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Abstract—Content-Centric Network (CCN) is expected to become
the network architecture in the future for exchanging content
without specifying the addresses of nodes. An advantage of
adopting CCN is that it improves the availability of network
resources by using in-network caching. However, since servers
that have a lot of popular content may suffer heavy traffic loads,
which lead to frequent updates of caches in neighboring routers,
the efficiency of cache usage may be degraded. To solve this
problem, we propose a method for widely distributing content by
using random encoded addresses. From our simulation results,
we show that our method can reduce cache sizes by about up
to 75% while still achieving the same cache hit ratio when the
access frequencies are biased to a specific server.

Keywords–Future Network; Content-Centric Network; Encoded
Addresses; Cache Efficiency.

I. I NTRODUCTION

In recent years, Information-Centric Network (ICN) has
been considered as a network architecture for the future,
and one implementation of ICN is Content-Centric Network
(CCN). Today, communication on the Internet is performed
by specifying the identifier of the terminal node (IP address),
namely, by node-oriented routing. However, recently, the most
of communications are service-oriented, i.e., end users don’t
care about which node provides a service or content they
prefer to get from. It is so usual that end users specify some
key words of content/service at search engine like Google,
then click the URL returned by the engine. There is thus a
gap between how the Internet performs routing and how the
Internet is used. CCN is expected to solve this problem by
implementing routing that uses information about the content,
unifying content-oriented communication.

One of the functionalities of CCN is that it can implement
routing without being aware of the location of nodes by routing
using information about the content. Performance of the CCN
can be improved by creating duplicates of content (acontent
cache hereafter) in any router along the delivery path, and
by routing to the nearest node that has the desired content.
Furthermore, the content cache can relax from spatial and
temporal constraints on content by uncoupling the combination
of content and location because content can be arranged to be
in any location. That is, the content cache makes it possible to
acquire content regardless of where the server with the original
content is located and whether the server is running.

To increase the advantages of CCN, efficient creation and
placement of content caches is important. Since the content
is expected to become more diverse and larger in size in
the future, the efficiency of the content cache is essential for
effectively finding and using network resources. Therefore,
efficient cache algorithms for CCN have been studied. Because
research into CCN is still in the early days, evaluations of
cache performance are mostly at the level of basic studies.
For example, in [1] [2], cache performance at the chunk level
in CCN was determined by simulation. However, the network
topologies examined in that study were limited to the cascade
topology and the tree topology.

In recent years, cache performance has been evaluated in
more realistic topologies [3]. In [4], the cache performance
in a more general network topology was evaluated. In [5],
the cache performance was evaluated by using Mixed-Integer
Linear Programming problem. In [6], they proposed a method
caching only popular content. In [7], a method for enhancing
cache robustness was proposed. In [8], a collaborative caching
scheme to improve cache performance was proposed. In [9],
they conducted a thorough simulation considering network
topology, multi-path routing, content popularity, caching deci-
sions and replacement policies. In [10], when individual CCN
router had different cache size, the caching performance was
evaluated. In [11], they evaluated the influence of multiple
servers for the same content.

Although variations in the access frequencies to content are
taken into account in many evaluations, such as by modeling
with Zipf’s law, as exemplified by [9], variations in the
access frequencies to servers are often not taken into account.
Specifically, the content at a given nodes are typically assigned
randomly. In practice, however, the access frequencies to
content servers are heterogeneous, just as access frequencies to
content are. In short, the servers (web pages) that attract a lot of
access are popular because they have a lot of popular content,
and the content that is accessed frequently is concentrated in
only some servers. When the locality of content is high, cache
updates frequently occur along the peripheral paths of servers
that are frequently accessed, and the cache performance is
thereby greatly reduced.

The aim of this paper is to take both heterogeneities (not
only on access frequency of content but on access frequency
of node) into consideration. We propose a network architec-
ture for widely distributing content in CCN to increase the



efficiency of content caches. More specifically, this method
does not use content names, but instead uses random encoded
addresses that are adapted to the addressing architecture of
the network layer protocol for content search and routing.
Additionally, content is initially placed in the nodes indicated
by the random encoded addresses. We find by simulation that
our method improves cache performance.

This paper is organized as follows. First, we give an outline
of CCN in Section II, and then propose a method for widely
distributing content in Section III. Our simulation results and
the effectiveness of our method are given in Section IV, and
we present our conclusions and discuss future work in Section
V.

