
Data Structure Enabling Retrieval of Time Series of
Traffic with the Requested Granularity

Yoshihiro Tsuji, Yuichi Ohsita, and Masayuki Muarata
Graduate School of Information Science and Technology, Osaka University

1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
Email: {y-tsuji, y-ohsita, murata}@ist.osaka-u.ac.jp

Abstract—Some network management tasks require the fine-
grained information of time series of traffic. However, it takes
a large overhead to obtain the fine-grained information. One
approach is to obtain the traffic information only with the
required granularities because the traffic information with the
fine granularity are not always necessary. In this approach, the
fine-grained traffic information is stored at each monitoring point,
and the network manager receive only the traffic information with
the required granularity. The required granularity of information
depends on time, but none of existing data structure enables
immediate retrieval of time series of traffic with the required
granularity that changes in time. Therefore, in this paper, we
propose a data structure enabling it. Through the numerical
evaluation, we demonstrate that our data structure enables
immediate retrieval of time series of traffic without a large
calculation time to store the traffic data.

Keywords—Traffic Measurement, Flow Monitoring, Granular-
ity, Patricia Tree, Multi-Stage Tree, Segment Tree

I. INTRODUCTION

The information on the time series of traffic is an important
information in the network management such as the traffic
engineering [1]–[3], and anomaly detection [4], [5].In recent
years, the demand for the fine-grained information of the time
series of traffic has increased, as the technology enabling the
configuration of the routes for each flow such as the OpenFlow
technology [6] becomes popular, because the per-flow route
configuration requires the per-flow traffic information. The
traffic information with the fine time granularity has also
become necessary. For example, Benson et al. demonstrated
that the dynamic routing reconfiguration with seconds interval
significantly improves the performance of the data center
network [1]. To perform the dynamic routing reconfiguration,
the traffic information with the smaller time granularity than
the control interval is required.

Typically, a central server collect traffic information period-
ically from the routers by using sFlow [7] and NetFlow [8] to
analyze the time series of traffic for the network management
tasks. We call the server manager. However, obtaining the
traffic information with the fine granularity by the NetFlow
or sFlow takes a large overhead, because the manager has to
collect a large amount of traffic data with a short interval.
One approach to reducing the overhead is to collect only
the required traffic information with the required granularity,
because the traffic information with the fine granularity are not
always necessary; the dynamic routing control requires only
the traffic information of the aggregated flows, which passes

the same routes, instead of the traffic information of each flow,
though the aggregated flows change in time.

Yuan et al. [9] proposed an architecture that monitors
the traffic with the required granularity. In this method, the
counters are configured so as to monitor the traffic with the
required granularities. However, in this method, the granularity
is required to be predefined. When the traffic information of
a certain IP address prefix becomes required, the past traffic
information of the prefix cannot be obtained by this method
even if the granularity is redefined.

Therefore, in this paper, we discuss an approach that
enables retrieval of the information of the time series of traffic
with the required granularity that changes in time. In this
approach, computers called traffic observers are deployed at
each monitoring point. The traffic observer stores all traffic
data from the connected or nearby routers. If traffic information
is required, the manager sends a request including the required
granularity to the traffic observers. Then, each traffic observer
analyzes the stored data to construct the traffic information
with the requested granularity, and replies the constructed
information. By this approach, the overhead to collect the
traffic information can be saved by collecting only the required
traffic information with the required granularity.

In this approach, how to store the traffic data has a large
impact on the time required to retrieve the required traffic data.
If we simply store each fine-grained traffic data, it takes a long
time to retrieve the coarse grained data; to obtain the traffic
amount of an IP address prefix, the traffic observer is required
to search all traffic data matching the IP address prefix.

