
Enhancing Convergence with Optimal Feedback
for Controlled Self-Organizing Networks

Naomi Kuze∗, Daichi Kominami†, Kenji Kashima‡, Tomoaki Hashimoto§ and Masayuki Murata∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

Email: {n-kuze, murata}@ist.osaka-u.ac.jp
†Graduate School of Economics, Osaka University, Japan

Email: d-kominami@econ.osaka-u.ac.jp
‡Graduate School of Informatics, Kyoto University, Japan

Email: kk@i.kyoto-u.ac.jp
§Graduate School of Engineering Science, Osaka University, Japan

Email: thashi@sys.es.osaka-u.ac.jp

Abstract—To tackle with problems emerging with rapid
growth of information networks in scale and complexity, self-
organization is one of promising design principles for future
networks. Convergence of self-organizing controls, however,
is pointed out to be comparatively slow in some practical
applications. Therefore, it is important to reveal and enhance
convergence of self-organizing controls. In controlled self-
organization, which introduces an external observer/controller
into self-organizing systems, systems are controlled in order to
guide them to the desired state. Although previous controlled
self-organization schemes could achieve this feature, conver-
gence speed for reaching an optimal or a semi-optimal solution
is still a challenging task. In this paper, we take potential-
based self-organizing routing and provide an optimal feedback
for faster convergence using the future state of the system.
Simulation results show that the convergence time of potentials
is reduced by86% with a proposed mechanism.

Keywords-Self-organization; prediction; potential-based rout-
ing; convergence.

I. I NTRODUCTION

Rapidly increasing network scale and complexity pose
significant limitations for conventional network systems and
technologies based on central or distributed control. As
scale and complexity increase, information network sys-
tems adopting conventional control technologies in particular
suffer from considerable overhead in managing up-to-date
information to grasp and respond changing conditions. Then,
future network requirements such as scalability, adaptability,
robustness, and sustainability, necessitate new methods of
organizing and controlling network systems in a fully dis-
tributed andself-organizing manner[1], [2], [3]. In spite of
this, it is a challenging issue to reveal the optimality of self-
organization based controls and improving the convergence
speed for reaching an optimal or semi-optimal solution.

Self-organization is a natural phenomenon of distributed
systems, where components behave individually and au-
tonomously and a variety of self-organization based mod-
els have been applied to information networking such as
routing, synchronization, and task assignment [4]. In a self-

organizing system, each component follows simple rules us-
ing locally available information. Through direct or indirect
interactions among components, a global behavior or pattern
emerges on a macroscopic level without a central control
entity. In a self-organizing system, up-to-date information
regarding the entire system or many other components is
unnecessary, which reduces considerable computation costs
and management costs for global information. This localized
control enables to immediately handle local failures and
small environmental changes by local components, and
therefore, self-organizing systems are expected to automat-
ically recover from failures and adapt to environmental
changes, without involving centralized control.

Although self-organization has various benefits, such con-
trol has critical disadvantages that complicate implementa-
tion in industrial and business systems [5]. It may take a long
time for global patterns to emerge in large-scale systems
because they appear as a consequence of interactions be-
tween autonomous components. This property also leads to
slow adaptation to environmental changes in self-organizing
systems. Also, self-organizing systems that use only local
information can fall into a local optima while conventional
systems using global information can often reach an optimal
solution.

Complaints about these disadvantages from engineers
brought an idea of controlled (or guided, managed) self-
organization where a self-organizing system is controlled
through added some kinds of constraints [6], [7]. The authors
of [8], [9] introduce a concept of controlled self-organization
proposed in [6], where an external observer/controller con-
trols a self-organizing system through a feedback mechanism
in order to guide it to the desired state. They can allow self-
organizing systems to own an adaptable property, however,
enhancing the convergence speed for reaching a optimal or
semi-optimal solution is still a residual task.

