput and cost of
the CCN router.

As discussed in Section 4.1, we split the monolithic
CAM into smaller parts to make NLE feasible. A signifi-
cant challenge for our architecture is to scale the memory
capacity and the number of entries. There are no existing
TCAMs with more than 100 Mbits of memory capacity. In

OOKA et al.: HIGH-SPEED DESIGN OF CONFLICT-LESS NAME LOOKUP AND EFFICIENT SELECTIVE CACHE ON CCN ROUTER
13

addition, the power cost of a TCAM can be approximated
as 1 kW/Mbit; the power requirements of our router, which
needs at least 3.2 Gbits of CAM, can rise to more than 3
kW; however, even a 1 kW power requirement is beyond the
capacity of any existing implementation by several orders
of magnitude. These challenges can be addressed by using
multiple small CAMs. A sufficient number of small CAMs
can dramatically reduce the costs for capacity and power.
Employing 32 units of small CAM instead of 1 large mono-
lithic CAM, for example, allows NLE to be implemented on
an existing 100-Mbit TCAM chip. As a rough estimate, the
distributed CAMs require only 1/32 of the power of a large
single CAM. We can adjust the number of CAMs running in
parallel to achieve the desired trade-off between the power
and the lookup performance.

FIB is required to handle websites, the number of
which is approaching 1 billion according to a survey in [24].
The line-speed (40 Gbps) traffic, whose average round-trip
delay time (RTT) is RTT = 100ms, imposes 2 million en-
tries per port on PIT. Even if the effect of ICE is maximized,
the number of chunks that would be stored in CS for 10 mil-
lion entries is equivalent to the amount of files accessed per
day in terms of city-scale traffic [22].

In the future, it seems likely that such numbers increase
rapidly along with the number of content items. Our ar-
chitecture can easily scale with this increase in the num-
ber of names by installing additional distributed CAMs ac-
cording to the number of entries required for NLE. A sim-
ple solution—ignoring lookup time—is to partially replace
CAM with a hash table; however, the limits of the system
can be relaxed without sacrificing speed because we can use
not only 16 T / cell TCAMs but also 10 T / cell BCAMs,
and we expect exponential growth in the capacity and avail-
ability of feasible memory. An architecture that combines
CAM and a high-speed hash table to achieve further scala-
bility and packet processing time will be studied in future
work.

We also plan to evaluate the router performance in a
hardware implementation of the router. The calculations in
this paper show that it is essential to evaluate the practical
throughput in terms of the likely cost of hardware imple-
mentation. Before physical implementation, an advanced
mechanism to parse packets and control buffers in paral-
lel must be developed. Additionally, FIB, PIT, and CS re-
quire policies for managing their entries and implementa-
tion details, including timeout, retransmission, and cache-
replacement algorithms. We should take account of the ad-
vanced name lookup mechanisms that are beginning to be
specified, such as ChildSelector, Min(Max)Suffix, and Ex-
clude [21]. Several implementations of those mechanisms
require the name lookup algorithm (III) or (IV) shown in
Table 1, although our proposed architecture implements the
name lookup algorithm (I). Ultimately, these developments
will result in practical network-level evaluation and a realis-
tic analysis of network bottlenecks.

Acknowledgment

This work was supported by the Strategic Information and
Communications R&D Promotion Programme (SCOPE)
of the Ministry of Internal Affairs and Communications,
Japan.

References

[1] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,
and R.L. Braynard, “Networking named content,” Proceedings of
the ACM CoNEXT 2009, pp.1–12, December 2009.

[2] G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K.V. Katsaros, and G.C. Polyzos, “A survey of
Information-Centric Networking research,” IEEE Communications
Surveys Tutorials, vol.16, no.2, pp.1024–1049, February 2014.

[3] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic
mix on caching performance in a content-centric network,” Proceed-
ings of the IEEE Conference on Computer Communications 2012,
pp.310–315, March 2012.

[4] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router de-
sign and implications,” Proceedings of the ACM Re-Architecting the
Internet Workshop, pp.1–6, November 2010.

[5] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K.
Smetters, B. Zhang, G. Tsudik, K. Claffy, D. Krioukov, D. Massey,
C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, and E. Yeh,
“Named data networking (NDN) project,” October 2010.

[6] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” IEEE
Communications Magazine, vol.50, no.7, pp.26–36, July 2012.

[7] V. Jacobson, D.K. Smetters, N.H. Briggs, M.F. Plass, P. Stewart, J.D.
Thornton, and R.L. Braynard, “VoCCN: Voice-over Content-Centric
Networks,” Proceedings of the 2009 workshop on Re-architecting
the internet, pp.1–6, December 2009.

[8] “CCNx.” http://www.ccnx.org/, 2014.
[9] N. Fotiou, P. Nikander, D. Trossen, and G.C. Polyzos, “Developing

information networking further: From PSIRP to PURSUIT,” Pro-
ceedings of the 7th International ICST Conference on Broadband
Communications,Networks, and Systems, pp.1–13, October 2010.