Therefore, we propose a data structure to store the time
series of traffic so that the traffic information with the required
granularity can be retrieved immediately. Our data structure is
constructed of multiple trees. Each tree indicates one field of
the traffic data (e.g., time, source IP address, or destination
IP address). In each tree, the leaf nodes correspond to the
traffic data of the finest-grained granularity, and a parent node
corresponds to the coarser granularity that includes all of its
children. Each node has the pointer to the root of the tree
corresponding to the next field. Therefore, the traffic data
with the required granularity can be obtained by continuing
to search the nodes corresponding to the required granularity
of the field. Moreover, we improve the proposed tree-based
data structure to reduce the data size and the calculation time
to update the traffic information by using Patricia Tree and
eliminating sibling nodes.

The rest of this paper is organized as follows. Section II

explains the architecture of the traffic observer, and proposes
the data structure for the time series of traffic. Section III
evaluates the proposed data structure. Finally, the conclusion
and future work are mentioned in Section IV.

II. DESIGN OF TRAFFIC OBSERVER

A. Overview

In this paper, we deploy computers called traffic observers.
Each traffic observer collects fine-grained traffic information
periodically from directly connected routers or nearby routers.
The collection of the traffic information by the traffic ob-
server does not takes a large overhead, because each traffic
observer collects traffic information of a small number of
routers. Moreover, the number of hops passed by the traffic
information is small because each traffic observer collects the
traffic information only from nearby routers. Any method to
collect the traffic information can be applied; traffic observer
can retrieve the counter values of the routers by using the
NetFlow, or can count the packet through the mirrored ports.

The traffic observer stores the collected traffic information
in the data structure where the information on the time series
of traffic with the required granularity can be immediately
retrieved. When the network manager requires the traffic
information, the network manager sends a query, including
the range of the required traffic information and the required
granularity, to the traffic observer. Then, the traffic observers
retrieve and reply the information requested by the query. In
this paper, the granularities are defined by the three fields,
(i.e., time, source IP address, and destination IP address). The
granularity of the time is set by the length of the time slot. On
the other hand, the granularities of the source and destination
IP addresses are set by the length of the IP address prefix. By
setting these granularities, the traffic information is aggregated
into the traffic information per the defined time slot and the
defined IP address prefixes.

The rest of this section explains the data structures used to
store the traffic information in the traffic observers.

B. Data Structure in Traffic Observer

In this paper, we propose the data structure shown in
Figure 1. As shown in Figure 1, our data structure is con-
structed of three kinds of trees. The first tree manages the
time granularity. In this paper, we call this tree time tree. Our
data structure includes one time tree. In the time tree, the leaf
nodes corresponds to the minimum time slot. A parent node
corresponds to the larger time slot, which includes all time
slots of its children.

Each node in the time tree has the pointer to the cor-
responding tree managing the granularity of the source IP
address prefix. We call this tree source IP tree. Our data
structure includes the same number of the source IP trees as
the number of nodes in the time tree, and each source IP tree
corresponds to the time slot of the corresponding node in the
time tree. In each source IP tree, the leaf nodes correspond to
the traffic data monitored per source IP address. The sibling
nodes in the source IP tree correspond to the IP addresses with
the same prefix, and their parent node corresponds to the traffic
data aggregated by the prefix.

traffic (octets, #packets)traffic (octets, #packets)traffic (octets, #packets)traffic (octets, #packets)

granularity

Source IP Address Destination IP Address

traffic (octets, #packets)

Traffic Information

Time

Fig. 1. Proposed data structure to store the traffic data

Similar to the time tree, each nodes in the source IP tree has
the pointer to the tree managing the destination IP addresses.
We call this tree destination IP tree. Our data structure includes
the same number of destination IP trees as the total number
of nodes in all source IP trees. Each destination IP tree
corresponds to the time slot and the source IP address prefix
corresponding to the node in the source IP tree. The structure
of the destination IP tree is similar to the source IP tree. Each
node in the destination IP tree has the pointer to the counter.

By searching these trees, traffic information with any
granularity can be retrieved. First, the nodes corresponding to
the requested time slots are found by searching the time tree,
and the pointer to the corresponding source IP tree is obtained.
Then, the nodes corresponding to the requested source IP
prefixes are found by searching the source IP tree, and the
pointer to the destination IP tree is obtained. Finally, the
counter values are retrieved by searching the destination IP
tree.

