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Abstract—As key technologies for future information net-
works, many researchers have focused on self-organized network
controls. In the process of their ordering, their robustness
against environmental changes decreases while their performance
increases. Therefore, their behavior in dynamic environment
should retain appropriate amount of disorder. In this paper, we
conduct simulation experiments and show that higher entropy
leads to higher robustness against node failures.
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I. INTRODUCTION

For a communication network to serve as an indispens-
able infrastructure for secure, dependable, and comfortable
societies, future information networks must be more scalable,
adaptive, and robust against ever-increasing size, dynamics,
and complexity [1]. As one of key ideas, many researchers
have focused on self-organization [2] in natural systems. Then,
they adopt its mathematical models to various types of network
controls [3]. In self-organized network (SON) controls, net-
work elements’ behavior gradually becomes ordered through
direct or indirect interactions among them. In the process of
their ordering, they produce their own structures adaptively
to the current environment while decreasing robustness which
reflects the ability to maintain the network performance against
environmental changes. This is because robustness is derived
from disorder in SON controls. Thus, in this paper, we show
that SON controls in dynamic environment should retain
appropriate amount of disorder in their behavior.

As an idea to adjust the degree of disorder in SON
controls’ behavior, we focus on a substance’s thermodynamic
equilibrium, where the balance between its ordering behavior
and its disordering behavior is well kept depending on its
temperature T . In thermodynamics, we know that a substance’s
state changes while satisfying this condition ∆E−T×∆S ≤ 0,
where variables E and S are internal energy which captures
the total energy due to motion of molecules and entropy
which captures the degree of disorder in the substance’s state,
respectively. Then, this condition means that T determines
E and S in the thermodynamic equilibrium. For example,
higher T leads to the thermodynamic equilibrium with higher
E and S. From the perspective of SON controls, we interpret
internal energy E into the goodness of the emerging structure
at the macroscopic level, and we do entropy S into the degree
of disorder of their behavior in the structure. We think that
appropriate temperature T can bring in a SON control with
better robustness and performance in dynamic environment.
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Fig. 1. Overview of Simulation Setting

II. ENTROPY ADJUSTMENT OF SON CONTROLS

We take the attractor selection model-based overlay multi-
path routing [4] as an example of SON controls. In this
example, there is a pair of a source node and a destination
node, and K virtual routes are organized in advance. Virtual
route i ∈ {1 . . .K} has state value mi, and the source node
selects the virtual route with the highest state value among K
virtual routes. The dynamics of state value mi is defined by

mi(t+∆)=m(t)+

(
β×αγ (t)+ 1√

2

1+max1≤j≤K m2
j
(t)−m2

i
(t)

−mi(t)

)
×α(t)+ηi. (1)

Here, symbol ∆ is the control interval where this equation
is evaluated. Coefficients β (> 0) and γ (> 0) affect the
increasing rate of state values. Variable ηi is a normal random
number with average 0 and variance 1. Variable α (0 ≤ α ≤ 1)
represents the goodness of the current condition of the network
control. In Eq. (1), the third term of the right side affects
the probabilistic behavior. The second term of the right side
affects the deterministic behavior, where the highest state value
becomes higher and the other state values become lower. Using
the deterministic or probabilistic behavior properly, this SON
control approaches the optimum state, that is, internal energy
E spontaneously decreases. As coefficient β is smaller, the
relative influence of the noise term increases, that is, entropy
S increases. As a larger number of virtual routes exist, there are
more diverse choices, that is, entropy S also increases. High
entropy S makes it difficult that the network control stays at
the optimum state, and this leads to high internal energy E.