II. I NTRODUCTION TOCCN
Recently many architectures for implementing ICN have

been proposed (e.g., DONA [12], PURSUIT [13], SAIL [14]
and COMET [15]). The ICN that we target in our work is
based on CCN/NDN [16], which is being studied mainly in
the US communities.

Communication in CCN consists ofInterest packets re-
questing content andData packets supplying content. Thus,
whereas content is referenced by a uniform resource locator
(URL) in an IP network, it is referenced by hierarchical content
names in CCN. For example, an image of an apple can be
assigned a name such as /picture/fruit/apple.png.

CCN routers implement forwarding control by content
name, and contain three data structures: the content store
(CS), pending interest table (PIT), and forwarding interest base
(FIB). These are referenced and updated whenever Interest
packets arrive. First, the CS is consulted based on the content
name given in an Interest packet. The CS contains the list of
content names about the contents cached in the router. If the CS
contains the content that an Interest packet requires, the router
returns the cached content to the client. If not, the FIB and PIT
are used to forward Interest and Data packets respectively. The
FIB contains information about the next hop for reaching the
target content as well as Internet routing tables. CCN routers
search the FIB by using the content names in Interest packets,
and forward the Interest packets to the next router based on
information about the next hop found in the FIB. It also adds
and updates the information about the next router in the PIT in
order for the Data packets corresponding to the Interest packet
to be delivered to the client correctly.

III. CCN A RCHITECTURE FORCONTENT DISTRIBUTION

In this section, we propose a CCN architecture for imple-
menting more efficient content distribution. In this architecture,
random encoded addresses are first assigned to content, and
then the content is placed and Interest packets are routed by
using these random encoded addresses.

A. CCN by Using Encoded Addresses

Figure 1 shows an outline of the proposed CCN that uses
encoded addresses. In the proposed architecture, routing is
implemented by mapping content names into the address space
used for routing in the network layer (e.g., IPv6 or IPv4)
instead of using the content names themselves as the target
addresses of routing. We call this process “encoding,” and call
addresses that have been mapped into the address space used
for routing in the network layer “encoded addresses.”
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Figure 1. Outline of CCN using encoded addresses

The advantages of routing using encoded addresses instead
of content names include (1) the ability to implement CCN
without making significant changes to the existing network
layer; and (2) the ability to gain additional value from the
method of generating encoded addresses. Point (1) means
that, if we use IPv4 or IPv6, which are already used on the
Internet as the lower layer, and use 128-bit IPv6 addresses
as encoded addresses, then we can take advantage of IPv6
routing functions for packet forwarding. Taking full advan-
tage of existing technology is expected to lead to earlier
transition to CCN. Point (2) means that, for example, we
can use an encoding method to manage the placement and
routing of content to be able to widely distribute content by
using randomly encoded addresses. The improvement in cache
performance by distributing content as described in this paper
is achieved by distribution using randomly encoded addresses.
More information is given in Section III-B. Also, we note
that our architecture has an advantage that the strategy of
cache placement is dependent on how to generate the encoded
address from the specified content. In other words, we can
easily change the strategy by only changing the function of
address encoding in the network.

As an example, consider a network layer protocol with an
address length of 40 bits, as shown in Figure 1. Now consider
the acquisition of a video file named /video/scene/mtfuji.mpg.
First, a server that has the object content (a content server)
notifies the network that it has the content. We call this
“Registration.”

Registration is performed with the encoded addresses of
the content. That is, the addressa02b92efdc is the encoded
address of the content /video/scene/mtfuji.mpg, and also means
that the network layer address of the node which treats the
location of the content and receives the Registration message
for the content. Therefore, the Registration message that was
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Figure 2. Problem in case of frequently updated caches
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Figure 3. Content distribution with randomly encoded addresses

sent to the address arrives at the nodea02b92efdc via the
network layer protocol. The Registration message contains the
content name and the network layer addressbc2a335f28 of
the content server. When the nodea02b92efdc receives the
Registration message, it adds the information to a table (i.e.,
FIB) that maps content names to server addresses (content
mapping table).