The rest of this subsection explains the detail of the
structures of the time tree, source IP tree and destination IP
tree.

1) Time tree: The time tree is constructed so as to include
the nodes corresponding to the time slots that are possible
to be requested. For example, the traffic data with 1-minute
interval or 1-hour interval may be often requested while the
traffic data with 12-minute interval is seldom requested. Thus,
we predefine the possible time intervals.

Based on the defined possible time intervals, the structure
of the time tree is determined. For example, we consider the
case that the traffic information for one day is stored, and the
possible time intervals are set to 1 day, 12 hours, 1 hour, 10
minutes, 1 minute, and 10 seconds. In this case, the root node
corresponds to the traffic for one day, and has two children.
The node corresponding to the traffic for 12 hours, 1 hour,
10 minutes, and 1 minutes have 12, 6, 10, and 6 children,
respectively.

2) Source IP tree and destination IP tree : The source
IP tree and the destination IP tree are constructed based
on the binary tree; each parent node corresponds to the IP
address prefix whose length is one bit shorter than its children.
However, the binary tree requires a large amount of nodes in
the trees.

32

N aray Tree

(N=2s, len(k1,j) >= s, (j < N))

k1,0 k1,1 k1,n

k2,0 k2,1 k2,2 k2,3

k3,0
k3,1

km,0 km,1

Patricia Trie with compressed

(len(ki,j) >= 1, (i >= 2))

Fig. 2. Overview of the source IP tree and the destination IP tree

To solve this problem, we first introduce the threshold s
indicating the length of the prefix whose traffic information is
not stored; the traffic information does not aggregated into the
IP address prefix whose length is less than s. The root node has
the same number of children as the number of s-bit IP address
prefix included in the monitored traffic. This is motivated by
the fact that too coarse grained information is seldom used;
the information on the traffic passing the same route is useful
for many applications such as network management, while the
information on the aggregated traffic which includes the traffic
passing the different routes is not required.

Moreover, we reduce the nodes in the source IP tree and
the destination IP tree by using the sparsity of the IP addresses
monitored at each traffic observer; some IP address prefixes are
frequently monitored by a traffic observer, while the other IP
address prefix has never monitored by it. In this case, the tree
does not require the nodes corresponding to the IP addresses
that are not monitored. To utilize the sparsity, we use the
Patricia tree to store the traffic information. Patricia tree [10],
[11] is a tree-based data structure where nodes with only one
child are eliminated from the tree.

We also eliminate the information of one of the sibling
nodes, because the information of the node can be recovered
from the information (i.e. the pointer to the next tree) of the
parent and the other sibling node; the information is recovered
by calculating the difference of the parent node and the other
sibling node. Even if the parent node also does not have the
information, we can recover the information by continuing to
recover the information of the parent.

C. Operations on Data Structure

1) Update: The traffic observer collects the traffic informa-
tion periodically. When the new traffic information is received,
the traffic observer updates its data structure to store it.

a) Update of the time tree: To update the traffic in-
formation, we first search the time tree to find the nodes
corresponding to the current time slot. If no nodes including
the current time slot are found at each layer, we add the
new node to the time tree, and create the new source IP tree
corresponding to the current time slot.

b) Update of the source IP trees: Then, we update all
source IP trees that have pointers from the nodes of the current
time slot in the time tree. We search each of the source IP trees
for the nodes with the source IP address prefix corresponding

to the source IP addresses included in the newly received traffic
information.

If the source IP address in the newly received traffic
information has not been included in the source IP tree, we
update the source IP tree by adding a node corresponding to the
source IP address. To add the node corresponding to the source
IP address Anew, we first find the leaf node corresponding to
the source IP address Aleaf where P (Anew,Aleaf) is the largest,
denoting P (A,B) as the number of bits of the common prefix
of A and B. The found leaf node is denoted by N leaf . Then,
we add the node corresponding to Anew, which is denoted
as Nnew, and the parent node of N leaf and Nnew, which is
denoted as Nparent. The pointer whose value was the address
of N leaf is changed into the address of Nparent, and the
pointers of the children of Nparent are set to the addresses
of N leaf and Nnew.

