# Thermodynamics-based Strategy to Achieve Balance between Robustness and Performance for Self-organized Network Controls

Takuya Iwai, Masayuki Murata, Tetsuya Yomo

Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565–0871, Japan Email: {t-iwai, murata, yomo}@ist.osaka-u.ac.jp

*Abstract*—Bio-inspired network controls are driven by the competition between their ordering force and disordering force. Both forces simultaneously affect their performance and robustness. Therefore, we must carefully determine their balance. In this paper, we focus on thermodynamic phenomena where a substance achieves the balance between both forces depending on its temperature. We translate bio-inspired network controls from the perspective of thermodynamics, and we analytically show that the appropriate balance between both forces can be achieved by selecting appropriate temperature.

*Keywords*-bio-inspired network control; robustness; performance; balance; thermodynamics

## I. INTRODUCTION

Information networks must be more robust against everincreasing dynamics and complexity. Many researchers have recently focused on interdisciplinary approaches to obtain innovative ideas. In particular, they have been actively working on self-organized network controls [1].

The self-organization [2] occurs under the competition between "ordering force" and "disordering force". The ordering force plays a role in organizing and maintaining useful structures for survival. The disordering force also plays a quite important role in diversifying the organized structures. In the field of self-organized network controls, the ordering force makes a network control change its state toward a better state. This force makes a significant contribution for achieving high performance. The disordering force makes its state veer toward an unintended state. This force plays an important role in achieving high robustness, which is a feature to prepare for unexpected failures, e.g. node failures. By achieving the appropriate balance between both forces, we can realize an excellent network control which achieves high performance and high robustness.

To achieve the appropriate balance between both forces, we focus on thermodynamic phenomena where a substance achieves the appropriate balance between both forces depending on its temperature. The objective in this paper is to show the validity of our approach to realize a network control which achieves the balance between its robustness and its performance. For this purpose, we firstly interpret network controls from the perspective of thermodynamics, and we formulate their thermodynamic state values, i.e. internal energy  $E_{nw}$ , entropy  $S_{nw}$ , temperature  $T_{nw}$ , and free energy  $A_{nw}$ . Next, we conduct a mathematical analysis

Daichi Kominami

Graduate School of Economics, Osaka University, Toyonaka, Osaka 560–0043, Japan Email: d-kominami@econ.osaka-u.ac.jp

and show that the appropriate balance between both forces is achieved by selecting the appropriate temperature  $T_{nw}$ .

# II. APPROPRIATE BALANCE BETWEEN ORDERING FORCE AND DISORDERING FORCE

Taking a multi-path routing as an example of network controls, we formulate thermodynamic state values. Then, we analytically show that the network control can achieve the best balance between both forces by selecting appropriate temperature  $T_{nw}$  to its assumed network condition.

## A. Mathematical Model of Multi-path Routing

There is a single pair of a source node and a destination node. For simplicity of mathematical analysis, we hereinafter assume that there is an infinite of disjoint path candidates. When the source node sends a packet to the destination node, the source node selects a path in a probabilistic manner. A path is identified by identifier  $x \ (-\infty \le x \le \infty)$ . The source node selects a path with smaller |x| with higher probability. The probability for the source node to select path x is given by a Gaussian distribution function:  $\exp(-x^2/2\sigma_2^2)/\sqrt{2\pi\sigma_2^2}$ . When the source node selects path x, path x is disrupted with probability  $q_x$  ( $0 \le q_x \le 1$ ). This probability is hereinafter called "disruption probability" and is equally set at the same value q ( $0 \le q \le 1$ ) among all path candidates. Goodness of path x is represented by value  $G_x \ (0 \le G_x \le 1)$ . Goodness  $G_x$  is given by a Gaussian function:  $1 - \exp(-x^2/2\sigma_1^2)$ . As goodness  $G_x$  is smaller, path x is better, e.g. shorter hop length. When path x is disrupted, its goodness  $G_x$  is set at the worst value. In this case, its goodness  $G_x$  is set at 1.

# B. Quantitative Definition of Thermodynamic State Values

1) Internal Energy  $E_{nw}$ : Internal energy E relates to the variability of its internal structure. In network controls, a state is maintained much more as it is better. In contrast, as a state is worse, it is more variable to search solution space for a better state. On the basis of this description, internal energy  $E_{nw}$  is quantified as "performance" of network controls. In case of the multi-path routing, internal energy  $E_{nw}$  is measured as the expected goodness of a path, which the source node selects in a probabilistic manner. Therefore,

internal energy  $E_{nw}$  is formulated by the next equation.

$$E_{nw} = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{x^2}{2\sigma_2^2}} \left\{ (1-q) \left( 1 - e^{-\frac{x^2}{2\sigma_1^2}} \right) + q \right\} dx$$

Here, internal energy  $E_{nw}$  becomes smaller, that is, its performance becomes higher as disruption probability q becomes smaller, variance  $\sigma_1^2$  becomes larger (that is, there are a more number of good paths), or variance  $\sigma_2^2$  becomes smaller (that is, the source node selects a path from a narrower range of path candidates).