III. SIMULATION EXPERIMENT

A. Simulation Setting

We uniformly arrange 394 physical nodes in region
of 100m × 100m as illustrated in Fig. 1. Additionally,



we arrange 6 physical nodes at coordinates (5m, 5m),
(95m, 95m), (25m, 75m), (41.6m, 57.2m), (57.2m, 41.6m),
and (75m, 25m), respectively. These physical nodes are identi-
fied by node A, B, C, D, E, and F, respectively. A physical node
can communicate with physical nodes within its proximity of
12m. Link delay is set at 0.01 seconds. 5 virtual routes, which
correspond to physical routes from node A to node B via
node C, D, E, and F , respectively, are constructed in advance.
These virtual routes are identified by virtual route 1, 2, 3, 4,
and 5, respectively. Node A sends a data packet to node B.
When node B receives a packet, node B sends an ack packet
back to node A. We call node A source node. We call node B
destination node. A data packet is sent every ∆ = 0.1 seconds
via a virtual route, which is selected by the model. Activity α
is defined by equation α(t+∆) = α(t)+0.01×(dm/dl−α(t)),
where dl and dm are the last delay and the minimum delay for
the past 10 seconds, respectively. For simplicity of simulation
experiments, we assume that all physical nodes compute the
shortest paths to other physical nodes every 50 seconds using
global information. One of physical nodes on a randomly
selected virtual route dies every 40 seconds. We call this
physical node failure node. We assume that a packet loss
occurs only if a packet is transmitted to a failure node.
One of failure nodes recovers every 100 seconds. We call
this physical node recovery node. A recovery node begins to
forward packets again.

B. Influence of parameter β on robustness against failures

We assume that the network control has virtual routes 1,
3, and 5 (K = 3). The goodness of a virtual route depends
on the hop length of the corresponding physical route. In
this simulation setting, virtual route 3 is the best, and virtual
routes 1 and 5 are equally good. The coefficients (β1, β3, β5)
are set at (3, 3, 3), (5, 5, 5), or (7, 7, 7). In a simulation run
of 500 seconds, we derive the average delay of packets that
the destination node receives and the ratio of packets that the
destination node receives over packets the source node sends.
We conduct 500 simulation runs with the same node placement
and draw the cumulative distributions in Figs. 2 and 3.

We compare simulation results when (β1, β3, β5) are set at
(3, 3, 3), (5, 5, 5), or (7, 7, 7). Figure 2 shows that the ratio of
received packets is higher as β is smaller. This shows that the
network control becomes more robust against node failures as
entropy S becomes higher. This is because a selected virtual
route more quickly changes to another after the occurrence of
node failures. Additionally, Figure 3 shows that the average
delay is within narrower range between 0.31 seconds and 0.33
seconds when (β1, β3, β5) are set at (3, 3, 3). This is because
the network control with quite high entropy S uniformly
selects a virtual route in a simulation run. As a result, the
average delay is nearly equal among all simulation runs. On
the contrary, the network control with quite large β stably
selects a specific virtual route in a simulation run. As a result,
the average delay disperses within wider range between 0.27
seconds and 0.36 seconds when (β1, β3, β5) are set at (5, 5, 5)
or (7, 7, 7).

C. Influence of parameter K on robustness against failures

Figure 4 shows that the received ratio becomes higher as
parameter K is higher. This shows that the robustness against
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Fig. 2. Influence of parameter β on ratio of received data packets
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Fig. 3. Influence of parameter β on average delay
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Fig. 4. Influence of parameter K on ratio of received data packets

node failures becomes higher as entropy S becomes higher.
This is because the selected virtual route is less likely to
be disconnected as more virtual routes exist. This figure also
shows that the increase in the number of received packets is
less remarkable as more virtual routes exist. From this result,
we can expect that appropriate parameter K exists depending
on the frequency of node failures.

IV. CONCLUSION AND FUTURE WORK

In this paper, we focus on thermodynamics to realize robust
SON controls. Through simulation experiments, we analyze
the influence of the parameters, which affect entropy S, on
the robustness against node failures. The results show that
the network control with higher entropy can achieve higher
robustness against node failures. As our future work, we
will organize the quantitative design methodology, which can
determine the appropriate parameter setting.
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