After adding new node, we create the destination IP trees
corresponding to the newly added nodes. In our data structure,
only one of the sibling nodes has to have the corresponding
destination IP tree. The process to create the destination
IP trees depends on whether N leaf has the corresponding
destination IP tree. If N leaf has the corresponding destination
IP tree, Nnew does not require the corresponding destination IP
tree. Instead, Nparent requires the corresponding destination IP
tree, because the node that becomes the sibling node of Nparent

after the addition does not has the corresponding destination IP
tree. The destination IP tree of Nparent is created by copying
the destination IP tree of the N leaf . On the other hand, if N leaf

does not have the corresponding destination IP tree, Nparent

does not require the corresponding destination IP tree. Instead,
either N leaf or Nnew requires the corresponding destination IP
tree. In this case, we create the blank tree, that includes only
the root node, for the Nnew, because creating the blank tree
takes little calculation time.

c) Update of the destination IP trees: Finally we update
the destination IP trees. The destination IP trees required to
be updated are found by searching the source IP trees for the
nodes with the source IP address prefix corresponding to the
source address of the flows included in the newly collected
traffic information.

If a destination IP tree is found by searching the source
IP tree for the node corresponding to the set of flows F , the
destination IP tree is updated by the following steps. For each
flow f in F , we search the destination IP tree for the nodes
with the destination IP address prefix corresponding to the
destination IP address of f . Then, we obtain the pointers to the
corresponding counter, and update the values of the counters.
If the destination IP address of f has not been included in the
destination IP tree, we add the nodes by the similar way to the
source IP tree. Then, the value of the corresponding counter
is updated.

2) Retrieval of the required information: When the network
manager requires the traffic information, it sends the request
of the traffic information to the traffic observers. The request
includes the range and the granularity of the required traffic
information. The range and the granularity are defined by the
three fields, the time, the source IP address, and the desti-
nation IP address. That is, the request includes the following
information, the start time T start, the ending time T end, the

length of time slots of the required traffic information T size,
the range of the source IP address (Sstart, Send), the number
of bits of the prefix of the source IP address of the required
traffic information Ssize, the range of the destination IP address
(Dstart, Dend) and the number of bits of the prefix of the
destination IP address of the required traffic information Dsize.
When receiving the request, the traffic observer retrieves and
replies the requested traffic information. The requested traffic
information is retrieved by the following steps.

a) Find the nodes corresponding to the requested infor-
mation : We construct the subtree that has all of the required
information from each tree as follows. We first find the node
that includes both of the traffic information at T start and T end.
The found node becomes the root of the subtree. Then, we
eliminate the nodes whose parents have the sufficiently small
time slots whose lengths are shorter than T size. Then, the
subtrees of the source IP trees corresponding to the nodes
in the subtree of the time tree is constructed by the similar
way. Finally, the subtrees of the destination IP trees are also
constructed. After the construction of the subtrees, the leaf
nodes correspond to the requested traffic information.

b) Restoration: In our data structure, only one of the
sibling nodes has the pointer to the tree of the next field. Thus,
we require to restore the information to retrieve the requested
traffic information. The information of the node N which is
denoted as IN is restored by

IN = INparent − INsibling .

where Nparent is the parent of N , N sibling is the sibling node,
and the operator − indicates the difference of the first term
and the second term. Because the information corresponding
to the node in the time tree or the source IP tree is the source
IP tree or the destination IP tree, we define the operator − for
the trees in the rest of this section.

To calculate the tree B − A for trees A and B, all nodes
in B are first copied to B − A, and then the information
corresponding to the nodes in B − A is calculated. The
information of the node n in tree B −A is calculated by

In =

{
InB

nfound
A is not found

InB
− Infound

A
otherwise ,

where nB is the nodes with the same key as n in B, and nfound
A

is the node in A whose key length is the longest among the
nodes whose keys include the key of n as the prefix.