2) Entropy  $S_{nw}$ : Entropy S relates to the randomness of its internal structure. A network control sometimes changes its state toward unintended states, and it can tolerate occurrences of unexpected failures, e.g. node failures. On the basis of this description, entropy  $S_{nw}$  is quantified as its "robustness". In case of the multi-path routing, the probability for the source node to select path x is given by the Gaussian distribution function. Therefore, entropy  $S_{nw}$  is formulated as the entropy of the Gaussian distribution with variance  $\sigma_2^2$  and average 0.

$$S_{nw} = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{x^2}{2\sigma_2^2}} \log \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{x^2}{2\sigma_2^2}} dx$$

Here, entropy  $S_{nw}$  becomes larger, that is, its robustness becomes higher as variance  $\sigma_2^2$  becomes larger, that is, the source node selects a path from more diverse path candidates.

3) Temperature  $T_{nw}$ : In thermodynamics, temperature T is defined by dE/dS. In case of the multi-path routing, we differentiate internal energy  $E_{nw}$  and entropy  $S_{nw}$  with respect to variance  $\sigma_2^2$ , and we can derive temperature  $T_{nw}$  from equation  $T_{nw} = (dE_{nw}/d\sigma_2^2)/(dS_{nw}/d\sigma_2^2)$ . Therefore, temperature  $T_{nw}$  is formulated as the next equation.

$$T_{nw} = (1-q) \left\{ \frac{1}{\sigma_2 \sqrt{\sigma_1^{-2} + \sigma_2^{-2}}} - \left(\frac{1}{\sigma_2 \sqrt{\sigma_1^{-2} + \sigma_2^{-2}}}\right)^3 \right\}$$

4) Free Energy  $A_{nw}$ : In thermodynamics, free energy A is defined by equation  $A = E - T \times S$ . In network controls, free energy  $A_{nw}$  is defined by the next equation.

$$A_{nw} = E_{nw} - T_{nw} \times S_{nw}$$

Through self-organization, the network control reaches steady state, where the balance between internal energy  $E_{nw}$  (performance) and entropy  $S_{nw}$  (robustness) is well kept depending on temperature  $T_{nw}$ . Therefore, free energy  $A_{nw}$  captures the imbalance between its performance and its robustness.

## C. Numerical Example of Analytical Model

Through a mathematical analysis, we show the appropriate balance between both forces is achieved by selecting the appropriate temperature  $T_{nw}$  which depends on the assumed network condition.

Figures 1 and 2 represent numerical examples about temperature  $T_{nw}$  and free energy  $A_{nw}$ , respectively. Disruption



probability q of all paths is set at 0.2. We prepare two scenarios. In the first scenario, variance  $\sigma_1^2$  of the Gaussian function, which determines the goodness of paths, is set at 10 assuming that there are a small number of good paths. In the other scenario, variance  $\sigma_1^2$  is set at 30 assuming that there are a large number of good paths. In these figures, xaxis corresponds to variance  $\sigma_2^2$  of the Gaussian distribution which determines probability  $p_x$  for the source node to select path x, and y-axis corresponds to temperature  $T_{nw}$  and free energy  $A_{nw}$ , respectively.

We can find that variance  $\sigma_2^2$  which maximizes temperature  $T_{nw}$  is equal to one when free energy  $A_{nw}$  is minimized by comparing Fig. 1 with Fig. 2. Given the network condition, i.e. a certain disruption probability q and a certain variance  $\sigma_1^2$ , we can expect that the maximization of temperature  $T_{nw}$  leads to achieving the appropriate balance between the ordering force and the disordering force. To prove this, we first derive variance  $\sigma_2^2$  when temperature  $T_{nw}$ is maximized. For this purpose, we differentiate temperature  $T_{nw}$  with respect to variance  $\sigma_2^2$ . Now, we get equation  $\sigma_2 = \sigma_1/\sqrt{2}$ . Next, we differentiate free energy  $A_{nw}$  with respect to variance  $\sigma_2^2$ . We substitute condition  $\sigma_2 = \sigma_1/\sqrt{2}$ into the result, and we get zero. Consequently, we conclude that variance  $\sigma_2^2$  when free energy  $A_{nw}$  is minimized is the same with variance  $\sigma_2^2$  when temperature  $T_{nw}$  is maximized. This implies that we can derive the appropriate parameter setting from the formulation of temperature  $T_{nw}$ .

#### **III. CONCLUSION AND FUTURE WORK**

In this paper, we translated the multi-path routing from the perspective of thermodynamics. Then, we analytically showed that the appropriate balance between both forces can be achieved by selecting the appropriate temperature. As future work, we are planning to verify our approach using a more realistic model of network controls and propose a thermodynamics-based design method.

### ACKNOWLEDGEMENT

This research was supported by Grant-in-Aid for Fellows of Japan Society for the Promotion of Science (JSPS).

#### REFERENCES

- C. Zheng and D. Sicker, "A survey on biologically inspired algorithms for computer networking," *IEEE Communications Surveys Tutorials*, vol. PP, pp. 1–32, Jan. 2013.
- [2] E. Bonabeau, M. Dorigo, and G. Theraulaz, *Swarm intelligence: from natural to artificial systems*. Oxford University Press, 1999.