When a client wants to access the content /video/scene/
mtfuji.mpg, it sends an Interest packet to the node that has the
encoded addressa02b92efdc as the network layer address.
The Interest packet is sent to the nodea02b92efdc by
the network layer. The node that receives the Interest packet
then searches the content mapping table for the content name
contained in the message. If the content name is found, the
node gets the address of the corresponding content server and
forwards the Interest packet to the server. When the content
server receives the Interest packet, it sends the content to the
client.

B. Content Distribution by Using Random Encoded Addresses

When content that is accessed highly frequently is concen-
trated on a specific server, the cache updates occur frequently
in neighboring nodes, and the efficiency with which the cache
is used deteriorates (Figure 2). To solve this problem, we
propose a method for scattering the nodes where content is
initially placed by using randomly encoded addresses.

We use a random encoding that offers highly random
encoded addresses for content names as a method that readily
achieves the above-mentioned content dispersion. For example,
this random encoding could employ a method of selecting
encoded addresses based on a random hash value calculated
from the content names by a hash function. Highly random
hash functions, such as SHA-1, are the most suitable for the
random encoding.

The randomly encoded addresses also retain their meaning
as addresses in the lower routing layer. Moreover, since the ad-
dresses are dispersed randomly, a random node can be selected
independently of the network topology. Conventionally, it has
been necessary to know the topological structure to achieve
uniform dispersion of content. However, our method is able
to obtain the address of a random node by using randomly
encoded addresses, and this enables highly dispersed place-
ment of content. Furthermore, we can also support a locality
of content access. If encoded addresses are fully randomized
by the name of content, contents would be widely distributed in
whole. On the other hand, if a content is preferable to distribute
regionally, we can use a random function with preserving some
length of prefix.

In the CCN shown in Subsection III-A, the server that
has the content (the content server) does not notify (via a
Registration message) the network of the existence of the
content, but instead initially places the content in the node that
has the addressa02b92efdc , and the content isn’t replaced
by other contents. This makes it possible not only for the client
to acquire content directly without passing through redundant
paths, but also to distribute the content. Figure 3 shows an
outline of the CCN for content distribution.

IV. PERFORMANCEEVALUATION

In this section, we compare the case where content is
distributed in a network by using randomly encoded addresses
with the case where popular content is concentrated on a
specific server without randomly encoded addresses. In this
paper, caching is assumed to be performed in chunks, which
are portions of the content, rather than in entire content units.
Communication is also performed in chunks.

A. Simulation Scenarios

Performance was evaluated by computer simulation. We
use a modified version of ccnSim [9] as the simulator. Specifi-
cally, although ccnSim considers the distribution of popularity
of content, it also assumes that this content is evenly dispersed
across nodes in the network. Thus, because it does not assume
that popular content is concentrated on a specific server,
which is the subject of this paper, we revised the content
placement algorithm in ccnSim so that popular content would
be concentrated on a specific server. For comparison, we
evaluated cases in which 50% and 70% of content demand
is concentrated on a specific server; we also evaluated the
case where content is dispersed by using randomly encoded
addresses.

The distribution of popular content is implemented by
assigning the frequency of demand for each piece of content
according to Zipf’s law, as follows:

fr =
c

rα
, (1)



wheref is the number of times content is requested,r is the
order of popularity of all content,c is a constant, andα is a
tuning parameter.

The distribution of popular content greatly depends on the
parameterα. In papers that evaluate cache performance in
CCN [17] [18] [19], values such as 0.8 and 1.0 are used. In
addition, the value ofα in DailyMotion is about 0.88 [20]. In
this paper, we use 0.9 for the value ofα.

We assume that Interest packet generation is modeled by
a Poisson distribution with 100 requests/s, that the frequency
of requests for each piece of content obeys Zipf’s law, and we
also suppose that the nodes do not request content which they
themselves own. If the content acquisition for a recent request
has not yet completed, the same request is not made again.

Intermediate nodes always cache Data chunks they receive
that are not already contained in their caches. Chunks are
discarded according to the Least Recently Used (LRU) scheme
in the event that the cache becomes full.

After the simulation results had become stable enough, we
evaluated our simulation. That is, we calculated the perfor-
mance metrics after the caches of all nodes had become full
and the cache hit ratios had converged. The simulation was
finished after the cache hit ratio had converged and a certain
period of time had elapsed. Simulations were performed five
times while changing the seed of the pseudorandom number
generator, and the mean evaluation results were considered.