III. EVALUATION

A. Traffic Data

In this paper, we use the traffic data captured from P.M.
0:00 to P.M. 0:30 on 7th Feb. 2014 at the port of the gateway
of Osaka University. The maximum rate of the port is 1 Gbps.
In this data, the IP addresses are anonymized by applying the
hash function to the lowest 16-bit of the IP addresses. This
anonymization does not have any impact on our evaluation,
because (1) the anonymization process does not change the
upper 16-bit of the IP address, and (2) the flows belonging
to the same flow have the same IP addresses even after the
anonymization process.

 0

 0.6

 1.2

 1.8

 2.4

4 8 12
 0

 0.9

 1.8

 2.7

 3.6

 4.5

N
u
m

b
e
r

o
f
N

o
d
e
s
 (

/1
0

8
)

D
a
ta

 S
iz

e
 [
G

B
]

s

nodes with pointer to the next tree
nodes without pointer to the next tree

data size

Fig. 3. Total number of nodes in our data structure when 30-minute traffic
information is stored

 0

 5

 10

 15

 20

 25

 30

 35

12:00 12:05 12:10 12:15 12:20 12:25 12:30N
u
m

b
e
r

o
f
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

7
)

time of day (2014-02-07 %H:%M)

t=10 sec, without eliminating the sibling nodes
t=10 sec, with eliminating the sibling nodes

t=60 sec, without eliminating the sibling nodes
t=60 sec, with eliminating the sibling nodes

Fig. 4. The number of memory access required to update the traffic
information at each time slot

B. Data Size of Data Structure

We first investigate the data size of our structure required
to store the 30-minute data. We set the possible time interval
to 30 minutes, 10 minutes, 1 minute, and 10 seconds. We set
the minimum time interval to 10 seconds. We set s to 4, 8,
and 12.

Figure 3 shows the number of nodes in trees. The data size
is calculated by setting the data size of each node to 24 bytes
and 16 bytes for the node with pointer to the next tree and the
node without the pointer to the next tree respectively. Figure 3
indicates that setting s to a large value decreases the number
of nodes in trees and the data size. Even if we set s to 4, the
data size does not become large and is less than 4.5 GB.

C. Updating Complexity

We also investigated the calculation time to update the
traffic information. In this investigation, we count the number
of memory access required to search trees, copy trees and
update counters. Figure 4 shows the number of memory access
required to update the traffic information at each time slot.
In this investigation, we set the same parameter of our data
structure as Section III.B. We compare two cases of the
time interval to collect the traffic information t. Moreover
we compare our data structure with the data structure that
does not eliminate the sibling nodes. This figure indicates
that eliminating the sibling nodes decreases the time required
to update the traffic information by half. This is because
eliminating the sibling nodes reduces the number of nodes in
trees required to be updated. Supposing that the time required

to access the memory is 50 ns based on [12], the time required
to update the traffic information is 15 sec or 5 sec in the case
of t = 60 and t = 10 respectively. That is, the time required to
update is much smaller than the interval to update the traffic
information.

D. Extraction Complexity

We investigate the calculation time to extract the required
traffic information based on the number of memory access. In
this investigation, we set t to 60, s to 8.

In our investigation, we use the parameters in the request
of the traffic information generated by the combination of
the following fields. We use three T start, 12:00, 12:10, and
12:20. Then, T end is set to 10 minutes after T start. T size to 1
minute unless otherwise stated. For Sstart, Send, Dstart, and
Dend, we first select ten source and destination IP address
pairs randomly from the monitored traffic data. Then, Sstart is
set to the address whose first 8 bits are set to the same as the
selected IP address and the other bits are set to 0. Similarly,
Send is set to the address whose first 8 bits are set to the same
as the selected IP address and the other bits are set to 1. Dstart

and Dend are set similarly. We set Ssize and Dsize to 12 unless
otherwise stated.