In this paper, we show an upper limit of convergence
by an external control in a self-organizing network whose
dynamics is extremely linear. To this end, we investigate



potential-based routingguided by an external controller,
which can observe and also manipulate some prespecified
nodes, in a wireless sensor network scenario. We show how
the controller estimates unobservable state of the system and
provides an optimal feedback for fast and robust convergence
of potential-based routing [10]. We first assume an ideal
situation where a controller can collect all nodes’ states
correctly and immediately without any cost, and present
the optimal convergence of the system in that situation.
Since it is impracticable to monitor and control the over-
all system in actual networks, therefore secondly, we add
several constraints to the system that the controller can
observe the network state via these monitored nodes with
communication delay. Moreover, communication overhead
occurs for the controller’s collecting information of nodes
within limited hops from the monitored nodes.

The reminder of this paper is organized as follows. First,
we describe potential-based routing in Section II, propose
and explain potential-based routing with an optimal feedback
in Section III. We then evaluate the adaptability of the
proposed method through simulation, and give simulation
results and a discussion of our proposal in Section IV.
Finally, in Section V, we present our conclusions and
suggest areas for future work.

II. POTENTIAL-BASED ROUTING

Potential-based routing is a self-organizing routing mech-
anism. In potential-based routing, each node has a scalar
value calledpotential and a data packet is forwarded to a
neighbor whose potential is smaller than forwarder’s. Basi-
cally, the smaller the number of hops from the sink node is,
the lower potential value assigned to the node is. Therefore,
a simple forwarding rule, “forwards data to its neighbor node
with lower potential,” can carry out data packets collection
toward sink nodes (Fig. 1). Potential-based routing has high
scalability because each node uses only local information for
calculating potentials and a local rule for forwarding data.
Furthermore, it can acquire various properties by calculating
potential using some sort of information, such as flow rates,
queue length, or remaining energy [11].

In [12], the authors focused on the convergence of
potential-based routing and achieved the enhancement of
it. They proposed potential calculation is based not only
on current potentials but also on last potentials in order
to accelerate potential convergence. Noden’s potential at
time t, θn(t), is calculated by (1).

θn(t+ 1) =(α+ 1)θn(t)− αθn(t− 1)

+ βσn

 ∑
k∈Nb(n)

{θk(t)− θn(t)}+ fn(t)

 ,

(1)

Sensor node Sink node Traffic 

Figure 1. Potential-based routing

whereNb(i) is a set of nodei’s neighbors.α is a parameter
that determines weights of current and last potential values
when calculating the next potential. Largerα means that the
weight of the last potential value is larger and then system is
less subject to current noise, whereas the convergence speed
is slower. β is a parameter that determines the influence
amount of neighbor nodes’ potentials.σn is defined as
1/|Nb(n)| and fn(t) corresponds to flow injection rate of
noden at time t.

The convergence speed based on (1) is faster than the sim-
ple Jacobi iterations, but it still takes a long time to converge
due to its calculation based only on local information. In
this paper, we introduce an external controller into potential-
based routing which observes states of the network, predicts
the future state of it, and regulates potentials of a part of
nodes for faster convergence.

III. POTENTIAL-BASED ROUTING WITH AN OPTIMAL

FEEDBACK

In this section, we describe network dynamics and ex-
plain our optimal control scheme illustrated in Fig. 2. A
‘controller’ monitors network states, such as the network
topology, potential values, and flow-injection rate of nodes.
Then, the controller estimates the potential value of unob-
servable nodes using the model that describes the behavior
of the system, and send suitable control input to some nodes
for faster convergence of the potential distribution.

A. Network Dynamics

Let the dynamics of potentials be given by a deterministic
discrete-time model. In our proposal, noden updates its
potential by

θn(t+ 1) = (α+ 1)θn(t)− αθn(t− 1)

+ βσn

 ∑
k∈Nb(n)

{θk(t)− θn(t)}+ fn(t)

+ ηn(t) + dn(t),

(2)
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Figure 2. Potential-baser routing with a contoller’s feedback

where ηn (resp. dn) represents a feedback input received
from the controller (resp. disturbance or noise). If noden is
uncontrollable,ηn(t) = 0. In [12], σn is set to1/|Nb(n)|,
but this value may lead to oscillation of potentials in some
situations. Therefore, we setσn to the constant valueσ (0 <
σ < 1) for all n (n ∈ {1, 2, · · · , N}) in this paper. We define
a matrixΘ(t) that shows potential values for all nodes as