[10] T. Levä, J. Gonçalves, R.J. Ferreira, et al., “Description of project
wide scenarios and use cases,” February 2011.

[11] M. Varvello, D. Perino, and J. Esteban, “Caesar: a content router
for high speed forwarding,” Proceedings of the 2nd edition of the
ICN workshop on Information-centric networking, pp.73–78, Au-
gust 2012.

[12] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “DiPIT: A
distributed bloom-filter based PIT table for CCN nodes,” Proceed-
ings of the 21st ICCCN 2012, pp.1–7, July 2012.

[13] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and
Q. Dong, “NameFilter: Achieving fast name lookup with low mem-
ory cost via applying two-stage bloom filters,” Proceedings of the
IEEE INFOCOM 2013, pp.95–99, April 2013.

[14] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen,
“Scalable name lookup in NDN using effective name component
encoding,” Proceedings of the IEEE 32nd International Conference
on Distributed Computing Systems 2012, pp.688–697, June 2012.

[15] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in
Named Data Networking,” Proceedings of the ACM/IEEE 8th Sym-
posium on Architectures for Networking and Communications Sys-
tems 2012, pp.211–222, October 2012.

[16] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng,
H. Dai, X. Tian, Z. Xu, H. Wu, and D. Yang, “Wire speed name
lookup: a GPU-based approach,” Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation,
pp.199–212, April 2013.

14
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

[17] D. Perino and M. Varvello, “A reality check for Content Centric
Networking,” Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, pp.44–49, August 2011.

[18] P. Bosshart, G. Gibb, H.S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: fast
programmable match-action processing in hardware for SDN,” Pro-
ceedings of the ACM SIGCOMM 2013, pp.99–110, August 2013.

[19] A. Ooka, S. Ata, K. Inoue, and M. Murata, “Design of a high-speed
content-centric-networking router using content addressable mem-
ory,” Proceedings of IEEE INFOCOM 2014 Workshop on Name-
Oriented Mobility, Toronto, pp.1–6, April 2014.

[20] H. Song, F. Hao, M. Kodialam, and T.V. Lakshman, “IPv6 lookups
using distributed and load balanced bloom filters for 100Gbps
core router line cards,” Proceedings of the IEEE INFOCOM 2009,
pp.2518–2526, April 2009.

[21] “CCNx 1.0 protocol specifications roadmap.” http://www.ietf.org/
mail-archive/web/icnrg/current/pdfZyEQRE5tFS.pdf, November 2013.

[22] F. Guillemin, B. Kauffmann, S. Moteau, and A. Simonian, “Exper-
imental analysis of caching efficiency for YouTube traffic in an ISP
network,” Proceedings of the 25th International Teletraffic Congress,
pp.1–9, September 2013.

[23] S. Iyer, R. Kompella, and N. McKeown, “Designing packet buffers
for router linecards,” IEEE/ACM Transactions on Networking,
vol.16, no.3, pp.705–717, June 2008.

[24] “netcraft.” http://www.netcraft.com/, December 2013.

Atsushi Ooka received an M.E. degree from
the Graduate School of Information Science and
Technology, Osaka University, in 2014. Cur-
rently, he is a Ph.D. candidate. His research in-
terests include the design and implementation of
a router hardware for content-centric network-
ing.

Shingo Ata received M.E. and D.E. de-
grees in Informatics and Mathematical Science
from Osaka University in 1998 and 2000, re-
spectively. Since 2013, he has been a professor
at the Graduate School of Engineering at Osaka
City University. His research work includes net-
working architecture, design of communication
protocols, and performance modeling of com-
munication networks. He is a member of IEICE,
IEEE, and ACM.

Kazunari Inoue received his B.E. and D.E.
degrees in Information Technology from Yoko-
hama National University and the Research In-
stitute for Nano-device and Systems at Hi-
roshima University, Japan, in 1984 and 2005, re-
spectively. In 1984, he joined Mitsubishi Elec-
tric Corporation, and moved to Renesas Elec-
tronics Corporation in 2003, where he has been
engaged in the development of LSI and solu-
tions in network applications, research and de-
sign of switching, routing, and buffering. He is a

member of IEICE and the Semiconductor Technology Academic Research
Center (STARC).

Masayuki Murata received his M.E. and
D.E. degrees from Osaka University, Japan, in
1984 and 1988, respectively. In 1984, he joined
the Tokyo Research Laboratory, IBM Japan, as
a researcher. He was an assistant professor from
1987 and an associate professor at Osaka Uni-
versity from 1992 to 1999. Since 1999, he has
been a professor at Osaka University, and he is
now with the Graduate School of Information
Science and Technology, Osaka University. He
has more than 500 papers in international and

domestic journals and conferences. His research interests include computer
communication networks, performance modeling, and evaluation. He is a
member of IEICE, IEEE, and ACM.