We investigate the number of memory access required to
retrieve the requested information by changing the granularity
defined by T size, Ssize and Dsize in Figure 5. This figure
indicates the average of the number of memory access. Fig-
ure 5 indicates that setting T size, Ssize or Dsize to a small
value increases the number of memory access, because more
traffic information is required to be retrieved. This figure also
indicates that the total number of memory access required to
obtain the required information is less than 140× 103, which
takes only 7.0 ms by supposing that each memory access
takes 50 ns, even when sibling nodes are eliminated, though
the restoration is required. That is, eliminating sibling nodes
does not cause the large overhead to restore the eliminated
information.

IV. CONCLUSION

In this paper, we proposed a data structure enabling the
retrieval of the time series of the traffic with the requested gran-
ularity. Through the numerical evaluation, we demonstrated
that our data structure enables the immediate retrieval of the
time series of the traffic without a large calculation time to
store the traffic data.

Our future work includes the discussion on more reduction
of the nodes in the trees so as to save the memory size and
the calculation time more.

REFERENCES

[1] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
Grained Traffic Engineering for Data Centers,” in Proc. ACM CoNEXT,
2011, pp. 8:1–8:12.

[2] Tatsuya Otoshi, “Prediction-based control theoretic approach for robust
traffic engineering,” Master’s thesis, Graduate School of Information
Science and Technology, Osaka University, February 2014.

[3] T. Otoshi, Y. Ohsita, M. Murata, Y. Takahashi, K. Ishibashi, and
K. Shiomoto, “Traffic Prediction for Dynamic Traffic Engineering
Considering Traffic Variation,” in Proc. IEEE Globecom, Dec. 2013,
pp. 1592–1598.

 0

 6

 12

 18

 24

 30

10 1

#
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

3
)

T
size

retrieval

(a) Various T size without eliminating
sibling nodes

 0

 6

 12

 18

 24

 30

10 1

#
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

3
)

T
size

retrieval restoration

(b) Various T size with eliminating sib-
ling nodes

 0

 16

 32

 48

 64

 80

8 10 12 14 16

#
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

3
)

S
size

retrieval

(c) Various Ssize without eliminating
sibling nodes

 0

 16

 32

 48

 64

 80

8 10 12 14 16

#
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

3
)

S
size

retrieval restoration

(d) Various Ssize with eliminating sib-
ling nodes

 0

 28

 56

 84

 112

 140

8 10 12 14 16

#
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

3
)

D
size

retrieval

(e) Various Dsize without eliminating
sibling nodes

 0

 28

 56

 84

 112

 140

8 10 12 14 16

#
M

e
m

o
ry

 A
c
c
e
s
s
 (

/1
0

3
)

D
size

retrieval restoration

(f) Various Dsize with eliminating sib-
ling nodes

Fig. 5. The number of memory access to extract the required traffic
information

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[5] A. Soule, K. Salamatian, and N. Taft, “Combining Filtering and
Statistical Methods for Anomaly Detection,” in Proc. ACM SIGCOMM
IMC, Oct. 2005, pp. 31–31.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR., vol. 38, no. 2, pp. 69–
74, 2008.

[7] P. Phaal, S. Panchen, and N. McKee, “InMon Corporations sFlow: A
Method for Monitoring Traffic in Switched and Routed Networks,” RFC
3176, 2001.

[8] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, Oct. 2004.

[9] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: Towards Pro-
grammable Network Measurement,” IEEE/ACM Trans. Netw., vol. 19,
no. 1, pp. 115–128, Feb. 2011.

[10] D. E. Knuth, “The Art of Computer Programming. vol. 3: Sorting and
Searching,” Atmospheric Chemistry & Physics, vol. 1, 1973.

[11] W. Doeringer, G. Karjoth, and M. Nassehi, “Routing on Longest-
Matching Prefixes,” IEEE/ACM Trans. Netw., vol. 4, no. 1, pp. 86–97,
1996.

[12] Micron, “Micron Technical Note Using DDR4 in Networking Subsys-
tems,” http://www.micron.com/-/media/documents/products/technical%
20note/dram/tn 4003 ddr4 network design guide.pdf.