We assume that the average number of chunks is 100. We
varied the cache size of the nodes (the number of Data chunks
each node can cache) while comparing the case where content
is distributed in the network by using randomly encoded
addresses with cases where a specific server contains popular
content without randomly encoded addresses. Furthermore, to
examine the influence of the number of pieces of content, we
performed simulation of the cases of105 and 106 pieces of
content.

A Level 3 Network Topology consisting of 46 nodes [21]
[9] was used as the evaluation topology. However, because this
topology, shown in Figure 4, consists of only the core network,
we used the topology with three end nodes connected for each
core node to include the case where end nodes are connected.
As a result, the number of nodes is 184 and the graph diameter
is 6. The end nodes consist of both servers and clients. The
shortest paths by number of hops are calculated beforehand,
and the paths between pairs of nodes do not change during the
simulation.

Since the efficient utilization of caches is the main topic
of this paper, all nodes are assumed to have caches. We also
assume that link capacity is sufficient to prevent congestion.

Hereinafter, we refer to nodes that primarily contain con-
tent placed using randomly encoded addresses asrepositories.
Our method distributed content across the nodes in a network,
and the cache size of each node to have decreased by 10%.

B. Performance Metrics

We use the cache hit ratio and the hop reduction ratio as
performance metrics. The cache hit ratio is the probability that
the desired content exists in a node on the path to a repository
(or server). Among the nodes1, 2, . . . , n, the noden is the
repository (or server), and the number of cache hits in nodei

Figure 4. Level 3 topology

is Hi. The cache hit ratioQ is then given by (2). In addition,
nodes that generate Interest packets first check their own cache
for a hit. Interest packets are assumed to hit in noden when
they arrive at the repository (or server).

Q =

n−1∑
i=1

Hi

n∑
i=1

Hi

(2)

The hop reduction ratio is the mean of the value obtained
by dividing the number of hopsd through which a Data packet
passed by the smallest number of hopsP between the node
that generated the Interest packet and the repository (or server)
that contains the desired content in cases where the node
that generated the Interest packet received the Data packet
it requested. Nodes are numbered1, 2, . . . , n. The smallest
number of hops between nodei and nodej is Hi,j . The
number of cache hits that occurred in nodel for Interest
packets generated by nodek requesting contentc is Dc,k,l.
The repository (or server) of contentc is rc. The total number
of Interest packets requesting contentc generated by nodei is
Ic,i. The total number of Interest packets requesting contentc
is Ic. The total number of Interest packetsI is thus calculated
as follows.

Ic,i =
∑
l

Dc,i,l (3)

Ic =
∑
i

Ic,i (4)

I =
∑
c

Ic (5)

The hop reduction ratio of Interest packets generated by node
i requesting contentc that have a cache hit in nodej is given
by (6).

pc,i,j =
Hi,j

Hi,rc

(6)

The average hop reduction ratio of nodei generating Interest
packets requesting contentc is then given by (7).

pc,i =

∑
j

pc,i,jDc,i,j

Ic,i
(7)
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Figure 5. Cache hit ratio with and without randomly encoded addresses
(C = 106)

The average hop reduction ratio for contentc is thus given by
(8).

pc =

∑
i

pc,i

N
(8)

The hop reduction ratio is given by (9). In addition,C is the
number of pieces of content.

P =

∑
c

pc

C
(9)

Expanding (9) gives (10).

P =
I

NC

∑
c

∑
i

∑
j

Hi,j

Hi,rcIc,i
(10)

The smaller this value, the shorter the response time.

C. Simulation Results

In Figures 5 - 9, the percentage of content requests that
are concentrated on a specific server in the “without Encoded
Addresses” cases are indicated in the legend. That is, the label
70% indicates that 70% of all requests are concentrated on
a specific server. In addition, cache sizes are given in units
of content. That is, a cache size 2000 means each node has
capacity for 2000 pieces of content. Hereafter, the cache size
in units of content isS, and the number of pieces of content
is C.