Θ(t) := [θ1(t) θ2(t) · · · θN (t)]
T
,

where θi(t) is defined as[θi(t) θi(t+ 1)]
T . Under this

dynamics, the stationary value of the states is given by the
solution of (IN×N − A)Θ(∞) = [f1(∞) · · · fN (∞)]

T ,
whereΓ is the graph Laplacian,IN×N is the identity matrix
of N ×N , and

A = IN×N ⊗A1 − Γ⊗A0,

A1 =

[
0 1
−α α+ 1

]
, A0 =

[
0 0
0 βσi

]
.

Then, the dynamics of the regulation errorX(t) := Θ(∞)−
Θ(t) can be rewritten as

X(t+ 1) = AX(t) +B1d(t) +Bu(t), (3)

B1 = IN×N ⊗ [0 1]T ,B = E ⊗ [0 1]T , (4)

where theNctrl-dim vector u (resp. N -dim vector d)
concatenatesηn(t) for controllable nodes (resp.dn), and
Nctrl denotes the number of nodes that receive the feedback
from the controller. Note that(N×Nctrl)-matrixE specifies
the controllable node, that is, the elementeij ∈ {0, 1} of E
is 1 if and only if nodei receives thej-th element ofu(t)
as the control inputηi(t).

B. Optimal Feedback Gain

Next, we explain the controller dynamics. We consider
the case where the controller can observe

Y (t) = (HT ⊗ I2×2)X(t) + (IN×N ⊗ [0 1]T )d(t) (5)

where(N ×N)-matrix H determines directly monitorable
nodes. Then, the control input is calculated according to

X̃(t+ 1) = AcX̃(t) +BcY (t), (6)

u(t) = CcX̃(t) +DcY (t). (7)

Here, X̃ is the controller’s state andAc,Bc,Cc,Dc are
design parameters.

Concerning the performance criteria, let us define

ϕ(k) = X(k)TX(k) + ru(k)Tu(k),

which is the stage cost wherer specifies the trade-off
between the convergence speed and input energy. With a
largerr, control inputs become smaller and then, the stability
of the system is enhanced. Namely, potentials changes more
gently, whereas the convergence speed of potentials become
slower. Then, our design objective is to minimize the worst
case error

sup
d

∑
k ϕ(k)∑

k d(k)
Td(k)

.

This min-max type problem is calledH∞ optimization [10].
It is known that the optimalAc,Bc,Cc,Dc can be obtained
based on semi-definite programming; see also the next
section.

IV. PERFORMANCEEVALUATION

Our purpose is to investigate the upper limit of con-
vergence speed of self-organizing linear systems with an
external controller. We conduct computer simulation and
evaluate the convergence speed comparing our proposal and
the non-predictive scheme proposed in [12]. Subsection IV-B
presents simulation evaluation in an ideal environment where
the future converged potentials of all nodes can be correctly
predicted. Next, Subsection IV-C shows evaluation consider-
ing the specific wireless sensor network constraints. We use
an event-driven packet-level simulator written in Visual C++
as a network simulator, which calls MATLAB procedures to
calculate control inputsu(t). This calculation is done with
dhinflmifunction and the detail is not explained in this paper.

A. Simulation Settings

We evaluate and show the convergence speed of potentials
and traffic after traffic changes. The network model with
54 nodes for evaluation is shown in Fig. 3. Sink nodes are
illustrated with squares and sensor nodes with dots in this
figure and only sink nodes can be controlled directly by the
controller. The controller provides the feedback to each sink
node at intervalsTf . Each node calculates its next potential
at intervalsTp and forwards data packets in accordance with



potential values of itself and its neighbors. When receiving a
data packet, a sensor node stochastically selects a neighbor
node that is assigned a lower potential value than itself and
forwards the data packet to the selected node. A next hop
node is selected proportionally with potential values and the
probability pi→n(t) that sensor nodei selects a neighbor
noden as a next hop node of a data packet at timet is
given by

pi→n(t) =

{
θi(t)−θn(t)∑

j∈Nl(i)
{θi(t)−θj(t)} , if n ∈ Nl(i)

0, otherwise
,

whereNl(i) shows a set of nodei’s neighbor nodes that are
assigned lower potential values than nodei. If node i has
no neighbor node with lower potential, i.e.,|Nl(i)| = 0, the
data packet is not sent to any nodes and drops.

