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Abstract—Bio-inspired network controls are driven by the
competition between their ordering force and disordering force.
Both forces simultaneously affect their performance and ro-
bustness. Therefore, we must carefully determine their balance.
In this paper, we focus on thermodynamic phenomena where a
substance achieves the balance between both forces depending
on its temperature. We translate bio-inspired network controls
from the perspective of thermodynamics, and we analytically
show that the appropriate balance between both forces can be
achieved by selecting appropriate temperature.
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I. INTRODUCTION

Information networks must be more robust against ever-
increasing dynamics and complexity. Many researchers have
recently focused on interdisciplinary approaches to obtain
innovative ideas. In particular, they have been actively
working on self-organized network controls [1].

The self-organization [2] occurs under the competition be-
tween “ordering force” and “disordering force”. The order-
ing force plays a role in organizing and maintaining useful
structures for survival. The disordering force also plays a
quite important role in diversifying the organized structures.
In the field of self-organized network controls, the ordering
force makes a network control change its state toward a
better state. This force makes a significant contribution for
achieving high performance. The disordering force makes
its state veer toward an unintended state. This force plays
an important role in achieving high robustness, which is a
feature to prepare for unexpected failures, e.g. node failures.
By achieving the appropriate balance between both forces,
we can realize an excellent network control which achieves
high performance and high robustness.

To achieve the appropriate balance between both forces,
we focus on thermodynamic phenomena where a substance
achieves the appropriate balance between both forces de-
pending on its temperature. The objective in this paper is
to show the validity of our approach to realize a network
control which achieves the balance between its robustness
and its performance. For this purpose, we firstly interpret
network controls from the perspective of thermodynamics,
and we formulate their thermodynamic state values, i.e.
internal energy Enw, entropy Snw, temperature Tnw, and
free energy Anw. Next, we conduct a mathematical analysis

and show that the appropriate balance between both forces
is achieved by selecting the appropriate temperature Tnw.

II. APPROPRIATE BALANCE BETWEEN ORDERING

FORCE AND DISORDERING FORCE

Taking a multi-path routing as an example of network
controls, we formulate thermodynamic state values. Then,
we analytically show that the network control can achieve
the best balance between both forces by selecting appropriate
temperature Tnw to its assumed network condition.

A. Mathematical Model of Multi-path Routing

There is a single pair of a source node and a destination
node. For simplicity of mathematical analysis, we hereinafter
assume that there is an infinite of disjoint path candidates.
When the source node sends a packet to the destination node,
the source node selects a path in a probabilistic manner.
A path is identified by identifier x (−∞ ≤ x ≤ ∞).
The source node selects a path with smaller |x| with
higher probability. The probability for the source node to
select path x is given by a Gaussian distribution function:
exp(−x2/2σ2

2)/
√
2πσ2

2 . When the source node selects path
x, path x is disrupted with probability qx (0 ≤ qx ≤ 1). This
probability is hereinafter called “disruption probability” and
is equally set at the same value q (0 ≤ q ≤ 1) among all
path candidates. Goodness of path x is represented by value
Gx (0 ≤ Gx ≤ 1). Goodness Gx is given by a Gaussian
function: 1 − exp(−x2/2σ2

1). As goodness Gx is smaller,
path x is better, e.g. shorter hop length. When path x is
disrupted, its goodness Gx is set at the worst value. In this
case, its goodness Gx is set at 1.

B. Quantitative Definition of Thermodynamic State Values

1) Internal Energy Enw: Internal energy E relates to the
variability of its internal structure. In network controls, a
state is maintained much more as it is better. In contrast, as a
state is worse, it is more variable to search solution space for
a better state. On the basis of this description, internal energy
Enw is quantified as “performance” of network controls.
In case of the multi-path routing, internal energy Enw is
measured as the expected goodness of a path, which the
source node selects in a probabilistic manner. Therefore,



internal energy Enw is formulated by the next equation.