From Figure 5 and 6, it is clear that the cache hit ratio and
hop reduction ratio improve when randomly encoded addresses
are used. This is because the caches of frequently accessed
nodes and their neighboring nodes are not updated frequently
because the content was placed in random nodes beforehand by
using randomly encoded addresses. Specifically, our method of
random encodedly addresses improves the cache hit ratio by a
maximum 9% over the case where 50% of content requests are
concentrated on a specific server and by a maximum of 12%
over the case where 70% of content requests are concentrated
on a specific server. Moreover, randomly encoded addresses
can reduce the required cache size significantly by achieving
the same cache hit ratio. For example in Figure 5, the cache
hit ratio is 0.3, for the case when the cache size is 500 and
encoded addresses is used, which is almost the same when the
cache size is 1900 without encoded addresses (70%). In other
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Figure 6. Hop reduction ratio with and without randomly encoded addresses
(C = 106)
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Figure 7. Cache hit ratio with and without randomly encoded addresses
(C = 105)

word, encoded addresses can reduce the cache size to about
1/4 to achieve the same performance on cache hit ratio.

The hop reduction ratio is improved by a maximum of 3%
over the case where 50% of content requests are concentrated
on a specific server and by a maximum of 4% over the case
where 70% of content requests are concentrated on a specific
server. In [17], a scale-free topology of the same order as we
used was evaluated, and cache hit ratio and hop reduction ratios
were both improved by about 3%. We therefore consider our
method to offer significant performance improvement.
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From Figure 7 and 8, forS = 1300, our method offers the
same performance as the case where 50% of content requests
are concentrated on a specific server. To analyze the reasons
for this, we assume that the requested content was obtained
from the cache of a node on the path to the repository. We
therefore calculate the cache hit ratio every number of hops
from a client when the smallest number of hops between a
client and a repository ish. The number of Interest packets
sent to repositories is thenRh, and the number of times content
requested by Interest packets was found in the cache of a node
that the number of hops from the client isi, isEh,i. In addition,
when content was acquired from a repository, we treat it as
found in the cache of a node where the number of hops from
the client ish. That is, the number of times the repository is
accessed isEh,h. The cache hit ratioCh,i from a client to a
nodei hops away is then given by (11).

Ch,i =

i∑
j=0

Eh,j

Rh
(11)

A comparison of the cache hit ratio every number of hops
from the client with and without randomly encoded addresses
is shown in Figure 9 for the case whereC = 106, S = 900, and
h = 4 (a case where performance is improved by our method),
and in Figure 10 for the case whereC = 105, S = 1300, and
h = 4 (a case where performance was not improved by our

method). In these figures, the horizontal axis indicatesi, and
the vertical axis indicatesCh,i.

From Figure 9, it is clear that the cache hit ratios of nodes
h−1 hops away from the client are greatly improved by using
randomly encoded addresses. Although caches in neighboring
nodes were frequently updated because popular content was
concentrated in a specific server, the content distribution by
using randomly encoded addresses resulted in a reduction in
the frequency of cache replacements. That is, the problem is
solved by our method. The improvement in hop reduction ratio
is limited to about 4% because the cache hit ratio up toh− 2
hops remains almost the same. This is because replacement of
caches originally occurred only rarely in nodes near the clients.

Figure 10 shows that the cache hit ratios of nodesh−1 hops
away from the client are greatly improved by using randomly
encoded addresses compared with the case where 70% of
content requests are concentrated on a specific server, but the
cache hit ratio is not significantly improved compared with
the case where 50% of content requests are concentrated on a
specific server. WithC = 105, andα = 0.9, the most popular
1300 pieces of content account for 50% of content requests.
That is, when 50% of content requests are concentrated on
a specific server, that server contains the 1300 most popular
pieces of content. Therefore, forS = 1300, because the
neighboring nodes can cache most of the content of the server,
their caches are infrequently updated. Therefore, our method
hardly improved performance in that case.

Consequently, if CCN routers can cache most of the content
that is frequently accessed on a server, the caches in nodes
near the servers updated infrequently. As a result, our method
offers virtually no performance improvement in those cases.
However, we expect that the cache size in CCN routers is
not sufficient to cache most of the content that is frequently
accessed on a server (such as a YouTube server). Therefore,
we conclude that our method is useful.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed and evaluated a method for
widely distributing content by using randomly encoded ad-
dresses in a CCN. Using our method makes it easy to disperse
content across a network, and improves cache performance.
Furthermore, since our method performs routing by the exist-
ing network layer protocol, it is expected to lead to an earlier
transition to CCN.

In this paper, we assume that a node that has a random hash
value calculated from the content names by a hash function
always exists. We need to think a specific method of selecting
encoded addresses based on a random hash value (e.g., a case
where a node that has calculated encoded addresses doesn’t
exist).
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