At the beginning of the simulation, potential values of all
nodes are initialized to0. After 1, 000 s from the beginning
of the simulation, data packets begin to be generated at
sensor nodes. The potential field is constructed so that all
sink nodes can receive approximately the same number
of data packets every second. At10, 000 s from the start
of the simulation, data packet generation rates of sensor
nodes changes, and the potential field is reconstructed so
that all sink nodes can receive data packets equally. We
evaluate the convergence speed of potentials and traffic
after traffic changes. In order to measure the convergence
speed of potentials, we define the degree of the potential
convergenceDc(t) (≥ 0) as the maximum value of the
regulation errors at sink nodes. In other words,Dc(t) is
given by

Dc(t) = maxi∈Ns |θi(t)− θi(∞)|,

where Ns is a set of sink nodes.Dc(t) that shows the
convergence degree of sink nodes indicates the convergence
degree of the entire network because the controller provides
an optimal feedback to sink nodes for faster convergence of
the entire network. The smallerDc(t) implies that potentials
are close to convergence, and the potential convergence is
achieved at sink nodes whenDc(t) becomes0. At first,
data packet generation rates are0.025 packet/s at the left
half of sensor nodes in Fig. 3 and0.075 packet/s at the
right half of sensor nodes. After traffic changes, data packet
generation rates are0.075 packet/s at the left half of sensor
nodes and0.025 packet/s at the right half of sensor nodes.
In this paper, the average data generation rate of a node
is 0.05 packet/s correspondsfn(t) = 1, and therefore,
before traffic changes(t < 10, 000 s), the flow rate matrix
F (t) := [f1(t) · · · fN (t)]

T is given by

F t = [0.5 · · · 0.5 1.5 · · · 1.5−12.5 · · · −12.5]T .

After traffic changes(10, 000 s ≤ t), F (t) is given by

F t = [1.5 · · · 1.5 0.5 · · · 0.5−12.5 · · · −12.5]T .

Controller

Network condition（�(�)） / Control input（�(�)）

Sink 1

Sink 3

Sink 3

Sink 4

Figure 3. The network topology

Table I
PARAMETER SETTINGS

parameter value

α 0.4
β 0.2
σ 0.1
r 10−5, 10
Tf 50 s
Tp 50 s

Parameters are set as shown in Table I. All results
presented afterwards are averaged over 10 simulation runs
for each parameter setting.

B. Upper Limit of the Convergence

Here, we evaluate the convergence in an ideal environ-
ment. The controller can monitor the latest conditions of all
nodes without any communication delay or control overhead,
and predict correctly the future states. Figures 4(a)∼4(c)
show potential changes of our proposal and the non-
predictive scheme. Even after9, 000 s from traffic changes,
potentials do not converge in the non-predictive scheme,
and Dc(19, 000 s) is 1.7881. On the other hand, in our
proposal,Dc(t) becomes smaller than1.7881 at 1, 220 s
from traffic changes withr = 10−5 and at1, 240 s from
traffic changes withr = 10. As a result, the convergence
speed of potentials is improved by about86% with an
optimal feedback. In our proposal, whenr is lower, the
convergence speed is high. With a lowerr, ru(k)Tu(k)
of ϕ(k) shown in Subsection III-B becomes smaller so that
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Figure 4. Potential change of each node (no cost)
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Figure 5. Data arrivals at each sink node (no cost)

the controller is allowed to change potentials largely at one
time and therefore, the potential convergence is accelerated.