Enw =
∫ +∞
−∞
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Here, internal energy Enw becomes smaller, that is, its
performance becomes higher as disruption probability q
becomes smaller, variance σ2

1 becomes larger (that is, there
are a more number of good paths), or variance σ2

2 becomes
smaller (that is, the source node selects a path from a
narrower range of path candidates).

2) Entropy Snw: Entropy S relates to the randomness of
its internal structure. A network control sometimes changes
its state toward unintended states, and it can tolerate oc-
currences of unexpected failures, e.g. node failures. On
the basis of this description, entropy Snw is quantified
as its “robustness”. In case of the multi-path routing, the
probability for the source node to select path x is given by
the Gaussian distribution function. Therefore, entropy Snw is
formulated as the entropy of the Gaussian distribution with
variance σ2

2 and average 0.
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Here, entropy Snw becomes larger, that is, its robustness
becomes higher as variance σ2

2 becomes larger, that is,
the source node selects a path from more diverse path
candidates.

3) Temperature Tnw: In thermodynamics, temperature T
is defined by dE/dS. In case of the multi-path routing,
we differentiate internal energy Enw and entropy Snw with
respect to variance σ2

2 , and we can derive temperature Tnw

from equation Tnw = (dEnw/dσ
2
2)/(dSnw/dσ

2
2). There-

fore, temperature Tnw is formulated as the next equation.

Tnw = (1− q)
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4) Free Energy Anw: In thermodynamics, free energy A
is defined by equation A = E−T ×S. In network controls,
free energy Anw is defined by the next equation.

Anw = Enw − Tnw × Snw

Through self-organization, the network control reaches
steady state, where the balance between internal energy
Enw (performance) and entropy Snw (robustness) is well
kept depending on temperature Tnw. Therefore, free energy
Anw captures the imbalance between its performance and
its robustness.

C. Numerical Example of Analytical Model
Through a mathematical analysis, we show the appropriate

balance between both forces is achieved by selecting the
appropriate temperature Tnw which depends on the assumed
network condition.

Figures 1 and 2 represent numerical examples about tem-
perature Tnw and free energy Anw, respectively. Disruption
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Figure 1. Temperature
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Figure 2. Free energy

probability q of all paths is set at 0.2. We prepare two
scenarios. In the first scenario, variance σ2

1 of the Gaussian
function, which determines the goodness of paths, is set at
10 assuming that there are a small number of good paths.
In the other scenario, variance σ2

1 is set at 30 assuming that
there are a large number of good paths. In these figures, x-
axis corresponds to variance σ2

2 of the Gaussian distribution
which determines probability px for the source node to select
path x, and y-axis corresponds to temperature Tnw and free
energy Anw, respectively.

We can find that variance σ2
2 which maximizes tem-

perature Tnw is equal to one when free energy Anw is
minimized by comparing Fig. 1 with Fig. 2. Given the
network condition, i.e. a certain disruption probability q and
a certain variance σ2

1 , we can expect that the maximization of
temperature Tnw leads to achieving the appropriate balance
between the ordering force and the disordering force. To
prove this, we first derive variance σ2

2 when temperature Tnw

is maximized. For this purpose, we differentiate temperature
Tnw with respect to variance σ2

2 . Now, we get equation
σ2 = σ1/

√
2. Next, we differentiate free energy Anw with

respect to variance σ2
2 . We substitute condition σ2 = σ1/

√
2

into the result, and we get zero. Consequently, we conclude
that variance σ2

2 when free energy Anw is minimized is the
same with variance σ2

2 when temperature Tnw is maximized.
This implies that we can derive the appropriate parameter
setting from the formulation of temperature Tnw.

III. CONCLUSION AND FUTURE WORK

In this paper, we translated the multi-path routing from
the perspective of thermodynamics. Then, we analytically
showed that the appropriate balance between both forces
can be achieved by selecting the appropriate temperature. As
future work, we are planning to verify our approach using
a more realistic model of network controls and propose a
thermodynamics-based design method.
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