Figures 5(a)∼5(c) show the number of data packet arrivals
every 100 s at each sink node and the averaged number
of them. The traffic convergence is also accelerated with
an optimal feedback, but our proposal reduces the average
number of data packet arrivals at each sink node just after
traffic changes. It is because some sink nodes temporarily
get highest potentials within their communication ranges
due to control inputs and, therefore, data packets cannot
arrive at sink nodes. However, the number of data packet
drops reduces immediately and the traffic finally converges
faster than the non-predictive scheme because of the faster
potential convergence. Therefore, data packets can be re-
transmitted instantly but, in this paper, we evaluate only
cases where data packets are never retransmitted because
our main purpose is to reveal the upper limit of convergence
speed of self-organizing systems. Moreover, Figs. 5(b) and
5(c) are the worst cases because the controller changes
potentials of sink nodes, that is, the destinations of data
packets, and almost all data packets are affected by the rapid
changes of potentials at sink nodes. If the controller provides
an optimal feedback to several sensor nodes where only a
part of data packets arrive, the number of data packet drops
will be smaller. With a lowerr, sink nodes are more likely
to be assigned higher potential value because the controller

can change potentials largely, whereas the recovery speed of
data packet arrivals becomes faster.

In this subsection, we show that the convergence speed
of potentials is improved by86% with an optimal feedback.
However, in this experiments, we do not consider restric-
tions of actual networks. In particular, communication delay
affects considerably the optimality of the feedback. In next
subsection, we show that the convergence is improved with
an optimal feedback even in the case where communication
delay is considered.

C. The Convergence with Restrictions in Wireless Sensor
Networks

Here, we evaluate the convergence considering restrictions
of wireless sensor networks. The controller broadcasts po-
tential request packets via the sink nodes at intervals of∆t to
collect potentials of sensor nodes. Potential request packets
are broadcasted withinp hops from the sink nodes, and then,
return to the sink nodes collecting potential values of visited
nodes. The interval of potential request packet emission∆t
is set to50 s. Each node can be arrived within2 hops from
a sink node in the network of Fig. 3 and, therefore,p is set
to 2. In other words, the controller collects information of
all nodes andH is set toIN×N .

Figures 6(a) and 6(b) show potential changes of our
proposal. In case, the monitored information is not always
the latest. In our proposal,Dc(t) becomes smaller than
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Figure 6. Potential change of each node (communication cost)
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Figure 7. Data arrivals at each sink node (communication cost)

1.7881 at 2, 000 s from traffic changes withr = 10−5

and at 2, 190 s from traffic changes withr = 10. As a
result, even with constraints such as communication delay,
the potential convergence is accelerated by77% due to an
optimal feedback. Figures 7(a) and 7(b) show the number
of data packet arrivals every100 s at each sink node and
the averaged number of them. As shown in these figures,
the average number of data packet arrivals in our proposal
is lower than that in the non-predictive mechanism. It is
because the congestion of traffic occurs around sink nodes
due to under layer protocols. That is not a critical problem
in our proposal.

In this subsection, we show that our proposal enhances
the convergence speed of potentials even with restrictions
of wireless sensor networks. Moreover, the latest potentials
can be estimated by past potentials because the dynamics
of potentials is described as the linear model, i.e., (2).
Therefore, the convergence speed will be improved still more
if the controller estimates the latest potentials with the past
potentials that are collected by the controller and calculates
control inputs using the estimated potentials.

V. CONCLUSION AND FUTURE WORK

In self-organizing systems, each component behaves ac-
cording to only local information, which leads to slow con-
vergence. We propose and evaluate potential-based routing
with an optimal feedback, where a controller predicts the

future state of the system and provide an optimal feedback
to the system for the fastest convergence. Simulation results
show that our proposal can facilitate the convergence of
potentials. Moreover, this accelerated potential convergence
can be achieved even if the controller can monitor nodes
only within one hop from sink nodes and the monitored
states are not always the latest ones.

Concerning the computation burden to solve the opti-
mal control problem, we are currently investigating model
reduction based implementation [13]. Furthermore, we are
now trying a distributed predictive mechanism where each
component predicts the future state of the entire system
using its and its neighbor nodes’ historical information.
In a predictive mechanism consisting of an observer and
a controller, considerable control overhead is needed for
collecting network-state information when the network size
is large. With a distributed predictive mechanism, control
overhead can be reduced because it is not necessary to
collect network information.
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